CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIG-17-031 ; CERN-EP-2018-263
Combined measurements of Higgs boson couplings in proton-proton collisions at $\sqrt{s} = $ 13 TeV
Eur. Phys. J. C 79 (2019) 421
Abstract: Combined measurements of the production and decay rates of the Higgs boson, as well as its couplings to vector bosons and fermions, are presented. The analysis uses the LHC proton-proton collision data set recorded with the CMS detector in 2016 at $\sqrt{s} = $ 13 TeV, corresponding to an integrated luminosity of 35.9 fb$^{-1}$ . The combination is based on analyses targeting the five main Higgs boson production mechanisms (gluon fusion, vector boson fusion, and associated production with a W or Z boson, or a top quark-antiquark pair) and the following decay modes: $\mathrm{H}\to\gamma\gamma$, $\mathrm{Z}\mathrm{Z}$, $\mathrm{W}\mathrm{W}$, $\tau\tau$, $\mathrm{b}\mathrm{b}$, and $\mu \mu $. Searches for invisible Higgs boson decays are also considered. The best-fit ratio of the signal yield to the standard model expectation is measured to be $\mu= $ 1.17 $\pm$ 0.10, assuming a Higgs boson mass of 125.09 GeV. Additional results are given for parametrizations with varying assumptions on the scaling behavior of the different production and decay modes, including generic ones based on ratios of cross sections and branching fractions or coupling modifiers. The results are compatible with the standard model predictions in all parametrizations considered. In addition, constraints are placed on various two Higgs doublet models.
Figures & Tables Summary Additional Figures References CMS Publications
Figures

png pdf
Figure 1:
Examples of leading-order Feynman diagrams for Higgs boson decays in the $\mathrm{H \to b\bar{b} }$, $\mathrm{H \to \tau\tau }$, and $\mathrm{H \to \mu\mu }$ (upper left); $\mathrm{H \to ZZ }$ and $\mathrm{H \to WW }$ (upper right); and $\mathrm{H \to \gamma\gamma }$ (lower) channels.

png pdf
Figure 1-a:
Example of leading-order Feynman diagram for Higgs boson decays in the $\mathrm{H \to b\bar{b} }$, $\mathrm{H \to \tau\tau }$, and $\mathrm{H \to \mu\mu }$ channels.

png pdf
Figure 1-b:
Example of leading-order Feynman diagram for Higgs boson decays in the $\mathrm{H \to ZZ }$ and $\mathrm{H \to WW }$ channels.

png pdf
Figure 1-c:
Example of leading-order Feynman diagram for Higgs boson decays in the $\mathrm{H \to \gamma\gamma }$ channel.

png pdf
Figure 1-d:
Example of leading-order Feynman diagram for Higgs boson decays in the $\mathrm{H \to \gamma\gamma }$ channel.

png pdf
Figure 2:
Examples of leading-order Feynman diagrams for the ggH (upper left), VBF (upper right), VH (lower left), and ttH (lower right) production modes.

png pdf
Figure 2-a:
Example of leading-order Feynman diagram for the ggH production mode.

png pdf
Figure 2-b:
Example of leading-order Feynman diagram for the VBF production mode.

png pdf
Figure 2-c:
Example of leading-order Feynman diagram for the VH production mode.

png pdf
Figure 2-d:
Example of leading-order Feynman diagram for the ttH production mode.

png pdf
Figure 3:
Examples of leading-order Feynman diagrams for the $ {\mathrm {g}} {\mathrm {g}} \to {{\mathrm {Z}} {\mathrm {H}}} $ production mode.

png pdf
Figure 3-a:
Example of leading-order Feynman diagram for the $ {\mathrm {g}} {\mathrm {g}} \to {{\mathrm {Z}} {\mathrm {H}}} $ production mode.

png pdf
Figure 3-b:
Example of leading-order Feynman diagram for the $ {\mathrm {g}} {\mathrm {g}} \to {{\mathrm {Z}} {\mathrm {H}}} $ production mode.

png pdf
Figure 4:
Examples of leading-order Feynman diagrams for ${{\mathrm {t}} {\mathrm {H}}}$ production via the ${{\mathrm {t}} {\mathrm {H}} {\mathrm {W}}}$ (upper left and right) and ${{\mathrm {t}} {\mathrm {H}} {\mathrm {q}}}$ (lower) modes.

png pdf
Figure 4-a:
Example of leading-order Feynman diagram for ${{\mathrm {t}} {\mathrm {H}}}$ production via the ${{\mathrm {t}} {\mathrm {H}} {\mathrm {W}}}$ mode.

png pdf
Figure 4-b:
Example of leading-order Feynman diagram for ${{\mathrm {t}} {\mathrm {H}}}$ production via the ${{\mathrm {t}} {\mathrm {H}} {\mathrm {W}}}$ mode.

png pdf
Figure 4-c:
Example of leading-order Feynman diagram for ${{\mathrm {t}} {\mathrm {H}}}$ production via the ${{\mathrm {t}} {\mathrm {H}} {\mathrm {q}}}$ mode.

png pdf
Figure 5:
Summary plot of the fit to the per-production mode (left) and per-decay mode (right) signal strength modifiers. The thick and thin horizontal bars indicate the $ {\pm} 1 \sigma $ and $ {\pm} 2 \sigma $ uncertainties, respectively. Also shown are the $ {\pm} 1 \sigma $ systematic components of the uncertainties. The last point in the per-production mode summary plot is taken from a separate fit and indicates the result of the combined overall signal strength $\mu $.

png pdf
Figure 5-a:
Summary plot of the fit to the per-production mode signal strength modifiers. The thick and thin horizontal bars indicate the $ {\pm} 1 \sigma $ and $ {\pm} 2 \sigma $ uncertainties, respectively. Also shown are the $ {\pm} 1 \sigma $ systematic components of the uncertainties. The last point is taken from a separate fit and indicates the result of the combined overall signal strength $\mu $.

