CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-TOP-24-008
Search for physics beyond the standard model in four and three top quark production events using proton-proton collisions at $ \sqrt{s}= $ 13 TeV
Abstract: An interpretation of a measurement of four and three top quark production in different scenarios of new physics beyond the standard model (SM) is reported. The analyzed proton-proton collision data were recorded at 13 TeV with the CMS detector at the CERN LHC in 2016-2018 and correspond to an integrated luminosity of 138 fb$ ^{-1} $. Events with two same-sign, three, or four leptons (electrons and/or muons) are selected. Using the SM effective field theory framework, constraints on six Wilson coefficients are derived that modify interactions between four third-generation quarks or between top quarks and the Higgs boson. Exclusion limits are derived on top-philic heavy resonances of different spin and color states, covering masses between 400 GeV and 1.6 TeV. The top quark Yukawa coupling is extracted, considering both $ CP $-even and $ CP $-odd contributions.
Figures Summary References CMS Publications
Figures

png pdf
Figure 1:
Schematic representation of the event selection and categorization.

png pdf
Figure 2:
Comparison of the number of observed (points) and predicted (colored histograms) events in the BDT score $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (upper row) or $ H_{\mathrm{T}} $ (lower row) distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins of the $ H_{\mathrm{T}} $ distributions include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The SM yields are shown with their best fit normalizations from the simultaneous fit to the data (``postfit'') for the SM fit. The dashed/dotted lines show the enhancement of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production in different new-physics scenarios. The lower panels show the ratio of the total prediction to data for four postfit scenarios $-$SM, Yukawa coupling extraction, SMEFT, and V$_1$ resonance with $ m_{\mathrm{V}_{1}}= $ 0.4 TeV$-$ and also using the SM yields before any fit to the data (``prefit'').

png pdf
Figure 2-a:
Comparison of the number of observed (points) and predicted (colored histograms) events in the BDT score $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (upper row) or $ H_{\mathrm{T}} $ (lower row) distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins of the $ H_{\mathrm{T}} $ distributions include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The SM yields are shown with their best fit normalizations from the simultaneous fit to the data (``postfit'') for the SM fit. The dashed/dotted lines show the enhancement of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production in different new-physics scenarios. The lower panels show the ratio of the total prediction to data for four postfit scenarios $-$SM, Yukawa coupling extraction, SMEFT, and V$_1$ resonance with $ m_{\mathrm{V}_{1}}= $ 0.4 TeV$-$ and also using the SM yields before any fit to the data (``prefit'').

png pdf
Figure 2-b:
Comparison of the number of observed (points) and predicted (colored histograms) events in the BDT score $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (upper row) or $ H_{\mathrm{T}} $ (lower row) distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins of the $ H_{\mathrm{T}} $ distributions include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The SM yields are shown with their best fit normalizations from the simultaneous fit to the data (``postfit'') for the SM fit. The dashed/dotted lines show the enhancement of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production in different new-physics scenarios. The lower panels show the ratio of the total prediction to data for four postfit scenarios $-$SM, Yukawa coupling extraction, SMEFT, and V$_1$ resonance with $ m_{\mathrm{V}_{1}}= $ 0.4 TeV$-$ and also using the SM yields before any fit to the data (``prefit'').

png pdf
Figure 2-c:
Comparison of the number of observed (points) and predicted (colored histograms) events in the BDT score $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (upper row) or $ H_{\mathrm{T}} $ (lower row) distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins of the $ H_{\mathrm{T}} $ distributions include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The SM yields are shown with their best fit normalizations from the simultaneous fit to the data (``postfit'') for the SM fit. The dashed/dotted lines show the enhancement of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production in different new-physics scenarios. The lower panels show the ratio of the total prediction to data for four postfit scenarios $-$SM, Yukawa coupling extraction, SMEFT, and V$_1$ resonance with $ m_{\mathrm{V}_{1}}= $ 0.4 TeV$-$ and also using the SM yields before any fit to the data (``prefit'').

png pdf
Figure 2-d:
Comparison of the number of observed (points) and predicted (colored histograms) events in the BDT score $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (upper row) or $ H_{\mathrm{T}} $ (lower row) distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins of the $ H_{\mathrm{T}} $ distributions include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The SM yields are shown with their best fit normalizations from the simultaneous fit to the data (``postfit'') for the SM fit. The dashed/dotted lines show the enhancement of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production in different new-physics scenarios. The lower panels show the ratio of the total prediction to data for four postfit scenarios $-$SM, Yukawa coupling extraction, SMEFT, and V$_1$ resonance with $ m_{\mathrm{V}_{1}}= $ 0.4 TeV$-$ and also using the SM yields before any fit to the data (``prefit'').

png pdf
Figure 3:
Two-dimensional scan of the $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ and $ \mathrm{t}\mathrm{t}\mathrm{t} $ cross sections. The color scale shows the negative log-likelihood difference with respect to the best fit point, and the contour lines show the 68% (solid) and 95% (dashed) CL intervals. The SM prediction is indicated with a black plus sign. The correlation $ \rho $ between the two measured cross sections is $-$0.98.

png pdf
Figure 4:
Comparison of the $ H_{\mathrm{T}} $ distribution in the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ for different SMEFT scenarios relative to the SM prediction. Each line shows the ratio of the SMEFT prediction for $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $, $ \mathrm{t}\mathrm{t}\mathrm{t} $, and $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $ production combined with exactly one WC at a nonzero value to the SM prediction for the same processes. The last bin includes the overflow contribution.

png pdf
Figure 5:
Negative log-likelihood difference from the best fit value for the one-dimensional scans of the WCs $ c_{\mathrm{t}\mathrm{t}} $ (upper left), $ c_{\text{Q}\text{Q}}^{(1)} $ (upper right), $ c_{\text{Q}\mathrm{t}}^{(1)} $ (middle left), $ c_{\text{Q}\mathrm{t}}^{(8)} $ (middle right), $ c_{\mathrm{t}\mathrm{H}}^{\mathrm{Re}} $ (lower left), and $ c_{\mathrm{t}\mathrm{H}}^{\mathrm{Im}} $ (lower right). Shown are the expected (green) and observed (blue) results for the cases where the other WCs are profiled (solid) or fixed to zero (``frozen'', dashed).

png pdf
Figure 5-a:
Negative log-likelihood difference from the best fit value for the one-dimensional scans of the WCs $ c_{\mathrm{t}\mathrm{t}} $ (upper left), $ c_{\text{Q}\text{Q}}^{(1)} $ (upper right), $ c_{\text{Q}\mathrm{t}}^{(1)} $ (middle left), $ c_{\text{Q}\mathrm{t}}^{(8)} $ (middle right), $ c_{\mathrm{t}\mathrm{H}}^{\mathrm{Re}} $ (lower left), and $ c_{\mathrm{t}\mathrm{H}}^{\mathrm{Im}} $ (lower right). Shown are the expected (green) and observed (blue) results for the cases where the other WCs are profiled (solid) or fixed to zero (``frozen'', dashed).

png pdf
Figure 5-b:
Negative log-likelihood difference from the best fit value for the one-dimensional scans of the WCs $ c_{\mathrm{t}\mathrm{t}} $ (upper left), $ c_{\text{Q}\text{Q}}^{(1)} $ (upper right), $ c_{\text{Q}\mathrm{t}}^{(1)} $ (middle left), $ c_{\text{Q}\mathrm{t}}^{(8)} $ (middle right), $ c_{\mathrm{t}\mathrm{H}}^{\mathrm{Re}} $ (lower left), and $ c_{\mathrm{t}\mathrm{H}}^{\mathrm{Im}} $ (lower right). Shown are the expected (green) and observed (blue) results for the cases where the other WCs are profiled (solid) or fixed to zero (``frozen'', dashed).

png pdf
Figure 5-c:
Negative log-likelihood difference from the best fit value for the one-dimensional scans of the WCs $ c_{\mathrm{t}\mathrm{t}} $ (upper left), $ c_{\text{Q}\text{Q}}^{(1)} $ (upper right), $ c_{\text{Q}\mathrm{t}}^{(1)} $ (middle left), $ c_{\text{Q}\mathrm{t}}^{(8)} $ (middle right), $ c_{\mathrm{t}\mathrm{H}}^{\mathrm{Re}} $ (lower left), and $ c_{\mathrm{t}\mathrm{H}}^{\mathrm{Im}} $ (lower right). Shown are the expected (green) and observed (blue) results for the cases where the other WCs are profiled (solid) or fixed to zero (``frozen'', dashed).

png pdf
Figure 5-d:
Negative log-likelihood difference from the best fit value for the one-dimensional scans of the WCs $ c_{\mathrm{t}\mathrm{t}} $ (upper left), $ c_{\text{Q}\text{Q}}^{(1)} $ (upper right), $ c_{\text{Q}\mathrm{t}}^{(1)} $ (middle left), $ c_{\text{Q}\mathrm{t}}^{(8)} $ (middle right), $ c_{\mathrm{t}\mathrm{H}}^{\mathrm{Re}} $ (lower left), and $ c_{\mathrm{t}\mathrm{H}}^{\mathrm{Im}} $ (lower right). Shown are the expected (green) and observed (blue) results for the cases where the other WCs are profiled (solid) or fixed to zero (``frozen'', dashed).

png pdf
Figure 5-e:
Negative log-likelihood difference from the best fit value for the one-dimensional scans of the WCs $ c_{\mathrm{t}\mathrm{t}} $ (upper left), $ c_{\text{Q}\text{Q}}^{(1)} $ (upper right), $ c_{\text{Q}\mathrm{t}}^{(1)} $ (middle left), $ c_{\text{Q}\mathrm{t}}^{(8)} $ (middle right), $ c_{\mathrm{t}\mathrm{H}}^{\mathrm{Re}} $ (lower left), and $ c_{\mathrm{t}\mathrm{H}}^{\mathrm{Im}} $ (lower right). Shown are the expected (green) and observed (blue) results for the cases where the other WCs are profiled (solid) or fixed to zero (``frozen'', dashed).

png pdf
Figure 5-f:
Negative log-likelihood difference from the best fit value for the one-dimensional scans of the WCs $ c_{\mathrm{t}\mathrm{t}} $ (upper left), $ c_{\text{Q}\text{Q}}^{(1)} $ (upper right), $ c_{\text{Q}\mathrm{t}}^{(1)} $ (middle left), $ c_{\text{Q}\mathrm{t}}^{(8)} $ (middle right), $ c_{\mathrm{t}\mathrm{H}}^{\mathrm{Re}} $ (lower left), and $ c_{\mathrm{t}\mathrm{H}}^{\mathrm{Im}} $ (lower right). Shown are the expected (green) and observed (blue) results for the cases where the other WCs are profiled (solid) or fixed to zero (``frozen'', dashed).

png pdf
Figure 6:
Constraints on the individual WCs, obtained by either profiling the other WCs (green) or fixing them to zero (``frozen'', black). The points indicate the observed best fit values, and the error bars and shaded areas the observed and expected CL intervals, respectively. The CL intervals corresponding to values of the test statistic below 1 (solid lines and darker shaded areas) and 4 (dashed lines and lighter shaded areas) are shown. The constraints are scaled to ensure that all six WCs can be visualized on the same axis range.

png pdf
Figure 7:
Expected (green) and observed (blue) exclusion contours for the two-dimensional scans of the WCs $ c_{\text{Q}\text{Q}}^{(1)} $ and $ c_{\mathrm{t}\mathrm{t}} $ (left) and $ c_{\mathrm{t}\mathrm{H}}^{\mathrm{Re}} $ and $ c_{\mathrm{t}\mathrm{H}}^{\mathrm{Im}} $ (right), with the other WCs profiled in both cases. Shown are the CL intervals where the test statistic falls below 2.3 (solid) and 6.2 (dashed). The best fit value is indicated with a blue cross, and the SM prediction with a black plus sign.

png pdf
Figure 7-a:
Expected (green) and observed (blue) exclusion contours for the two-dimensional scans of the WCs $ c_{\text{Q}\text{Q}}^{(1)} $ and $ c_{\mathrm{t}\mathrm{t}} $ (left) and $ c_{\mathrm{t}\mathrm{H}}^{\mathrm{Re}} $ and $ c_{\mathrm{t}\mathrm{H}}^{\mathrm{Im}} $ (right), with the other WCs profiled in both cases. Shown are the CL intervals where the test statistic falls below 2.3 (solid) and 6.2 (dashed). The best fit value is indicated with a blue cross, and the SM prediction with a black plus sign.

png pdf
Figure 7-b:
Expected (green) and observed (blue) exclusion contours for the two-dimensional scans of the WCs $ c_{\text{Q}\text{Q}}^{(1)} $ and $ c_{\mathrm{t}\mathrm{t}} $ (left) and $ c_{\mathrm{t}\mathrm{H}}^{\mathrm{Re}} $ and $ c_{\mathrm{t}\mathrm{H}}^{\mathrm{Im}} $ (right), with the other WCs profiled in both cases. Shown are the CL intervals where the test statistic falls below 2.3 (solid) and 6.2 (dashed). The best fit value is indicated with a blue cross, and the SM prediction with a black plus sign.

png pdf
Figure 8:
Example LO Feynman diagrams for $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ production with resonant $ \mathrm{S}_{8} \to{\mathrm{t}\overline{\mathrm{t}}} $ decay (left), $ \mathrm{t}\mathrm{t}\mathrm{t}\mathrm{W} $ production with resonant $ \mathrm{V}_{1} \to{\mathrm{t}\overline{\mathrm{t}}} $ decay (center), and doubly-resonant $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ production as V$_{8}$ pair production with subsequent $ \mathrm{V}_{8} \to{\mathrm{t}\overline{\mathrm{t}}} $ decays (right).

png pdf
Figure 8-a:
Example LO Feynman diagrams for $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ production with resonant $ \mathrm{S}_{8} \to{\mathrm{t}\overline{\mathrm{t}}} $ decay (left), $ \mathrm{t}\mathrm{t}\mathrm{t}\mathrm{W} $ production with resonant $ \mathrm{V}_{1} \to{\mathrm{t}\overline{\mathrm{t}}} $ decay (center), and doubly-resonant $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ production as V$_{8}$ pair production with subsequent $ \mathrm{V}_{8} \to{\mathrm{t}\overline{\mathrm{t}}} $ decays (right).

png pdf
Figure 8-b:
Example LO Feynman diagrams for $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ production with resonant $ \mathrm{S}_{8} \to{\mathrm{t}\overline{\mathrm{t}}} $ decay (left), $ \mathrm{t}\mathrm{t}\mathrm{t}\mathrm{W} $ production with resonant $ \mathrm{V}_{1} \to{\mathrm{t}\overline{\mathrm{t}}} $ decay (center), and doubly-resonant $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ production as V$_{8}$ pair production with subsequent $ \mathrm{V}_{8} \to{\mathrm{t}\overline{\mathrm{t}}} $ decays (right).

png pdf
Figure 8-c:
Example LO Feynman diagrams for $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ production with resonant $ \mathrm{S}_{8} \to{\mathrm{t}\overline{\mathrm{t}}} $ decay (left), $ \mathrm{t}\mathrm{t}\mathrm{t}\mathrm{W} $ production with resonant $ \mathrm{V}_{1} \to{\mathrm{t}\overline{\mathrm{t}}} $ decay (center), and doubly-resonant $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ production as V$_{8}$ pair production with subsequent $ \mathrm{V}_{8} \to{\mathrm{t}\overline{\mathrm{t}}} $ decays (right).

png pdf
Figure 9:
Enhancement of the $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left) and $ \mathrm{t}\mathrm{t}\mathrm{t} $ (right) production cross section in the different scenarios with a top-philic heavy resonance as a function of the mass of the new boson, evaluated at LO as the difference between the cross section calculated with all SM, BSM, and interference contributions and the SM-only cross section. The coupling strength is fixed to a value of 0.2 in all scenarios.

png pdf
Figure 9-a:
Enhancement of the $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left) and $ \mathrm{t}\mathrm{t}\mathrm{t} $ (right) production cross section in the different scenarios with a top-philic heavy resonance as a function of the mass of the new boson, evaluated at LO as the difference between the cross section calculated with all SM, BSM, and interference contributions and the SM-only cross section. The coupling strength is fixed to a value of 0.2 in all scenarios.

png pdf
Figure 9-b:
Enhancement of the $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left) and $ \mathrm{t}\mathrm{t}\mathrm{t} $ (right) production cross section in the different scenarios with a top-philic heavy resonance as a function of the mass of the new boson, evaluated at LO as the difference between the cross section calculated with all SM, BSM, and interference contributions and the SM-only cross section. The coupling strength is fixed to a value of 0.2 in all scenarios.

png pdf
Figure 10:
The 95% CL exclusion limits on $ y_{{}_{1}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{1}} $ (upper left), on $ y_{{}_{8}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{8}} $ (upper right), on $ y_{{}_{1}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{1}} $ (center left), on $ y_{{}_{8}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{8}} $ (center right), on $ g_1 $ as a function of $ m_{\mathrm{V}_{1}} $ (lower left), and on $ g_8 $ as a function of $ m_{\mathrm{V}_{8}} $ (lower right). The area above the solid (dashed) black line indicates the observed (expected) exclusion region. The area above the hatched blue line indicates the nonphysical region of phase space in which the partial width $ \Gamma(\mathrm{X}\to{\mathrm{t}\overline{\mathrm{t}}} ) $ becomes larger than the total width of 10 GeV used in the simulated signal samples.

png pdf
Figure 10-a:
The 95% CL exclusion limits on $ y_{{}_{1}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{1}} $ (upper left), on $ y_{{}_{8}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{8}} $ (upper right), on $ y_{{}_{1}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{1}} $ (center left), on $ y_{{}_{8}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{8}} $ (center right), on $ g_1 $ as a function of $ m_{\mathrm{V}_{1}} $ (lower left), and on $ g_8 $ as a function of $ m_{\mathrm{V}_{8}} $ (lower right). The area above the solid (dashed) black line indicates the observed (expected) exclusion region. The area above the hatched blue line indicates the nonphysical region of phase space in which the partial width $ \Gamma(\mathrm{X}\to{\mathrm{t}\overline{\mathrm{t}}} ) $ becomes larger than the total width of 10 GeV used in the simulated signal samples.