png pdf
Figure 5-b:
Summary plot of the fit to the per-decay mode signal strength modifiers. The thick and thin horizontal bars indicate the $ {\pm} 1 \sigma $ and $ {\pm} 2 \sigma $ uncertainties, respectively. Also shown are the $ {\pm} 1 \sigma $ systematic components of the uncertainties.

png pdf
Figure 6:
Summary plot of the fit to the production-decay signal strength products $\mu _{i}^{f}=\mu _{i} \mu ^{f}$. The points indicate the best fit values while the horizontal bars indicate the $1\sigma $ CL intervals. The hatched areas indicate signal strengths that are restricted to nonnegative values as described in the text.

png pdf
Figure 7:
Summary of the cross section and branching fraction ratio model. The thick and thin horizontal bars indicate the $ {\pm} 1 \sigma $ and $ {\pm} 2 \sigma $ uncertainties, respectively. Also shown are the $ {\pm} 1 \sigma $ systematic components of the uncertainties.

png pdf
Figure 8:
Summary of the stage 0 model, ratios of cross sections and branching fractions. The points indicate the best fit values, while the error bars show the $ {\pm} 1 \sigma $ and $ {\pm} 2 \sigma $ uncertainties. The $ {\pm} 1 \sigma $ uncertainties on the measurements considering only the contributions from the systematic uncertainties are also shown. The uncertainties in the SM predictions are indicated.

png pdf
Figure 9:
Summary of the $\kappa $-framework model assuming resolved loops and $ {{\mathcal {B}} _{\mathrm {BSM}}} =$ 0. The points indicate the best fit values while the thick and thin horizontal bars show the $1\sigma $ and $2\sigma $ CL intervals, respectively. In this model, the ggH and ${{\mathrm {H}} \to {{\gamma} {\gamma}}}$ loops are resolved in terms of the remaining coupling modifiers. For this model, both positive and negative values of $\kappa _{{\mathrm {W}}}$, $\kappa _{{\mathrm {Z}}}$, and $\kappa _{{\mathrm {b}}}$ are considered. Negative values of $\kappa _{{\mathrm {W}}}$ in this model are disfavored by more than $2\sigma $.

png pdf
Figure 10:
Likelihood scan in the $M{\text{-}}\epsilon$ plane (left). The best fit point and the 1$\sigma$ and 2$\sigma$ CL regions are shown, along with the SM prediction. Result of the phenomenological $(M,\,\epsilon)$ fit overlayed with the resolved $\kappa$-framework model (right).

png pdf
Figure 10-a:
Likelihood scan in the $M{\text{-}}\epsilon$ plane. The best fit point and the 1$\sigma$ and 2$\sigma$ CL regions are shown, along with the SM prediction.

png pdf
Figure 10-b:
Result of the phenomenological $(M,\,\epsilon)$ fit overlayed with the resolved $\kappa$-framework model.

png pdf
Figure 11:
Summary plots for the $\kappa $-framework model in which the ggH and ${{\mathrm {H}} \to {{\gamma} {\gamma}}}$ loops are scaled with effective couplings. The points indicate the best fit values while the thick and thin horizontal bars show the $1\sigma $ and $2\sigma $ CL intervals, respectively. In the left figure the constraint $ {{\mathcal {B}} _{\mathrm {BSM}}} =$ 0 is imposed, and both positive and negative values of $\kappa _{{\mathrm {W}}}$ and $\kappa _{{\mathrm {Z}}}$ are considered. In the right figure a constraint $ {| \kappa _{{\mathrm {W}}} |},\, {| \kappa _{{\mathrm {Z}}} |}\le $ 1 is imposed (same sign of $\kappa _{{\mathrm {W}}}$ and $\kappa _{{\mathrm {Z}}}$), while $ {{\mathcal {B}} _{\mathrm {inv}}} > $ 0 and $ {{\mathcal {B}} _{\mathrm {undet}}} > $ 0 are free parameters.

png pdf
Figure 11-a:
Summary plot for the $\kappa $-framework model in which the ggH and ${{\mathrm {H}} \to {{\gamma} {\gamma}}}$ loops are scaled with effective couplings. The points indicate the best fit values while the thick and thin horizontal bars show the $1\sigma $ and $2\sigma $ CL intervals, respectively. In the figure the constraint $ {{\mathcal {B}} _{\mathrm {BSM}}} =$ 0 is imposed, and both positive and negative values of $\kappa _{{\mathrm {W}}}$ and $\kappa _{{\mathrm {Z}}}$ are considered.

png pdf
Figure 11-b:
Summary plot for the $\kappa $-framework model in which the ggH and ${{\mathrm {H}} \to {{\gamma} {\gamma}}}$ loops are scaled with effective couplings. The points indicate the best fit values while the thick and thin horizontal bars show the $1\sigma $ and $2\sigma $ CL intervals, respectively. In the figure a constraint $ {| \kappa _{{\mathrm {W}}} |},\, {| \kappa _{{\mathrm {Z}}} |}\le $ 1 is imposed (same sign of $\kappa _{{\mathrm {W}}}$ and $\kappa _{{\mathrm {Z}}}$), while $ {{\mathcal {B}} _{\mathrm {inv}}} > $ 0 and $ {{\mathcal {B}} _{\mathrm {undet}}} > $ 0 are free parameters.