png pdf
Figure 10-b:
The 95% CL exclusion limits on $ y_{{}_{1}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{1}} $ (upper left), on $ y_{{}_{8}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{8}} $ (upper right), on $ y_{{}_{1}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{1}} $ (center left), on $ y_{{}_{8}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{8}} $ (center right), on $ g_1 $ as a function of $ m_{\mathrm{V}_{1}} $ (lower left), and on $ g_8 $ as a function of $ m_{\mathrm{V}_{8}} $ (lower right). The area above the solid (dashed) black line indicates the observed (expected) exclusion region. The area above the hatched blue line indicates the nonphysical region of phase space in which the partial width $ \Gamma(\mathrm{X}\to{\mathrm{t}\overline{\mathrm{t}}} ) $ becomes larger than the total width of 10 GeV used in the simulated signal samples.

png pdf
Figure 10-c:
The 95% CL exclusion limits on $ y_{{}_{1}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{1}} $ (upper left), on $ y_{{}_{8}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{8}} $ (upper right), on $ y_{{}_{1}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{1}} $ (center left), on $ y_{{}_{8}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{8}} $ (center right), on $ g_1 $ as a function of $ m_{\mathrm{V}_{1}} $ (lower left), and on $ g_8 $ as a function of $ m_{\mathrm{V}_{8}} $ (lower right). The area above the solid (dashed) black line indicates the observed (expected) exclusion region. The area above the hatched blue line indicates the nonphysical region of phase space in which the partial width $ \Gamma(\mathrm{X}\to{\mathrm{t}\overline{\mathrm{t}}} ) $ becomes larger than the total width of 10 GeV used in the simulated signal samples.

png pdf
Figure 10-d:
The 95% CL exclusion limits on $ y_{{}_{1}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{1}} $ (upper left), on $ y_{{}_{8}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{8}} $ (upper right), on $ y_{{}_{1}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{1}} $ (center left), on $ y_{{}_{8}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{8}} $ (center right), on $ g_1 $ as a function of $ m_{\mathrm{V}_{1}} $ (lower left), and on $ g_8 $ as a function of $ m_{\mathrm{V}_{8}} $ (lower right). The area above the solid (dashed) black line indicates the observed (expected) exclusion region. The area above the hatched blue line indicates the nonphysical region of phase space in which the partial width $ \Gamma(\mathrm{X}\to{\mathrm{t}\overline{\mathrm{t}}} ) $ becomes larger than the total width of 10 GeV used in the simulated signal samples.

png pdf
Figure 10-e:
The 95% CL exclusion limits on $ y_{{}_{1}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{1}} $ (upper left), on $ y_{{}_{8}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{8}} $ (upper right), on $ y_{{}_{1}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{1}} $ (center left), on $ y_{{}_{8}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{8}} $ (center right), on $ g_1 $ as a function of $ m_{\mathrm{V}_{1}} $ (lower left), and on $ g_8 $ as a function of $ m_{\mathrm{V}_{8}} $ (lower right). The area above the solid (dashed) black line indicates the observed (expected) exclusion region. The area above the hatched blue line indicates the nonphysical region of phase space in which the partial width $ \Gamma(\mathrm{X}\to{\mathrm{t}\overline{\mathrm{t}}} ) $ becomes larger than the total width of 10 GeV used in the simulated signal samples.

png pdf
Figure 10-f:
The 95% CL exclusion limits on $ y_{{}_{1}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{1}} $ (upper left), on $ y_{{}_{8}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{8}} $ (upper right), on $ y_{{}_{1}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{1}} $ (center left), on $ y_{{}_{8}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{8}} $ (center right), on $ g_1 $ as a function of $ m_{\mathrm{V}_{1}} $ (lower left), and on $ g_8 $ as a function of $ m_{\mathrm{V}_{8}} $ (lower right). The area above the solid (dashed) black line indicates the observed (expected) exclusion region. The area above the hatched blue line indicates the nonphysical region of phase space in which the partial width $ \Gamma(\mathrm{X}\to{\mathrm{t}\overline{\mathrm{t}}} ) $ becomes larger than the total width of 10 GeV used in the simulated signal samples.

png pdf
Figure 11:
Example LO Feynman diagrams for $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left), $ \mathrm{t}\mathrm{t}\mathrm{t}\mathrm{W} $ (center), and $ \mathrm{t}\mathrm{t}\mathrm{t}\mathrm{q} $ (right) production that contain the top quark Yukawa coupling.

png pdf
Figure 11-a:
Example LO Feynman diagrams for $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left), $ \mathrm{t}\mathrm{t}\mathrm{t}\mathrm{W} $ (center), and $ \mathrm{t}\mathrm{t}\mathrm{t}\mathrm{q} $ (right) production that contain the top quark Yukawa coupling.

png pdf
Figure 11-b:
Example LO Feynman diagrams for $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left), $ \mathrm{t}\mathrm{t}\mathrm{t}\mathrm{W} $ (center), and $ \mathrm{t}\mathrm{t}\mathrm{t}\mathrm{q} $ (right) production that contain the top quark Yukawa coupling.

png pdf
Figure 11-c:
Example LO Feynman diagrams for $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left), $ \mathrm{t}\mathrm{t}\mathrm{t}\mathrm{W} $ (center), and $ \mathrm{t}\mathrm{t}\mathrm{t}\mathrm{q} $ (right) production that contain the top quark Yukawa coupling.

png pdf
Figure 12:
Ratio of the $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $, $ \mathrm{t}\mathrm{t}\mathrm{t}\mathrm{W} $, and $ \mathrm{t}\mathrm{t}\mathrm{t}\mathrm{q} $ cross sections with modified top quark Yukawa couplings to the SM values, evaluated at LO. The solid lines show modifications of $ \kappa_{\mathrm{t}} $ for a fixed value of $ \tilde{\kappa}_{\mathrm{t}}= $ 0, and dashed lines modifications of $ \tilde{\kappa}_{\mathrm{t}} $ for fixed $ \kappa_{\mathrm{t}}= $ 1.

png pdf
Figure 13:
Expected (left) and observed (right) exclusion contours on the Yukawa coupling modifiers $ \tilde{\kappa}_{\mathrm{t}} $ and $ \kappa_{\mathrm{t}} $ corresponding to the 68 (solid) and 95% (dashed) CL interval are shown for the fit that includes the Yukawa coupling dependence of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $, $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $, and $ \mathrm{t}\mathrm{t}\mathrm{t} $ production (blue) and for the fit that includes only $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ and $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $ production (green). The SM prediction is shown with a plus sign.

png pdf
Figure 13-a:
Expected (left) and observed (right) exclusion contours on the Yukawa coupling modifiers $ \tilde{\kappa}_{\mathrm{t}} $ and $ \kappa_{\mathrm{t}} $ corresponding to the 68 (solid) and 95% (dashed) CL interval are shown for the fit that includes the Yukawa coupling dependence of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $, $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $, and $ \mathrm{t}\mathrm{t}\mathrm{t} $ production (blue) and for the fit that includes only $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ and $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $ production (green). The SM prediction is shown with a plus sign.

png pdf
Figure 13-b:
Expected (left) and observed (right) exclusion contours on the Yukawa coupling modifiers $ \tilde{\kappa}_{\mathrm{t}} $ and $ \kappa_{\mathrm{t}} $ corresponding to the 68 (solid) and 95% (dashed) CL interval are shown for the fit that includes the Yukawa coupling dependence of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $, $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $, and $ \mathrm{t}\mathrm{t}\mathrm{t} $ production (blue) and for the fit that includes only $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ and $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $ production (green). The SM prediction is shown with a plus sign.

png pdf
Figure 14:
Negative log-likelihood difference from the best fit value for the one-dimensional scans of the Yukawa coupling modifiers $ \kappa_{\mathrm{t}} $ (left) and $ \tilde{\kappa}_{\mathrm{t}} $ (right), where the other modifier is profiled (solid) or fixed to its SM prediction (dashed), evaluated for the fit that includes the Yukawa coupling dependence of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $, $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $, and $ \mathrm{t}\mathrm{t}\mathrm{t} $ production.

png pdf
Figure 14-a:
Negative log-likelihood difference from the best fit value for the one-dimensional scans of the Yukawa coupling modifiers $ \kappa_{\mathrm{t}} $ (left) and $ \tilde{\kappa}_{\mathrm{t}} $ (right), where the other modifier is profiled (solid) or fixed to its SM prediction (dashed), evaluated for the fit that includes the Yukawa coupling dependence of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $, $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $, and $ \mathrm{t}\mathrm{t}\mathrm{t} $ production.

png pdf
Figure 14-b:
Negative log-likelihood difference from the best fit value for the one-dimensional scans of the Yukawa coupling modifiers $ \kappa_{\mathrm{t}} $ (left) and $ \tilde{\kappa}_{\mathrm{t}} $ (right), where the other modifier is profiled (solid) or fixed to its SM prediction (dashed), evaluated for the fit that includes the Yukawa coupling dependence of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $, $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $, and $ \mathrm{t}\mathrm{t}\mathrm{t} $ production.

png pdf
Figure 15:
Comparison of the number of observed (points) and predicted (colored histograms) events in the $ H_{\mathrm{T}} $ distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (``prefit''). The dashed/dotted lines show the sum of the total SM prediction and the amplified three of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t}\text{+}{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $ production through one of four SMEFT operators. The lower panels show the ratio of the total SM prediction to data, and also of the sum of the total SM prediction and the amplified SMEFT contribution to data for the same configurations as in the upper panels.

png pdf
Figure 15-a:
Comparison of the number of observed (points) and predicted (colored histograms) events in the $ H_{\mathrm{T}} $ distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (``prefit''). The dashed/dotted lines show the sum of the total SM prediction and the amplified three of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t}\text{+}{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $ production through one of four SMEFT operators. The lower panels show the ratio of the total SM prediction to data, and also of the sum of the total SM prediction and the amplified SMEFT contribution to data for the same configurations as in the upper panels.

png pdf
Figure 15-b:
Comparison of the number of observed (points) and predicted (colored histograms) events in the $ H_{\mathrm{T}} $ distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (``prefit''). The dashed/dotted lines show the sum of the total SM prediction and the amplified three of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t}\text{+}{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $ production through one of four SMEFT operators. The lower panels show the ratio of the total SM prediction to data, and also of the sum of the total SM prediction and the amplified SMEFT contribution to data for the same configurations as in the upper panels.

png pdf
Figure 16:
Lower limits on the BSM energy scale $ \Lambda $ obtained from the CL intervals where the test statistic falls below 4 when fixing one the WCs to the indicated value and all other WCs to the SM expectation of zero.

png pdf
Figure 17:
Comparison of the number of observed (points) and predicted (colored histograms) events in the $ H_{\mathrm{T}} $ distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (``prefit''). The dashed/dotted lines show the sum of the total SM prediction and the amplified three of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production through an S$_{1}$ resonance in three different scenarios. The lower panels show the ratio of the total SM prediction to data, and also of the sum of the total SM prediction and the amplified S$_{1}$ contribution to data for the same configurations as in the upper panels.

png pdf
Figure 17-a:
Comparison of the number of observed (points) and predicted (colored histograms) events in the $ H_{\mathrm{T}} $ distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (``prefit''). The dashed/dotted lines show the sum of the total SM prediction and the amplified three of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production through an S$_{1}$ resonance in three different scenarios. The lower panels show the ratio of the total SM prediction to data, and also of the sum of the total SM prediction and the amplified S$_{1}$ contribution to data for the same configurations as in the upper panels.

png pdf
Figure 17-b:
Comparison of the number of observed (points) and predicted (colored histograms) events in the $ H_{\mathrm{T}} $ distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (``prefit''). The dashed/dotted lines show the sum of the total SM prediction and the amplified three of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production through an S$_{1}$ resonance in three different scenarios. The lower panels show the ratio of the total SM prediction to data, and also of the sum of the total SM prediction and the amplified S$_{1}$ contribution to data for the same configurations as in the upper panels.

png pdf
Figure 18:
Comparison of the number of observed (points) and predicted (colored histograms) events in the $ H_{\mathrm{T}} $ distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (``prefit''). The dashed/dotted lines show the sum of the total SM prediction and the amplified three of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production through an S$_{8}$ resonance in three different scenarios. The lower panels show the ratio of the total SM prediction to data, and also of the sum of the total SM prediction and the amplified S$_{8}$ contribution to data for the same configurations as in the upper panels.

png pdf
Figure 18-a:
Comparison of the number of observed (points) and predicted (colored histograms) events in the $ H_{\mathrm{T}} $ distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (``prefit''). The dashed/dotted lines show the sum of the total SM prediction and the amplified three of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production through an S$_{8}$ resonance in three different scenarios. The lower panels show the ratio of the total SM prediction to data, and also of the sum of the total SM prediction and the amplified S$_{8}$ contribution to data for the same configurations as in the upper panels.

png pdf
Figure 18-b:
Comparison of the number of observed (points) and predicted (colored histograms) events in the $ H_{\mathrm{T}} $ distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (``prefit''). The dashed/dotted lines show the sum of the total SM prediction and the amplified three of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production through an S$_{8}$ resonance in three different scenarios. The lower panels show the ratio of the total SM prediction to data, and also of the sum of the total SM prediction and the amplified S$_{8}$ contribution to data for the same configurations as in the upper panels.

png pdf
Figure 19:
Comparison of the number of observed (points) and predicted (colored histograms) events in the $ H_{\mathrm{T}} $ distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (``prefit''). The dashed/dotted lines show the sum of the total SM prediction and the amplified three of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production through an P$_{1}$ resonance in three different scenarios. The lower panels show the ratio of the total SM prediction to data, and also of the sum of the total SM prediction and the amplified P$_{1}$ contribution to data for the same configurations as in the upper panels.

png pdf
Figure 19-a:
Comparison of the number of observed (points) and predicted (colored histograms) events in the $ H_{\mathrm{T}} $ distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (``prefit''). The dashed/dotted lines show the sum of the total SM prediction and the amplified three of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production through an P$_{1}$ resonance in three different scenarios. The lower panels show the ratio of the total SM prediction to data, and also of the sum of the total SM prediction and the amplified P$_{1}$ contribution to data for the same configurations as in the upper panels.

png pdf
Figure 19-b:
Comparison of the number of observed (points) and predicted (colored histograms) events in the $ H_{\mathrm{T}} $ distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (``prefit''). The dashed/dotted lines show the sum of the total SM prediction and the amplified three of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production through an P$_{1}$ resonance in three different scenarios. The lower panels show the ratio of the total SM prediction to data, and also of the sum of the total SM prediction and the amplified P$_{1}$ contribution to data for the same configurations as in the upper panels.

png pdf
Figure 20:
Comparison of the number of observed (points) and predicted (colored histograms) events in the $ H_{\mathrm{T}} $ distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (``prefit''). The dashed/dotted lines show the sum of the total SM prediction and the amplified three of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production through an P$_{8}$ resonance in three different scenarios. The lower panels show the ratio of the total SM prediction to data, and also of the sum of the total SM prediction and the amplified P$_{8}$ contribution to data for the same configurations as in the upper panels.

png pdf
Figure 20-a:
Comparison of the number of observed (points) and predicted (colored histograms) events in the $ H_{\mathrm{T}} $ distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (``prefit''). The dashed/dotted lines show the sum of the total SM prediction and the amplified three of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production through an P$_{8}$ resonance in three different scenarios. The lower panels show the ratio of the total SM prediction to data, and also of the sum of the total SM prediction and the amplified P$_{8}$ contribution to data for the same configurations as in the upper panels.

png pdf
Figure 20-b:
Comparison of the number of observed (points) and predicted (colored histograms) events in the $ H_{\mathrm{T}} $ distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (``prefit''). The dashed/dotted lines show the sum of the total SM prediction and the amplified three of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production through an P$_{8}$ resonance in three different scenarios. The lower panels show the ratio of the total SM prediction to data, and also of the sum of the total SM prediction and the amplified P$_{8}$ contribution to data for the same configurations as in the upper panels.

png pdf
Figure 21:
Comparison of the number of observed (points) and predicted (colored histograms) events in the $ H_{\mathrm{T}} $ distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (``prefit''). The dashed/dotted lines show the sum of the total SM prediction and the amplified three of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production through an V$_1$ resonance in three different scenarios. The lower panels show the ratio of the total SM prediction to data, and also of the sum of the total SM prediction and the amplified V$_1$ contribution to data for the same configurations as in the upper panels.

png pdf
Figure 21-a:
Comparison of the number of observed (points) and predicted (colored histograms) events in the $ H_{\mathrm{T}} $ distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (``prefit''). The dashed/dotted lines show the sum of the total SM prediction and the amplified three of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production through an V$_1$ resonance in three different scenarios. The lower panels show the ratio of the total SM prediction to data, and also of the sum of the total SM prediction and the amplified V$_1$ contribution to data for the same configurations as in the upper panels.

png pdf
Figure 21-b:
Comparison of the number of observed (points) and predicted (colored histograms) events in the $ H_{\mathrm{T}} $ distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (``prefit''). The dashed/dotted lines show the sum of the total SM prediction and the amplified three of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production through an V$_1$ resonance in three different scenarios. The lower panels show the ratio of the total SM prediction to data, and also of the sum of the total SM prediction and the amplified V$_1$ contribution to data for the same configurations as in the upper panels.

png pdf
Figure 22:
Comparison of the number of observed (points) and predicted (colored histograms) events in the $ H_{\mathrm{T}} $ distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (``prefit''). The dashed/dotted lines show the sum of the total SM prediction and the amplified three of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production through an V$_{8}$ resonance in three different scenarios. The lower panels show the ratio of the total SM prediction to data, and also of the sum of the total SM prediction and the amplified V$_{8}$ contribution to data for the same configurations as in the upper panels.

png pdf
Figure 22-a:
Comparison of the number of observed (points) and predicted (colored histograms) events in the $ H_{\mathrm{T}} $ distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (``prefit''). The dashed/dotted lines show the sum of the total SM prediction and the amplified three of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production through an V$_{8}$ resonance in three different scenarios. The lower panels show the ratio of the total SM prediction to data, and also of the sum of the total SM prediction and the amplified V$_{8}$ contribution to data for the same configurations as in the upper panels.

png pdf
Figure 22-b:
Comparison of the number of observed (points) and predicted (colored histograms) events in the $ H_{\mathrm{T}} $ distribution, shown for the $ \text{SR-}2\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (left, merged across all lepton flavor categories) and the $ \text{SR-}3\ell\text{-}{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ (right). The last bins include the overflow contribution. The vertical bars on the points represent the statistical uncertainties in the data, and the hatched bands the total uncertainty in the predictions. The signal and background yields are shown before the fit to the data (``prefit''). The dashed/dotted lines show the sum of the total SM prediction and the amplified three of $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production through an V$_{8}$ resonance in three different scenarios. The lower panels show the ratio of the total SM prediction to data, and also of the sum of the total SM prediction and the amplified V$_{8}$ contribution to data for the same configurations as in the upper panels.