png pdf
Figure 12:
Results within the generic $\kappa $-framework model with effective loops and with the constraint $ {| \kappa _{{\mathrm {W}}} |},\, {| \kappa _{{\mathrm {Z}}} |}\le $ 1 (same sign of $\kappa _{{\mathrm {W}}}$ and $\kappa _{{\mathrm {Z}}}$), and with $ {{\mathcal {B}} _{\mathrm {inv}}} > $ 0 and $ {{\mathcal {B}} _{\mathrm {undet}}} > $ 0 as free parameters. Scan of the test statistic $q$ as a function of $ {{\mathcal {B}} _{\mathrm {inv}}} $ (left), and 68 and 95% CL regions for $ {{\mathcal {B}} _{\mathrm {inv}}} $ vs. $ {{\mathcal {B}} _{\mathrm {undet}}} $ (right). The scan of the test statistic $q$ as a function of $ {{\mathcal {B}} _{\mathrm {inv}}} $ expected assuming the SM is also shown in the left figure.

png pdf
Figure 12-a:
Results within the generic $\kappa $-framework model with effective loops and with the constraint $ {| \kappa _{{\mathrm {W}}} |},\, {| \kappa _{{\mathrm {Z}}} |}\le $ 1 (same sign of $\kappa _{{\mathrm {W}}}$ and $\kappa _{{\mathrm {Z}}}$), and with $ {{\mathcal {B}} _{\mathrm {inv}}} > $ 0 and $ {{\mathcal {B}} _{\mathrm {undet}}} > $ 0 as free parameters. Scan of the test statistic $q$ as a function of $ {{\mathcal {B}} _{\mathrm {inv}}} $. The scan of the test statistic $q$ as a function of $ {{\mathcal {B}} _{\mathrm {inv}}} $ expected assuming the SM is also shown.

png pdf
Figure 12-b:
Results within the generic $\kappa $-framework model with effective loops and with the constraint $ {| \kappa _{{\mathrm {W}}} |},\, {| \kappa _{{\mathrm {Z}}} |}\le $ 1 (same sign of $\kappa _{{\mathrm {W}}}$ and $\kappa _{{\mathrm {Z}}}$), and with $ {{\mathcal {B}} _{\mathrm {inv}}} > $ 0 and $ {{\mathcal {B}} _{\mathrm {undet}}} > $ 0 as free parameters. 68 and 95% CL regions for $ {{\mathcal {B}} _{\mathrm {inv}}} $ vs. $ {{\mathcal {B}} _{\mathrm {undet}}} $.

png pdf
Figure 13:
Scan of the test statistic $q$ as a function of $\kappa _{{\mathrm {W}}}$ in the generic $\kappa $ model assuming $ {{\mathcal {B}} _{\mathrm {BSM}}} =$ 0 (left) and allowing $ {{\mathcal {B}} _{\mathrm {inv}}} $ and $ {{\mathcal {B}} _{\mathrm {undet}}} $ to float (right). The different colored lines indicate the value of $q$ for different combinations of signs for $\kappa _{{\mathrm {W}}}$ and $\kappa _{{\mathrm {Z}}}$. The solid black line shows the minimum value of $q(\kappa _{{\mathrm {W}}})$ in each case and is used to determine the best fit point and the $1\sigma $ and $2\sigma $ CL regions. The scan in the right figure is truncated because of the constraints of $ {| \kappa _{{\mathrm {W}}} |}\le $ 1 and $ {| \kappa _{{\mathrm {Z}}} |}\le $ 1, which are imposed in this model.

png pdf
Figure 13-a:
Scan of the test statistic $q$ as a function of $\kappa _{{\mathrm {W}}}$ in the generic $\kappa $ model assuming $ {{\mathcal {B}} _{\mathrm {BSM}}} =$ 0. The different colored lines indicate the value of $q$ for different combinations of signs for $\kappa _{{\mathrm {W}}}$ and $\kappa _{{\mathrm {Z}}}$. The solid black line shows the minimum value of $q(\kappa _{{\mathrm {W}}})$ in each case and is used to determine the best fit point and the $1\sigma $ and $2\sigma $ CL regions.

png pdf
Figure 13-b:
Scan of the test statistic $q$ as a function of $\kappa _{{\mathrm {W}}}$ in the generic $\kappa $ model allowing $ {{\mathcal {B}} _{\mathrm {inv}}} $ and $ {{\mathcal {B}} _{\mathrm {undet}}} $ to float. The different colored lines indicate the value of $q$ for different combinations of signs for $\kappa _{{\mathrm {W}}}$ and $\kappa _{{\mathrm {Z}}}$. The solid black line shows the minimum value of $q(\kappa _{{\mathrm {W}}})$ in each case and is used to determine the best fit point and the $1\sigma $ and $2\sigma $ CL regions. The scan is truncated because of the constraints of $ {| \kappa _{{\mathrm {W}}} |}\le $ 1 and $ {| \kappa _{{\mathrm {Z}}} |}\le $ 1, which are imposed in this model.

png pdf
Figure 14:
The scan of the test statistic $q$ as a function of $\Gamma _{{\mathrm {H}}}/\Gamma _{{\mathrm {H}}}^{\mathrm {SM}}$ obtained by reinterpreting the model allowing for BSM decays of the Higgs boson. The expected scan of $q$ as a function of $\Gamma _{{\mathrm {H}}}/\Gamma _{{\mathrm {H}}}^{\mathrm {SM}}$ assuming the SM is also shown.

png pdf
Figure 15:
The $1\sigma $ and $2\sigma $ CL regions in the $\kappa _{{\mathrm {g}}}$ vs. $\kappa _{{\gamma}}$ parameter space for the model assuming the only BSM contributions to the Higgs boson couplings appear in the loop-induced processes or in BSM Higgs decays.

png pdf
Figure 16:
Summary of the model with coupling ratios and effective couplings for the ggH and ${{\mathrm {H}} \to {{\gamma} {\gamma}}}$ loops. The points indicate the best fit values while the thick and thin horizontal bars show the $1\sigma $ and $2\sigma $ CL intervals, respectively. For this model, both positive and negative values of $\lambda _{{\mathrm {W}} {\mathrm {Z}}}$ and $\lambda _{{\mathrm {t}} {\mathrm {g}}}$ are considered.

png pdf
Figure 17:
The $1\sigma $ and $2\sigma $ CL regions in the $\kappa _{\mathrm {F}}$ vs. $\kappa _{\mathrm {V}}$ parameter space for the model assuming a common scaling of all the vector boson and fermion couplings.

png pdf
Figure 18:
Summary plots of the 3-parameter models comparing up- and down-type fermions, and floating the ratio of the vector coupling to the up-type coupling (left) and comparing lepton and quark couplings (right). The points indicate the best fit values while the thick and thin horizontal bars show the $1\sigma $ and $2\sigma $ CL intervals, respectively. Both positive and negative values of $\lambda _{{\mathrm {d}} {\mathrm {u}}}$, $\lambda _{\mathrm {V} {\mathrm {u}}}$, $\lambda _{\text {l} {\mathrm {q}}}$, and $\lambda _{\mathrm {V} {\mathrm {q}}}$ are considered.

png pdf
Figure 18-a:
Summary plot of the 3-parameter model comparing up- and down-type fermions, and floating the ratio of the vector coupling to the up-type coupling. The points indicate the best fit values while the thick and thin horizontal bars show the $1\sigma $ and $2\sigma $ CL intervals, respectively. Positive and negative values of $\lambda _{{\mathrm {d}} {\mathrm {u}}}$ and $\lambda _{\mathrm {V} {\mathrm {u}}}$ are considered.

png pdf
Figure 18-b:
Summary plot of the 3-parameter models comparing lepton and quark couplings. The points indicate the best fit values while the thick and thin horizontal bars show the $1\sigma $ and $2\sigma $ CL intervals, respectively. Positive and negative values of $\lambda _{\text {l} {\mathrm {q}}}$ and $\lambda _{\mathrm {V} {\mathrm {q}}}$ are considered.

png pdf
Figure 19:
Constraints in the $\cos({\beta -\alpha})$ vs. $\tan\beta $ plane for the Types I, II, III, and IV 2HDM, and constraints in the $m_ {\mathrm {A}} $ vs. $\tan\beta $ plane for the hMSSM. The white regions, bounded by the solid black lines, in each plane represent the regions of the parameter space that are allowed at the 95% CL, given the data observed. The dashed lines indicate the boundaries of the allowed regions expected for the SM Higgs boson.

png pdf
Figure 19-a:
Constraints in the $\cos({\beta -\alpha})$ vs. $\tan\beta $ plane for the Types I 2HDM. The white regions, bounded by the solid black lines, in each plane represent the regions of the parameter space that are allowed at the 95% CL, given the data observed. The dashed lines indicate the boundaries of the allowed regions expected for the SM Higgs boson.

png pdf
Figure 19-b:
Constraints in the $\cos({\beta -\alpha})$ vs. $\tan\beta $ plane for the Types II 2HDM. The white regions, bounded by the solid black lines, in each plane represent the regions of the parameter space that are allowed at the 95% CL, given the data observed. The dashed lines indicate the boundaries of the allowed regions expected for the SM Higgs boson.

png pdf
Figure 19-c:
Constraints in the $\cos({\beta -\alpha})$ vs. $\tan\beta $ plane for the Types III 2HDM. The white regions, bounded by the solid black lines, in each plane represent the regions of the parameter space that are allowed at the 95% CL, given the data observed. The dashed lines indicate the boundaries of the allowed regions expected for the SM Higgs boson.

png pdf
Figure 19-d:
Constraints in the $\cos({\beta -\alpha})$ vs. $\tan\beta $ plane for the Types IV 2HDM. The white regions, bounded by the solid black lines, in each plane represent the regions of the parameter space that are allowed at the 95% CL, given the data observed. The dashed lines indicate the boundaries of the allowed regions expected for the SM Higgs boson.

png pdf
Figure 19-e:
Constraints in the $m_ {\mathrm {A}} $ vs. $\tan\beta $ plane for the hMSSM. The white regions, bounded by the solid black lines, in each plane represent the regions of the parameter space that are allowed at the 95% CL, given the data observed. The dashed lines indicate the boundaries of the allowed regions expected for the SM Higgs boson.
Tables

png pdf
Table 2:
Best fit values and $ {\pm} 1 \sigma $ uncertainties for the parameters of the parametrizations with per-production mode and per-decay mode signal strength modifiers. The expected uncertainties are given in brackets.

png pdf
Table 3:
Best fit values and $ {\pm} 1 \sigma $ uncertainties for the parameters of the model with one signal strength parameter for each production and decay mode combination. The entries in the table represent the parameter $\mu _{i}^{f}=\mu _{i} \mu ^{f}$, where $i$ is indicated by the column and $f$ by the row. The expected uncertainties are given in brackets. Some of the signal strengths are restricted to nonnegative values, as described in the text.

png pdf
Table 4:
Best fit values and $ {\pm} 1 \sigma $ uncertainties for the parameters of the cross section and branching fraction ratio model. The expected uncertainties are given in brackets.

png pdf
Table 5:
Best fit values and $ {\pm} 1 \sigma $ uncertainties for the parameters of the stage 0 simplified template cross section model. The values are all normalized to the SM predictions. The expected uncertainties are given in brackets.

png pdf
Table 6:
Normalization scaling factors for all relevant production cross sections and decay partial widths. For the $\kappa $ parameters representing loop processes, the resolved scaling in terms of the fundamental SM couplings is also given.

png pdf
Table 7:
Best fit values and $ {\pm} 1 \sigma $ uncertainties for the parameters of the $\kappa $ model in which the loop processes are resolved. The expected uncertainties are given in brackets.