png pdf
Figure 23:
The enhancement of the $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production cross section corresponding to the 95% CL exclusion limits on $ y_{{}_{1}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{1}} $ (upper left), on $ y_{{}_{8}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{8}} $ (upper right), on $ y_{{}_{1}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{1}} $ (center left), on $ y_{{}_{8}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{8}} $ (center right), on $ g_1 $ as a function of $ m_{\mathrm{V}_{1}} $ (lower left), and on $ g_8 $ as a function of $ m_{\mathrm{V}_{8}} $ (lower right). The area above the solid (dashed) black line indicates the observed (expected) exclusion region.

png pdf
Figure 23-a:
The enhancement of the $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production cross section corresponding to the 95% CL exclusion limits on $ y_{{}_{1}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{1}} $ (upper left), on $ y_{{}_{8}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{8}} $ (upper right), on $ y_{{}_{1}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{1}} $ (center left), on $ y_{{}_{8}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{8}} $ (center right), on $ g_1 $ as a function of $ m_{\mathrm{V}_{1}} $ (lower left), and on $ g_8 $ as a function of $ m_{\mathrm{V}_{8}} $ (lower right). The area above the solid (dashed) black line indicates the observed (expected) exclusion region.

png pdf
Figure 23-b:
The enhancement of the $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production cross section corresponding to the 95% CL exclusion limits on $ y_{{}_{1}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{1}} $ (upper left), on $ y_{{}_{8}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{8}} $ (upper right), on $ y_{{}_{1}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{1}} $ (center left), on $ y_{{}_{8}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{8}} $ (center right), on $ g_1 $ as a function of $ m_{\mathrm{V}_{1}} $ (lower left), and on $ g_8 $ as a function of $ m_{\mathrm{V}_{8}} $ (lower right). The area above the solid (dashed) black line indicates the observed (expected) exclusion region.

png pdf
Figure 23-c:
The enhancement of the $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production cross section corresponding to the 95% CL exclusion limits on $ y_{{}_{1}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{1}} $ (upper left), on $ y_{{}_{8}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{8}} $ (upper right), on $ y_{{}_{1}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{1}} $ (center left), on $ y_{{}_{8}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{8}} $ (center right), on $ g_1 $ as a function of $ m_{\mathrm{V}_{1}} $ (lower left), and on $ g_8 $ as a function of $ m_{\mathrm{V}_{8}} $ (lower right). The area above the solid (dashed) black line indicates the observed (expected) exclusion region.

png pdf
Figure 23-d:
The enhancement of the $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production cross section corresponding to the 95% CL exclusion limits on $ y_{{}_{1}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{1}} $ (upper left), on $ y_{{}_{8}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{8}} $ (upper right), on $ y_{{}_{1}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{1}} $ (center left), on $ y_{{}_{8}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{8}} $ (center right), on $ g_1 $ as a function of $ m_{\mathrm{V}_{1}} $ (lower left), and on $ g_8 $ as a function of $ m_{\mathrm{V}_{8}} $ (lower right). The area above the solid (dashed) black line indicates the observed (expected) exclusion region.

png pdf
Figure 23-e:
The enhancement of the $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production cross section corresponding to the 95% CL exclusion limits on $ y_{{}_{1}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{1}} $ (upper left), on $ y_{{}_{8}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{8}} $ (upper right), on $ y_{{}_{1}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{1}} $ (center left), on $ y_{{}_{8}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{8}} $ (center right), on $ g_1 $ as a function of $ m_{\mathrm{V}_{1}} $ (lower left), and on $ g_8 $ as a function of $ m_{\mathrm{V}_{8}} $ (lower right). The area above the solid (dashed) black line indicates the observed (expected) exclusion region.

png pdf
Figure 23-f:
The enhancement of the $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} \text{+}\mathrm{t}\mathrm{t}\mathrm{t} $ production cross section corresponding to the 95% CL exclusion limits on $ y_{{}_{1}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{1}} $ (upper left), on $ y_{{}_{8}\mathrm{S}} $ as a function of $ m_{\mathrm{S}_{8}} $ (upper right), on $ y_{{}_{1}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{1}} $ (center left), on $ y_{{}_{8}\mathrm{P}} $ as a function of $ m_{\mathrm{P}_{8}} $ (center right), on $ g_1 $ as a function of $ m_{\mathrm{V}_{1}} $ (lower left), and on $ g_8 $ as a function of $ m_{\mathrm{V}_{8}} $ (lower right). The area above the solid (dashed) black line indicates the observed (expected) exclusion region.

png pdf
Figure 24:
Expected (left) and observed (right) exclusion contours on the Yukawa coupling modifiers $ \tilde{\kappa}_{\mathrm{t}} $ and $ \kappa_{\mathrm{t}} $ corresponding to the 68 (solid) and 95% (dashed) CL interval, as obtained in this work (blue) or in a combination of $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $ production measurements in Ref. [85] (green). The SM prediction is shown with a plus sign.

png pdf
Figure 24-a:
Expected (left) and observed (right) exclusion contours on the Yukawa coupling modifiers $ \tilde{\kappa}_{\mathrm{t}} $ and $ \kappa_{\mathrm{t}} $ corresponding to the 68 (solid) and 95% (dashed) CL interval, as obtained in this work (blue) or in a combination of $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $ production measurements in Ref. [85] (green). The SM prediction is shown with a plus sign.