png pdf
Table 8:
Best fit values and $ {\pm} 1 \sigma $ uncertainties for the parameters of the $\kappa $-framework model with effective loops. The expected uncertainties are given in brackets.

png pdf
Table 9:
Best fit values and $ {\pm} 1 \sigma $ uncertainties for the parameters of the coupling modifier ratio model. The expected uncertainties are given in brackets.

png pdf
Table 10:
Best fit values and $ {\pm} 1 \sigma $ uncertainties for the parameters of the $\kappa _{\mathrm {V}},\kappa _{\mathrm {F}}$ model. The expected uncertainties are given in brackets.

png pdf
Table 11:
Best fit values and $ {\pm} 1 \sigma $ uncertainties for the parameters of the two benchmark models with resolved loops to test the symmetry of fermion couplings. The expected uncertainties are given in brackets.

png pdf
Table 12:
Compatibility of the fit results with the SM prediction under various signal parametrizations. The value of $q$ at the values of the POIs for which the SM expectation is obtained ($q_{\text {SM}}$) is shown along with the corresponding $p$-value, with respect to the SM, assuming $q$ is distributed according to a $\chi ^{2}$ function with the specified number of degrees of freedom (DOF).

png pdf
Table 13:
Modifications to the couplings of the Higgs bosons to up-type ($\kappa _{{\mathrm {u}}}$) and down-type ($\kappa _{{\mathrm {d}}}$) fermions, and vector bosons ($\kappa _{\mathrm {V}}$), with respect to the SM expectation, in 2HDM and for the hMSSM. The coupling modifications for the hMSSM are completed by the expressions for $s_{{\mathrm {u}}}$ and $s_{{\mathrm {d}}}$, as given by Eqs. (8) and (9).
Summary
A set of combined measurements of Higgs boson production and decay rates has been presented, along with the consequential constraints placed on its couplings to standard model (SM) particles, and on the parameter spaces of several beyond the standard model (BSM) scenarios. The combination is based on analyses targeting the gluon fusion and vector boson fusion production modes, and associated production with a vector boson or a pair of top quarks. The analyses included in the combination target Higgs boson decay in the $\mathrm{H} \to \mathrm{Z}\mathrm{Z},\,\mathrm{W}\mathrm{W},\,{\gamma\gamma} ,\,{\tau\tau} $, ${\mathrm{b}\mathrm{b}} $, and $ {\mu \mu } $ channels, using 13 TeV proton-proton collision data collected in 2016 and corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Additionally, searches for invisible Higgs boson decays are included to increase the sensitivity to potential interactions with BSM particles.

Measurements of the Higgs boson production cross section times branching fraction in each of the channels are presented, along with a generic parametrization in terms of ratios of production cross sections and branching fractions, which makes no assumptions about the Higgs boson total width. The combined signal yield relative to the SM prediction has been measured as 1.17 $\pm$ 0.10 at $m_{\mathrm{H}} = $ 125.09 GeV. An improvement in the measured precision of the gluon fusion production rate of around $\sim$50% is achieved compared to previous ATLAS and CMS measurements. Additionally, a set of fiducial Higgs boson cross sections, in the context of the simplified template cross section framework, is presented for the first time from a combination of six decay channels. Furthermore, interpretations are provided in the context of a leading-order coupling modifier framework, including variants for which effective couplings to the photon and gluon are introduced. All of the results presented are compatible with the SM prediction. The invisible (undetected) branching fraction of the Higgs boson is constrained to be less than 22 (38%) at 95% Confidence Level. The results are additionally interpreted in two BSM models, the minimal supersymmetric model and the generic two Higgs doublet model. The constraints placed on the parameter spaces of these models are complementary to those that can be obtained from direct searches for additional Higgs bosons.
Additional Figures

png pdf
Additional Figure 1:
The correlation coefficients ($\rho $) obtained from the fit to data for the model with one signal strength parameter for each production and decay mode combination $\mu _{i}^{f}$. The production modes $i$ include gluon fusion (ggH), vector boson fusion (VBF), associated production with a vector boson (WH, ZH) and associated production with a pair of top quarks (ttH). The decay modes $f$ include ZZ, WW, $\gamma \gamma $, $\tau \tau $, bb and $ {{\mu}} {{\mu}}$.

png pdf
Additional Figure 2:
The correlation coefficients ($\rho $) obtained from the fit to data for the stage 0 simplified template cross section model. Six of the parameters represent the fiducial cross sections $\sigma _{{{\mathrm {g}} {\mathrm {g}} {\mathrm {H}}}}$, $\sigma _{{\mathrm {VBF}}}$, $\sigma _{{\mathrm {H}} +\rm {V}({\mathrm {q}} {\mathrm {q}})}$, $\sigma _{{\mathrm {H}} + {\mathrm {W}}(\ell \nu)}$, $\sigma _{{\mathrm {H}} +{{\mathrm {Z}}(\ell \ell /\nu \nu)}}$ and $\sigma _{{{\mathrm {t}} {\mathrm {t}} {\mathrm {H}}}}$ multiplied by the branching fraction $\mathcal {B}^{{\mathrm {Z}} {\mathrm {Z}}}$. The remaining five parameters represent the branching fractions for WW, $\gamma \gamma $, $\tau \tau $, $ {{\mathrm {b}} {\mathrm {b}}} $ and $ {{\mu}} {{\mu}}$ divided by $\mathcal {B}^{{\mathrm {Z}} {\mathrm {Z}}}$.
References
1 S. L. Glashow Partial-symmetries of weak interactions NP 22 (1961) 579
2 S. Weinberg A model of leptons PRL 19 (1967) 1264
3 A. Salam Weak and electromagnetic interactions in Elementary particle physics: relativistic groups and analyticity, N. Svartholm, ed., p. 367 Almqvist \& Wiskell, 1968Proceedings of the 8th Nobel symposium
4 G. 't Hooft and M. J. G. Veltman Regularization and renormalization of gauge fields NPB 44 (1972) 189
5 F. Englert and R. Brout Broken symmetry and the mass of gauge vector mesons PRL 13 (1964) 321
6 P. W. Higgs Broken symmetries, massless particles and gauge fields PL12 (1964) 132
7 P. W. Higgs Broken symmetries and the masses of gauge bosons PRL 13 (1964) 508
8 G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble Global conservation laws and massless particles PRL 13 (1964) 585
9 P. W. Higgs Spontaneous symmetry breakdown without massless bosons PR145 (1966) 1156
10 T. W. B. Kibble Symmetry breaking in non-Abelian gauge theories PR155 (1967) 1554
11 Y. Nambu and G. Jona-Lasinio Dynamical model of elementary particles based on an analogy with superconductivity. I PR122 (1961) 345
12 ATLAS Collaboration Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
13 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
14 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV JHEP 06 (2013) 81 CMS-HIG-12-036
1303.4571
15 K. G. Wilson Renormalization group and strong interactions PRD 3 (1971) 1818
16 E. Gildener Gauge-symmetry hierarchies PRD 14 (1976) 1667
17 S. Weinberg Gauge hierarchies PLB 82 (1979) 387
18 G. 't Hooft Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking NATO Sci. Ser. B 59 (1980) 135
19 L. Susskind Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory PRD 20 (1979) 2619
20 S. Dimopoulos and H. Georgi Softly broken supersymmetry and SU(5) NPB 193 (1981) 150
21 E. Witten Dynamical breaking of supersymmetry NPB 188 (1981) 513
22 N. Arkani-Hamed, S. Dimopoulos, and G. Dvali The hierarchy problem and new dimensions at a millimeter PLB 429 (1998) 263 hep-ph/9803315
23 L. Randall and R. Sundrum Large mass hierarchy from a small extra dimension PRL 83 (1999) 3370 hep-ph/9905221
24 N. Arkani-Hamed, A. G. Cohen, and H. Georgi Electroweak symmetry breaking from dimensional deconstruction PLB 513 (2001) 232 hep-ph/0105239
25 G. B\'elanger et al. The MSSM invisible Higgs in the light of dark matter and g-2 PLB 519 (2001) 93 hep-ph/0106275
26 G. F. Giudice, R. Rattazzi, and J. D. Wells Graviscalars from higher-dimensional metrics and curvature-Higgs mixing NPB 595 (2001) 250 hep-ph/0002178
27 D. Dominici and J. F. Gunion Invisible Higgs decays from Higgs-graviscalar mixing PRD 80 (2009) 115006 0902.1512
28 C. Bonilla, J. C. Rom\ ao, and J. W. F. Valle Neutrino mass and invisible Higgs decays at the LHC PRD 91 (2015) 113015 1502.01649
29 C. Anastasiou et al. Higgs boson gluon-fusion production in QCD at three loops PRL 114 (2015) 212001 1503.06056
30 C. Anastasiou et al. High precision determination of the gluon fusion Higgs boson cross-section at the LHC JHEP 05 (2016) 58 1602.00695
31 M. Ciccolini, A. Denner, and S. Dittmaier Strong and electroweak corrections to the production of a Higgs boson+2 jets via weak interactions at the Large Hadron Collider PRL 99 (2007) 161803 0707.0381
32 M. Ciccolini, A. Denner, and S. Dittmaier Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC PRD 77 (2008) 013002 0710.4749
33 P. Bolzoni, F. Maltoni, S.-O. Moch, and M. Zaro Higgs production via vector-boson fusion at NNLO in QCD PRL 105 (2010) 011801 1003.4451
34 P. Bolzoni, F. Maltoni, S.-O. Moch, and M. Zaro Vector boson fusion at next-to-next-to-leading order in QCD: Standard model Higgs boson and beyond PRD 85 (2012) 035002 1109.3717
35 O. Brein, A. Djouadi, and R. Harlander NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders PLB 579 (2004) 149 hep-ph/0307206
36 M. L. Ciccolini, S. Dittmaier, and M. Kramer Electroweak radiative corrections to associated $ WH $ and $ ZH $ production at hadron colliders PRD 68 (2003) 073003 hep-ph/0306234
37 W. Beenakker et al. Higgs radiation off top quarks at the Tevatron and the LHC PRL 87 (2001) 201805 hep-ph/0107081
38 W. Beenakker et al. NLO QCD corrections to $ \mathrm{t\bar{t}} $ H production in hadron collisions. NPB 653 (2003) 151 hep-ph/0211352
39 S. Dawson, L. H. Orr, L. Reina, and D. Wackeroth Associated top quark Higgs boson production at the LHC PRD 67 (2003) 071503 hep-ph/0211438
40 S. Dawson et al. Associated Higgs production with top quarks at the Large Hadron Collider: NLO QCD corrections PRD 68 (2003) 034022 hep-ph/0305087