png pdf
Figure 24-b:
Expected (left) and observed (right) exclusion contours on the Yukawa coupling modifiers $ \tilde{\kappa}_{\mathrm{t}} $ and $ \kappa_{\mathrm{t}} $ corresponding to the 68 (solid) and 95% (dashed) CL interval, as obtained in this work (blue) or in a combination of $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $ production measurements in Ref. [85] (green). The SM prediction is shown with a plus sign.
Summary
An interpretation of a measurement of four and three top quark ($ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ and $ \mathrm{t}\mathrm{t}\mathrm{t} $) production in different scenarios of new physics beyond the standard model (SM) is reported. The analyzed proton-proton collision data was recorded at 13 TeV with the CMS detector at the CERN LHC in 2016--2018 and corresponds to an integrated luminosity of 138 fb$ ^{-1} $. Following the experimental analysis of Ref. [54], events with two same-sign, three, or four leptons (electrons and/or muons) are selected and categorized in signal and control regions. The signal regions in the two same-sign and three lepton channels are further split following a machine-learning discriminant trained to distinguish between $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ production and the main background processes. Assuming no beyond-the-SM contributions, a mild excess of events in data in the selection enriched with $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ and $ \mathrm{t}\mathrm{t}\mathrm{t} $ production events is observed at the level of one standard deviation, consistent with the result from Ref. [54]. To interpret the mild excess in different models of beyond-the-SM physics, three interpretations are performed using either the machine-learning discriminant or the scalar sum of the jet transverse momenta, optimized for the considered scenario. Throughout, $ \mathrm{t}\mathrm{t}\mathrm{t} $ production is treated as signal process alongside $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ production, accounting for the observation that the existing experimental analysis is not able to distinguish between $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ and $ \mathrm{t}\mathrm{t}\mathrm{t} $ contributions in the most sensitive signal regions. Using the SM effective field theory framework, constraints are derived on six Wilson coefficients that modify interactions between four third-generation quarks or between top quarks and the Higgs boson. These results are the first SMEFT interpretation that considers these operators simultaneously. Exclusion limits are derived on top-philic heavy resonances of different spin and color states, covering masses between 400 GeV and 1.6 TeV. The top quark Yukawa coupling is extracted, considering both $ CP $-even and $ CP $-odd contributions. In all interpretations, a mild excess of about one standard deviation is found, consistent with the observation in the SM-only case.
References
1 H. Nilles Supersymmetry, supergravity and particle physics Phys. Rept. 110 (1984) 1
2 G. Farrar and P. Fayet Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry PLB 76 (1978) 575
3 M. Toharia and J. Wells Gluino decays with heavier scalar superpartners JHEP 02 (2006) 015 hep-ph/0503175
4 T. Plehn and T. Tait Seeking sgluons JPG 36 (2009) 075001 0810.3919
5 S. Calvet, B. Fuks, P. Gris, and L. Valery Searching for sgluons in multitop events at a center-of-mass energy of 8 TeV JHEP 04 (2013) 043 1212.3360
6 L. Beck et al. Probing top-philic sgluons with LHC Run 1 data PLB 746 (2015) 48 1501.07580
7 L. Darmé , B. Fuks, and M. Goodsell Cornering sgluons with four-top-quark events PLB 784 (2018) 223 1805.10835
8 B. Lillie, J. Shu, and T. M. P. Tait Top compositeness at the Tevatron and LHC JHEP 04 (2008) 087 0712.3057
9 A. Pomarol and J. Serra Top quark compositeness: Feasibility and implications PRD 78 (2008) 074026 0806.3247
10 K. Kumar, T. M. P. Tait, and R. Vega-Morales Manifestations of top compositeness at colliders JHEP 05 (2009) 022 0901.3808
11 G. Cacciapaglia et al. Composite scalars at the LHC: the Higgs, the sextet and the octet JHEP 11 (2015) 201 1507.02283
12 G. Cacciapaglia et al. Four tops on the real projective plane at LHC JHEP 10 (2011) 042 1107.4616
13 P. S. Bhupal Dev and A. Pilaftsis Maximally symmetric two Higgs doublet model with natural standard model alignment JHEP 12 (2014) 024 1408.3405
14 D. Dicus, A. Stange, and S. Willenbrock Higgs decay to top quarks at hadron colliders PLB 333 (1994) 126 hep-ph/9404359
15 N. Craig et al. The hunt for the rest of the Higgs bosons JHEP 06 (2015) 137 1504.04630
16 N. Craig et al. Heavy Higgs bosons at low $ \tan\beta $: from the LHC to 100 TeV JHEP 01 (2017) 018 1605.08744
17 Anisha et al. BSM reach of four-top production at the LHC PRD 108 (2023) 035001 2302.08281
18 O. Ducu, L. Heurtier, and J. Maurer LHC signatures of a $ \mathrm{Z}^{'} $ mediator between dark matter and the SU(3) sector JHEP 03 (2016) 006 1509.05615
19 S. Blasi et al. Top-philic ALP phenomenology at the LHC: the elusive mass-window JHEP 06 (2024) 077 2311.16048
20 M. Kohda, T. Modak, and W.-S. Hou Searching for new scalar bosons via triple-top signature in $ \mathrm{c}\mathrm{g}\to\mathrm{t}\mathrm{S}_{0}\to\mathrm{t}{\mathrm{t}\overline{\mathrm{t}}} $ PLB 776 (2018) 379 1710.07260
21 Q.-H. Cao, S.-L. Chen, Y. Liu, and X.-P. Wang What can we learn from triple top-quark production? PRD 100 (2019) 055035 1901.04643
22 H. Khanpour Probing top quark FCNC couplings in the triple-top signal at the high energy LHC and future circular collider NPB 958 (2020) 115141 1909.03998
23 S. Iguro and K. Tobe $ {R({\mathrm{D}}^{(\ast)})} $ in a general two Higgs doublet model NPB 925 (2017) 560 1708.06176
24 S. Cho et al. Top FCNC induced by a $ \mathrm{Z}^{'} $ boson PRD 101 (2020) 055015 1910.05925
25 E. Abasov et al. Search for dark matter mediator in the production of three and four top quarks Phys. Part. Nucl. 56 (2025) 440 2407.08308
26 C. Degrande et al. Non-resonant new physics in top pair production at hadron colliders JHEP 03 (2011) 125 1010.6304
27 C. Zhang Constraining $ {\mathrm{q}\mathrm{q}\mathrm{t}\mathrm{t}} $ operators from four-top production: a case for enhanced EFT sensitivity Chin. Phys. C 42 (2018) 023104 1708.05928
28 C. Englert, G. F. Giudice, A. Greljo, and M. McCullough The $ \widehat{\mathrm{H}} $-parameter: an oblique Higgs view JHEP 09 (2019) 041 1903.07725
29 G. Banelli et al. The present and future of four top operators JHEP 02 (2021) 043 2010.05915
30 L. Darmé , B. Fuks, and F. Maltoni Top-philic heavy resonances in four-top final states and their EFT interpretation JHEP 09 (2021) 143 2104.09512
31 R. Aoude, H. El Faham, F. Maltoni, and E. Vryonidou Complete SMEFT predictions for four top quark production at hadron colliders JHEP 10 (2022) 163 2208.04962
32 A. Aleshko, E. Boos, V. Bunichev, and L. Dudko Prospects for establishing limits on the SMEFT operators from the production processes of three and four top quarks in hadron collisions Int. J. Mod. Phys. A 39 (2024) 2450119 2309.12514
33 A. M. Aleshko, E. E. Boos, V. E. Bunichev, and L. V. Dudko Sensitivity of the three top quark production process to the contribution of top-related SMEFT operators Phys. Part. Nucl. 56 (2025) 374
34 S. Di Noi et al. Constraining four-heavy-quark operators with top-quark, Higgs, and electroweak precision data 2507.01137
35 J. H. Kim, K. Kong, S. J. Lee, and G. Mohlabeng Probing TeVns scale top-philic resonances with boosted top-tagging at the high luminosity LHC PRD 94 (2016) 035023 1604.07421
36 L. Darmé et al. Searching for top-philic heavy resonances in boosted four-top final states 2507.05334
37 Q.-H. Cao, S.-L. Chen, and Y. Liu Probing Higgs width and top quark Yukawa coupling from $ {{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ productions PRD 95 (2017) 053004 1602.01934
38 Q.-H. Cao et al. Limiting top quark-Higgs boson interaction and Higgs-boson width from multitop productions PRD 99 (2019) 113003 1901.04567
39 ATLAS Collaboration The ATLAS experiment at the CERN Large Hadron Collider JINST 3 (2008) S08003
40 ATLAS Collaboration The ATLAS experiment at the CERN Large Hadron Collider: a description of the detector configuration for Run 3 JINST 19 (2024) P05063 2305.16623
41 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
42 CMS Collaboration Development of the CMS detector for the CERN LHC Run 3 JINST 19 (2024) P05064 CMS-PRF-21-001
2309.05466
43 CMS Collaboration Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum, and jets in proton-proton collisions at $ \sqrt{s}= $ 13 TeV EPJC 77 (2017) 578 CMS-SUS-16-035
1704.07323
44 CMS Collaboration Search for standard model production of four top quarks with same-sign and multilepton final states in proton-proton collisions at $ \sqrt{s}= $ 13 TeV EPJC 78 (2018) 140 CMS-TOP-17-009
1710.10614
45 ATLAS Collaboration Search for new phenomena in events with same-charge leptons and b jets in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector JHEP 12 (2018) 039 1807.11883
46 ATLAS Collaboration Search for four-top-quark production in the single-lepton and opposite-sign dilepton final states in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector PRD 99 (2019) 052009 1811.02305
47 CMS Collaboration Search for the production of four top quarks in the single-lepton and opposite-sign dilepton final states in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 11 (2019) 082 CMS-TOP-17-019
1906.02805
48 CMS Collaboration Search for production of four top quarks in final states with same-sign or multiple leptons in proton-proton collisions at $ \sqrt{s}= $ 13 TeV EPJC 80 (2020) 75 CMS-TOP-18-003
1908.06463
49 ATLAS Collaboration Evidence for $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ production in the multilepton final state in proton-proton collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector EPJC 80 (2020) 1085 2007.14858
50 ATLAS Collaboration Measurement of the $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ production cross section in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector JHEP 11 (2021) 118 2106.11683
51 CMS Collaboration Evidence for four-top quark production in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PLB 844 (2023) 138076 CMS-TOP-21-005
2303.03864
52 F. Blekman, F. Déliot, V. Dutta, and E. Usai Four-top quark physics at the LHC Universe 8 (2022) 638 2208.04085
53 ATLAS Collaboration Observation of four-top-quark production in the multilepton final state with the ATLAS detector EPJC 83 (2023) 496 2303.15061
54 CMS Collaboration Observation of four top quark production in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PLB 847 (2023) 138290 CMS-TOP-22-013
2305.13439
55 ATLAS Collaboration Search for pair production of up-type vector-like quarks and for four-top-quark events in final states with multiple b-jets with the ATLAS detector JHEP 07 (2018) 089 1803.09678
56 CMS Collaboration Search for new physics using effective field theory in 13 TeV $ {\mathrm{p}\mathrm{p}} $ collision events that contain a top quark pair and a boosted Z or Higgs boson PRD 108 (2023) 032008 CMS-TOP-21-003
2208.12837
57 ATLAS Collaboration Interpretations of the ATLAS measurements of Higgs boson production and decay rates and differential cross-sections in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 13 TeV JHEP 11 (2024) 097 2402.05742
58 CMS Collaboration Search for physics beyond the standard model in top quark production with additional leptons in the context of effective field theory JHEP 12 (2023) 068 CMS-TOP-22-006
2307.15761
59 CMS Collaboration Combination of exclusion limits on modified couplings between top quarks and heavy bosons in the effective field theory framework CMS Physics Analysis Summary, 2025
CMS-PAS-TOP-24-004
CMS-PAS-TOP-24-004
60 CMS Collaboration Combined effective field theory interpretation of Higgs boson, electroweak vector boson, top quark, and multi-jet measurements Submitted to Eur. Phys. J. C, 2025 CMS-SMP-24-003
2504.02958
61 N. Hartland et al. A Monte Carlo global analysis of the standard model effective field theory: the top quark sector JHEP 04 (2019) 100 1901.05965
62 SMEFiT Collaboration Combined SMEFT interpretation of Higgs, diboson, and top quark data from the LHC JHEP 11 (2021) 089 2105.00006
63 E. Celada et al. Mapping the SMEFT at high-energy colliders: from LEP and the (HL-)LHC to the FCC-$ {\mathrm{e}\mathrm{e}} $ JHEP 09 (2024) 091 2404.12809
64 J. de Blas et al. Constraining new physics effective interactions via a global fit of electroweak, Drell--Yan, Higgs, top, and flavour observables 2507.06191
65 J. Ellis et al. Top, Higgs, diboson and electroweak fit to the standard model effective field theory JHEP 04 (2021) 279 2012.02779
66 V. Miralles et al. The top quark electro-weak couplings after LHC Run 2 JHEP 02 (2022) 032 2107.13917
67 ATLAS Collaboration Search for $ {{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}/\mathrm{A}\to{\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} } $ production in the multilepton final state in proton-proton collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector JHEP 07 (2023) 203 2211.01136
68 ATLAS Collaboration Search for top-philic heavy resonances in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector EPJC 84 (2024) 157 2304.01678
69 CMS Collaboration Search for a heavy resonance produced in association with and decaying to a top quark pair in the single lepton final state in proton-proton collisions at $ \sqrt{s}= $ 13 TeV CMS Physics Analysis Summary CMS-PAS-B2G-24-009, 2025
CDS
70 ATLAS Collaboration Search for heavy Higgs bosons $ \mathrm{A} $/H decaying to a top quark pair in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 8 TeV with the ATLAS detector PRL 119 (2017) 191803 1707.06025
71 CMS Collaboration Search for heavy Higgs bosons decaying to a top quark pair in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 04 (2020) 171 CMS-HIG-17-027
1908.01115
72 ATLAS Collaboration Search for $ \mathrm{t} \overline{\mathrm{t}} $ resonances in fully hadronic final states in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector JHEP 10 (2020) 061 2005.05138
73 ATLAS Collaboration Search for heavy neutral Higgs bosons decaying into a top quark pair in 140 fb$ ^{-1} $ of proton-proton collision data at $ \sqrt{s}= $ 13 TeV with the ATLAS detector JHEP 08 (2024) 013 2404.18986
74 CMS Collaboration Observation of a pseudoscalar excess at the top quark pair production threshold Rep. Prog. Phys. 88 (2025) 087801 CMS-TOP-24-007
2503.22382
75 CMS Collaboration Search for heavy pseudoscalar and scalar bosons decaying to a top quark pair in proton-proton collisions at $ \sqrt{s}= $ 13 TeV Submitted to Rep. Prog. Phys, 2025 CMS-HIG-22-013
2507.05119
76 ATLAS Collaboration Observation of a cross-section enhancement near the $ \mathrm{t} \overline{\mathrm{t}} $ production threshold in $ \sqrt{s}= $ 13 TeV $ {\mathrm{p}\mathrm{p}} $ collisions with the ATLAS detector ATLAS Conference Note ATLAS-CONF-2025-008, 2025
77 CMS Collaboration Search for $ \mathrm{t} \overline{\mathrm{t}} $ resonances in the fully hadronic final state CMS Physics Analysis Summary CMS-PAS-B2G-24-003, 2025
CDS
78 ATLAS Collaboration Search for a $ {CP} $-odd Higgs boson decaying into a heavy $ {CP} $-even Higgs boson and a Z boson in the $ {\ell^{+}\ell^{-}{\mathrm{t}\overline{\mathrm{t}}} } $ and $ {\nu\overline{\nu}\mathrm{b}\overline{\mathrm{b}}} $ final states using 140 fb$ ^{-1} $ of data collected with the ATLAS detector JHEP 02 (2024) 197 2311.04033
79 CMS Collaboration Search for heavy neutral Higgs bosons $ \mathrm{A} $ and H in the $ {{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}} $ channel in proton-proton collisions at 13 TeV PLB 866 (2025) 139568 2412.00570
80 CMS Collaboration Measurements of $ {{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}} $ production and the CP structure of the Yukawa interaction between the Higgs boson and top quark in the diphoton decay channel PRL 125 (2020) 061801 CMS-HIG-19-013
2003.10866
81 ATLAS Collaboration $ {CP} $ properties of Higgs boson interactions with top quarks in the $ {{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}} $ and $ {\mathrm{t}\mathrm{H}} $ processes using $ {\mathrm{H}\to\gamma\gamma} $ with the ATLAS detector PRL 125 (2020) 061802 2004.04545
82 CMS Collaboration Measurement of the Higgs boson production rate in association with top quarks in final states with electrons, muons, and hadronically decaying tau leptons at $ \sqrt{s}= $ 13 TeV EPJC 81 (2021) 378 CMS-HIG-19-008
2011.03652
83 CMS Collaboration Search for CP violation in $ {{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}} $ and $ {\mathrm{t}\mathrm{H}} $ production in multilepton channels in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 07 (2023) 092 CMS-HIG-21-006
2208.02686
84 ATLAS Collaboration Probing the $ {CP} $ nature of the top--Higgs Yukawa coupling in $ {{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}} $ and $ {\mathrm{t}\mathrm{H}} $ events with $ {\mathrm{H}\to\mathrm{b}\overline{\mathrm{b}}} $ decays using the ATLAS detector at the LHC PLB 849 (2024) 138469 2303.05974
85 CMS Collaboration Measurement of the $ {{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}} $ and $ {\mathrm{t}\mathrm{H}} $ production rates in the $ {\mathrm{H}\to\mathrm{b}\overline{\mathrm{b}}} $ decay channel using proton-proton collision data at $ \sqrt{s}= $ 13 TeV JHEP 02 (2025) 097 CMS-HIG-19-011
2407.10896
86 CMS Collaboration Constraints on anomalous Higgs boson couplings to vector bosons and fermions in its production and decay using the four-lepton final state PRD 104 (2021) 052004 CMS-HIG-19-009
2104.12152
87 CMS Collaboration A portrait of the Higgs boson by the CMS experiment ten years after the discovery Nature 607 (2022) 60 CMS-HIG-22-001
2207.00043
88 ATLAS Collaboration A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery Nature 607 (2022) 52 2207.00092
89 ATLAS Collaboration Measurement of the properties of Higgs boson production at $ \sqrt{s}= $ 13 TeV in the $ {\mathrm{H}\to\gamma\gamma} $ channel using 139 fb$ ^{-1} $ of $ {\mathrm{p}\mathrm{p}} $ collision data with the ATLAS experiment JHEP 07 (2023) 088 2207.00348
90 CMS Collaboration Combined measurements and interpretations of Higgs boson production and decay at $ \sqrt{s}= $ 13 TeV CMS Physics Analysis Summary, 2025
CMS-PAS-HIG-21-018
CMS-PAS-HIG-21-018
91 CMS Collaboration Measurement of the top quark Yukawa coupling from $ \mathrm{t} \overline{\mathrm{t}} $ kinematic distributions in the lepton+jets final state in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PRD 100 (2019) 072007 CMS-TOP-17-004
1907.01590
92 CMS Collaboration Measurement of the top quark Yukawa coupling from $ \mathrm{t} \overline{\mathrm{t}} $ kinematic distributions in the dilepton final state in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PRD 102 (2020) 092013 CMS-TOP-19-008
2009.07123
93 ATLAS Collaboration Constraint on the total width of the Higgs boson from Higgs boson and four-top-quark measurements in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector PLB 861 (2025) 139277 2407.10631
94 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
95 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
96 CMS Collaboration Performance of the CMS high-level trigger during LHC Run 2 JINST 19 (2024) P11021 CMS-TRG-19-001
2410.17038
97 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) P05014 CMS-EGM-17-001
2012.06888
98 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
99 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
100 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
101 CMS Collaboration Performance of reconstruction and identification of $ \tau $ leptons decaying to hadrons and $ \nu_{\!\tau} $ in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P10005 CMS-TAU-16-003
1809.02816
102 CMS Collaboration Jet energy scale and resolution in the CMS experiment in $ {\mathrm{p}\mathrm{p}} $ collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
103 CMS Collaboration Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s}= $ 13 TeV using the CMS detector JINST 14 (2019) P07004 CMS-JME-17-001
1903.06078
104 CMS Collaboration Pileup mitigation at CMS in 13 TeV data JINST 15 (2020) P09018 CMS-JME-18-001
2003.00503
105 M. Cacciari, G. P. Salam, and G. Soyez The catchment area of jets JHEP 04 (2008) 005 0802.1188
106 M. Cacciari, G. P. Salam, and G. Soyez FASTJET user manual EPJC 72 (2012) 1896 1111.6097
107 CMS Collaboration Jet energy scale and resolution measurements with legacy Run 2 data collected by CMS at 13 TeV CMS Detector Performance Note CMS-DP-2021-033, 2021
CDS
108 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in $ {\mathrm{p}\mathrm{p}} $ collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
109 E. Bols et al. Jet flavour classification using DeepJet JINST 15 (2020) P12012 2008.10519