41 Z. Yu et al. QCD NLO and EW NLO corrections to $ t\bar{t}H $ production with top quark decays at hadron collider PLB 738 (2014) 1 1407.1110
42 S. S. Frixione et al. Weak corrections to Higgs hadroproduction in association with a top-quark pair JHEP 09 (2014) 65 1407.0823
43 F. Demartin, F. Maltoni, K. Mawatari, and M. Zaro Higgs production in association with a single top quark at the LHC EPJC 75 (2015) 267 1504.0611
44 F. Demartin et al. tWH associated production at the LHC EPJC 77 (2017) 34 1607.05862
45 A. Denner et al. Standard model Higgs-boson branching ratios with uncertainties EPJC 71 (2011) 1753 1107.5909
46 A. Djouadi, J. Kalinowski, and M. Spira HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension CPC 108 (1998) 56 hep-ph/9704448
47 A. Djouadi, J. Kalinowski, M. Muhlleitner, and M. Spira An update of the program HDECAY in The Les Houches 2009 workshop on TeV colliders: The tools and Monte Carlo working group summary report 2010 1003.1643
48 A. Bredenstein, A. Denner, S. Dittmaier, and M. M. Weber Precise predictions for the Higgs-boson decay H $ \rightarrow $ WW/ZZ $ \rightarrow $ 4 leptons PRD 74 (2006) 013004 hep-ph/0604011
49 A. Bredenstein, A. Denner, S. Dittmaier, and M. M. Weber Radiative corrections to the semileptonic and hadronic Higgs-boson decays H $ \rightarrow $WW/ZZ$ \rightarrow $ 4 fermions JHEP 02 (2007) 80 hep-ph/0611234
50 S. Boselli et al. Higgs boson decay into four leptons at NLOPS electroweak accuracy JHEP 06 (2015) 23 1503.07394
51 S. Actis, G. Passarino, C. Sturm, and S. Uccirati NNLO computational techniques: the cases $ H \to \gamma \gamma $ and $ H \to g g $ NPB 811 (2009) 182 0809.3667
52 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector 1610.07922
53 ATLAS Collaboration Measurements of the Higgs boson production and decay rates and coupling strengths using $ pp $ collision data at $ \sqrt{s} = $ 7 and 8 TeV in the ATLAS experiment EPJC 76 (2016) 6 1507.04548
54 CMS Collaboration Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV EPJC 75 (2015) 212 CMS-HIG-14-009
1412.8662
55 ATLAS and CMS Collaborations Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC $ pp $ collision data at $ \sqrt{s} = $ 7 and 8 TeV JHEP 08 (2016) 45 1606.02266
56 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
57 CMS Collaboration Measurements of Higgs boson properties in the diphoton decay channel in proton-proton collisions at $ \sqrt{s}= $ 13 TeV \emphSubmitted to JHEP CMS-HIG-16-040
1804.02716
58 B. P. Roe et al. Boosted decision trees as an alternative to artificial neural networks for particle identification NIMA 543 (2005) 577 physics/0408124
59 P. D. Dauncey, M. Kenzie, N. Wardle, and G. J. Davies Handling uncertainties in background shapes: the discrete profiling method JINST 10 (2015) P04015 1408.6865
60 CMS Collaboration Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at $ \sqrt{s}= $ 13 ~TeV JHEP 11 (2017) 47 CMS-HIG-16-041
1706.09936
61 CMS Collaboration Measurements of properties of the Higgs boson decaying to a W boson pair in pp collisions at $ \sqrt{s}= $ 13 TeV Submitted to PLB CMS-HIG-16-042
1806.05246
62 CMS Collaboration Observation of the Higgs boson decay to a pair of $ \tau $ leptons with the CMS detector PLB 779 (2018) 283 CMS-HIG-16-043
1708.00373
63 CMS Collaboration Evidence for the Higgs boson decay to a bottom quark-antiquark pair PLB 780 (2018) 501 CMS-HIG-16-044
1709.07497
64 T. Aaltonen et al. Improved $ b $-jet Energy Correction for $ H \to b\bar{b} $ Searches at CDF 1107.3026
65 CMS Collaboration Search for the associated production of a Higgs boson with a single top quark in proton-proton collisions at $ \sqrt{s} = $ 8 TeV JHEP 06 (2016) 177 CMS-HIG-14-027
1509.08159
66 ATLAS Collaboration Search for the $ \mathrm{b}\overline{\mathrm{b}} $ decay of the Standard Model Higgs boson in associated (W/Z)H production with the ATLAS detector JHEP 01 (2015) 69 1409.6212
67 CMS Collaboration Identification of b-quark jets with the CMS experiment JINST 8 (2013) P04013
68 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST (2017) P05011 CMS-BTV-16-002
1712.07158
69 CMS Collaboration Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair PRL 120 (2018) 071802 CMS-HIG-17-010
1709.05543
70 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ {k_{\mathrm{T}}} $ jet clustering algorithm JHEP 04 (2008) 63 0802.1189
71 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
72 M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam Towards an understanding of jet substructure JHEP 09 (2013) 29 1307.0007
73 A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler Soft drop JHEP 05 (2014) 146 1402.2657
74 CMS Collaboration Identification of double-$ \mathrm{b} $ quark jets in boosted event topologies CMS-PAS-BTV-15-002 CMS-PAS-BTV-15-002
75 CMS Collaboration Observation of $ \mathrm{t\bar{t}H} $ production PRL 120 (2018) 231801 CMS-HIG-17-035
1804.02610
76 CMS Collaboration Evidence for associated production of a Higgs boson with a top quark pair in final states with electrons, muons, and hadronically decaying $ \tau $ leptons at $ \sqrt{s} = $ 13 TeV JHEP 08 (2018) 066 CMS-HIG-17-018
1803.05485
77 CMS Collaboration Search for $ \mathrm{t\overline{t}} $H production in the H$ \mathrm{b\overline{b}} $ decay channel with leptonic $ \mathrm{t\overline{t}} $ decays in proton-proton collisions at $ \sqrt{s}= $ 13 TeV Submitted to JHEP CMS-HIG-17-026
1804.03682