110 CMS Collaboration Performance summary of AK4 jet b tagging with data from proton-proton collisions at 13 TeV with the CMS detector CMS Detector Performance Note CMS-DP-2023-005, 2023
CDS
111 CMS Collaboration ECAL 2016 refined calibration and Run 2 summary plots CMS Detector Performance Note CMS-DP-2020-021, 2020
CDS
112 CMS Collaboration Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s}= $ 8 TeV JINST 10 (2015) P06005 CMS-EGM-13-001
1502.02701
113 CMS Collaboration Performance of CMS muon reconstruction in cosmic-ray events JINST 5 (2010) T03022 CMS-CFT-09-014
0911.4994
114 CMS Collaboration Performance of the reconstruction and identification of high-momentum muons in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 15 (2020) P02027 CMS-MUO-17-001
1912.03516
115 CMS Collaboration Evidence for associated production of a Higgs boson with a top quark pair in final states with electrons, muons, and hadronically decaying $ \tau $ leptons at $ \sqrt{s}= $ 13 TeV JHEP 08 (2018) 066 CMS-HIG-17-018
1803.05485
116 CMS Collaboration Observation of single top quark production in association with a Z boson in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PRL 122 (2019) 132003 CMS-TOP-18-008
1812.05900
117 CMS Collaboration Search for electroweak production of charginos and neutralinos in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 04 (2022) 147 CMS-SUS-19-012
2106.14246
118 CMS Collaboration Measurements of the electroweak diboson production cross sections in proton-proton collisions at $ \sqrt{s}= $ 5.02 TeV using leptonic decays PRL 127 (2021) 191801 CMS-SMP-20-012
2107.01137
119 CMS Collaboration Inclusive and differential cross section measurements of single top quark production in association with a Z boson in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 02 (2022) 107 CMS-TOP-20-010
2111.02860
120 CMS Collaboration Muon identification using multivariate techniques in the CMS experiment in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 19 (2024) P02031 CMS-MUO-22-001
2310.03844
121 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s}= $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
122 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s}= $ 13 TeV CMS Physics Analysis Summary, 2018
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
123 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s}= $ 13 TeV CMS Physics Analysis Summary, 2019
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
124 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
125 T. Sjostrand et al. An introduction to PYTHIA8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
126 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
127 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
128 CMS Collaboration Simulation of the silicon strip tracker pre-amplifier in early 2016 data CMS Detector Performance Note CMS-DP-2020-045, 2020
CDS
129 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
130 P. Artoisenet, R. Frederix, O. Mattelaer, and R. Rietkerk Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations JHEP 03 (2013) 015 1212.3460
131 G. Bevilacqua and M. Worek Constraining BSM physics at the LHC: Four top final states with NLO accuracy in perturbative QCD JHEP 07 (2012) 111 1206.3064
132 F. Maltoni, D. Pagani, and I. Tsinikos Associated production of a top-quark pair with vector bosons at NLO in QCD: impact on $ {{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}} $ searches at the LHC JHEP 02 (2016) 113 1507.05640
133 R. Frederix, D. Pagani, and M. Zaro Large NLO corrections in $ {{\mathrm{t}\overline{\mathrm{t}}} \mathrm{W}^{\pm}} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {\mathrm{t}\overline{\mathrm{t}}} $ hadroproduction from supposedly subleading EW contributions JHEP 02 (2018) 031 1711.02116
134 T. Je \v z o and M. Kraus Hadroproduction of four top quarks in the POWHEG box PRD 105 (2022) 114024 2110.15159
135 N. Dimitrakopoulos and M. Worek Four top final states with NLO accuracy in perturbative QCD: 4 lepton channel JHEP 06 (2024) 129 2401.10678
136 M. van Beekveld, A. Kulesza, and L. Moreno Valero Threshold resummation for the production of four top quarks at the LHC PRL 131 (2023) 211901 2212.03259
137 M. van Beekveld, A. Kulesza, M. Lupattelli, and T. Saracco Invariant-mass threshold resummation for the production of four top quarks at the LHC 2505.10381
138 S. Frixione et al. Single-top hadroproduction in association with a W boson JHEP 07 (2008) 029 0805.3067
139 F. Demartin et al. $ {\mathrm{t}\mathrm{W}\mathrm{H}} $ associated production at the LHC EPJC 77 (2017) 34 1607.05862
140 G. Durieux Triple top-quark production at NLO in QCD Zenodo, 2023
link
141 V. Barger, W.-Y. Keung, and B. Yencho Triple-top signal of new physics at the LHC PLB 687 (2010) 70 1001.0221
142 C.-R. Chen Searching for new physics with triple-top signal at the LHC PLB 736 (2014) 321
143 M. Malekhosseini, M. Ghominejad, H. Khanpour, and M. Mohammadi Najafabadi Constraining top quark flavor violation and dipole moments through three and four top quark productions at the LHC PRD 98 (2018) 095001 1804.05598
144 E. Boos and L. Dudko Triple top quark production in standard model Int. J. Mod. Phys. A 37 (2022) 2250023 2107.07629
145 J. Dror, M. Farina, E. Salvioni, and J. Serra Strong $ {\mathrm{t}\mathrm{W}} $ scattering at the LHC JHEP 01 (2016) 071 1511.03674
146 G. Bevilacqua et al. The simplest of them all: $ {{\mathrm{t}\overline{\mathrm{t}}} \mathrm{W}^{\pm}} $ at NLO accuracy in QCD JHEP 08 (2020) 043 2005.09427
147 R. Frederix and I. Tsinikos Subleading EW corrections and spin-correlation effects in $ {{\mathrm{t}\overline{\mathrm{t}}} \mathrm{W}} $ multi-lepton signatures EPJC 80 (2020) 803 2004.09552
148 CMS Collaboration Measurements of $ {{\mathrm{t}\overline{\mathrm{t}}} \mathrm{W}} $ differential cross sections and the leptonic charge asymmetry at $ \sqrt{s}= $ 13 TeV Submitted to JHEP, 2025 CMS-TOP-24-003
2509.13512
149 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
150 R. Frederix and I. Tsinikos On improving NLO merging for $ {{\mathrm{t}\overline{\mathrm{t}}} \mathrm{W}} $ production JHEP 11 (2021) 029 2108.07826
151 H. Voss, A. Hocker, J. Stelzer, and F. Tegenfeldt tmva, the toolkit for multivariate data analysis with root in Proc. 11th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2017): Amsterdam, The Netherlands, April 23--27, 2007. 2007.. [PoS (ACAT2007) 040]
link
physics/0703039
152 CMS Collaboration Search for new physics in same-sign dilepton events in proton-proton collisions at $ \sqrt{s}= $ 13 TeV EPJC 76 (2016) 439 CMS-SUS-15-008
1605.03171
153 CMS Collaboration Measurement of the cross section of top quark-antiquark pair production in association with a W boson in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 07 (2023) 219 CMS-TOP-21-011
2208.06485
154 J. Butterworth et al. PDF4LHC recommendations for LHC Run 2 JPG 43 (2016) 023001 1510.03865
155 CMS Collaboration Measurement of the cross section for $ \mathrm{t} \overline{\mathrm{t}} $ production with additional jets and b jets in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 13 TeV JHEP 07 (2020) 125 CMS-TOP-18-002
2003.06467
156 CMS Collaboration Inclusive and differential cross section measurements of $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{b}\overline{\mathrm{b}} $ production in the lepton+jets channel at $ \sqrt{s}= $ 13 TeV JHEP 05 (2024) 042 CMS-TOP-22-009
2309.14442
157 ATLAS and CMS Collaborations, and LHC Higgs Combination Group Procedure for the LHC Higgs boson search combination in Summer 2011 Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011
158 R. Barlow and C. Beeston Fitting using finite Monte Carlo samples Comput. Phys. Commun. 77 (1993) 219
159 J. S. Conway Incorporating nuisance parameters in likelihoods for multisource spectra in Proc. 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding (PHYSTAT 2011): Geneva, Switzerland, January 17--20, 2011. 2011
link
1103.0354
160 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
161 CMS Collaboration The CMS statistical analysis and combination tool: combine Comput. Softw. Big Sci. 8 (2024) 19 CMS-CAT-23-001
2404.06614
162 W. Verkerke and D. Kirkby The RooFit toolkit for data modeling in Proc. 13th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2003): La Jolla CA, United States, March 24--28, 2003. 2003.. [eConf C0303241 (2003) MOLT007]
link
physics/0306116
163 L. Moneta et al. The RooStats project in Proc. 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2010): Jaipur, India, February 22--27, 2010. 2010.. [PoS (ACAT2010) 057]
link
1009.1003
164 C. Degrande et al. Effective field theory: A modern approach to anomalous couplings Annals Phys. 335 (2013) 21 1205.4231
165 I. Brivio, Y. Jiang, and M. Trott The SMEFTsim package, theory and tools JHEP 12 (2017) 070 1709.06492
166 I. Brivio SMEFTsim 3.0---a practical guide JHEP 04 (2021) 073 2012.11343
167 O. Mattelaer On the maximal use of Monte Carlo samples: re-weighting events at NLO accuracy EPJC 76 (2016) 674 1607.00763
168 CMS Collaboration Search for new physics in top quark production with additional leptons in proton-proton collisions at $ \sqrt{s}= $ 13 TeV using effective field theory JHEP 03 (2021) 095 CMS-TOP-19-001
2012.04120
169 S. S. Wilks The large-sample distribution of the likelihood ratio for testing composite hypotheses Annals Math. Statist. 9 (1938) 60
170 F. U. Bernlochner, D. C. Fry, S. B. Menary, and E. Persson Cover your bases: asymptotic distributions of the profile likelihood ratio when constraining effective field theories in high-energy physics SciPost Phys. Core 6 (2023) 013 2207.01350
171 A. V. Gritsan, R. Rontsch, M. Schulze, and M. Xiao Constraining anomalous Higgs boson couplings to the heavy-flavor fermions using matrix element techniques PRD 94 (2016) 055023 1606.03107
172 P. Artoisenet et al. A framework for Higgs characterisation JHEP 11 (2013) 043 1306.6464
173 F. Demartin et al. Higgs characterisation at NLO in QCD: $ {CP} $ properties of the top-quark Yukawa interaction EPJC 74 (2014) 3065 1407.5089
174 J. Brod, J. M. Cornell, D. Skodras, and E. Stamou Global constraints on Yukawa operators in the standard model effective theory JHEP 08 (2022) 294 2203.03736
175 CMS Collaboration Combined measurements of Higgs boson couplings in proton-proton collisions at $ \sqrt{s}= $ 13 TeV EPJC 79 (2019) 421 CMS-HIG-17-031
1809.10733
Compact Muon Solenoid
LHC, CERN