78 CMS Collaboration Search for $ \mathrm{t}\overline{\mathrm{t}} $H production in the all-jet final state in proton-proton collisions at $ \sqrt{s}= $ 13 TeV Submitted to JHEP CMS-HIG-17-022
1803.06986
79 J. Schmidhuber Deep learning in neural networks: An overview Neural Networks 61 (2015) 85
80 T. J. Hastie, R. J. Tibshirani, and J. H. Friedman The elements of statistical learning: data mining, inference, and prediction Springer series in statistics. Springer, New York, NY, 2nd edition edition
81 P. C. Bhat Multivariate analysis methods in particle physics Annu. Rev. Nucl. Part. Sci. 61 (2011) 281
82 P. Speckmayer, A. Hocker, J. Stelzer, and H. Voss The toolkit for multivariate data analysis, TMVA 4 J. Phys. Conf. Ser. 219 (2010) 032057
83 K. Kondo Dynamical likelihood method for reconstruction of events with missing momentum. 1: Method and toy models J. Phys. Soc. Jpn. 57 (1988) 4126
84 D0 Collaboration A precision measurement of the mass of the top quark Nature 429 (2004) 638 hep-ex/0406031
85 CMS Collaboration Performance of quark/gluon discrimination in 8 TeV pp data CMS-PAS-JME-13-002 CMS-PAS-JME-13-002
86 CMS Collaboration Performance of quark/gluon discrimination in 13 TeV data CDS
87 CMS Collaboration Search for the Higgs boson decaying to two muons in proton-proton collisions at $ \sqrt{s}= $ 13 TeV Submitted to PRLett CMS-HIG-17-019
1807.06325
88 R. E. Shrock and M. Suzuki Invisible decays of Higgs bosons PLB 110 (1982) 250
89 CMS Collaboration Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at $ \sqrt{s}= $ 13 TeV Submitted to PLB CMS-HIG-17-023
1809.05937
90 CMS Collaboration Search for new physics in events with a leptonically decaying Z boson and a large transverse momentum imbalance in proton-proton collisions at $ \sqrt{s}= $ 13 TeV EPJC 78 (2017) 291 CMS-EXO-16-052
1711.00431
91 CMS Collaboration Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at $ \sqrt{s}= $ 13 TeV PRD 97 (2018) 092005 CMS-EXO-16-048
1712.02345
92 E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM JHEP 02 (2012) 88 1111.2854
93 P. Nason A New method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
94 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the $ POWHEG $ method JHEP 11 (2007) 070 0709.2092
95 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
96 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
97 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 61 1209.6215
98 K. Hamilton, P. Nason, E. Re, and G. Zanderighi NNLOPS simulation of Higgs boson production JHEP 10 (2013) 222 1309.0017
99 K. Hamilton, P. Nason, and G. Zanderighi Finite quark-mass effects in the NNLOPS POWHEG+MiNLO Higgs generator 1501.04637
100 R. Barlow and C. Beeston Fitting using finite Monte Carlo samples Comp. Phys. Comms. 77 (1993) 219
101 J. S. Conway Incorporating nuisance parameters in likelihoods for multisource spectra 1103.0354
102 The ATLAS Collaboration, The CMS Collaboration, The LHC Higgs Combination Group Procedure for the LHC Higgs boson search combination in Summer 2011 CMS-NOTE-2011-005
103 CMS Collaboration Combined results of searches for the standard model Higgs boson in pp collisions at $ \sqrt{s} = $ 7 TeV PLB 710 (2012) 26 CMS-HIG-11-032
1202.1488
104 W. Verkerke and D. P. Kirkby The RooFit toolkit for data modeling in 13$^\textth$ International Conference for Computing in High Energy and Nuclear Physics (CHEP03) 2003 CHEP-2003-MOLT007 physics/0306116
105 L. Moneta et al. The RooStats project in 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2010) SISSA, 2010 PoS(ACAT2010)057 1009.1003
106 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
107 ATLAS and CMS Collaborations Combined Measurement of the Higgs Boson Mass in $ pp $ Collisions at $ \sqrt{s}= $ 7 and 8 TeV with the ATLAS and CMS Experiments PRL 114 (2015) 191803 1503.07589
108 CMS Collaboration CMS luminosity measurements for the 2016 data taking period CMS-PAS-LUM-17-001 CMS-PAS-LUM-17-001
109 E. Boos, V. Bunichev, M. Dubinin, and Y. Kurihara Higgs boson signal at complete tree level in the SM extension by dimension-six operators PRD 89 (2014) 035001 1309.5410
110 LHC Higgs Cross Section Working Group Handbook of LHC Higgs Cross Sections: 3. Higgs Properties 1307.1347
111 C. Englert, M. McCullough, and M. Spannowsky Gluon-initiated associated production boosts Higgs physics PRD 89 (2014) 013013 1310.4828
112 K. Hagiwara, R. Szalapski, and D. Zeppenfeld Anomalous Higgs boson production and decay PLB 318 (1993) 155 hep-ph/9308347
113 C. Arzt, M. B. Einhorn, and J. Wudka Patterns of deviation from the standard model NPB 433 (1995) 41 hep-ph/9405214
114 D. Zeppenfeld, R. Kinnunen, A. Nikitenko, and E. Richter-Was Measuring Higgs boson couplings at the CERN LHC PRD 62 (2000) 013009 hep-ph/0002036
115 V. Barger et al. Effects of genuine dimension-six Higgs operators PRD 67 (2003) 115001 hep-ph/0301097
116 M. Duhrssen et al. Extracting Higgs boson couplings from CERN LHC data PRD 70 (2004) 113009 hep-ph/0406323
117 A. Manohar and M. Wise Modifications to the properties of the Higgs boson PLB 636 (2006) 107 hep-ph/0601212
118 I. Low, R. Rattazzi, and A. Vichi Theoretical constraints on the Higgs effective couplings JHEP 04 (2010) 126 0907.5413
119 J. Ellis and T. You Global analysis of experimental constraints on a possible Higgs-like particle with mass ~125 GeV JHEP 06 (2012) 140 1204.0464
120 T. Corbett, O. J. P. Eboli, J. Gonzalez-Fraile, and M. C. Gonzalez-Garcia Constraining anomalous Higgs boson interactions PRD 86 (2012) 075013 1207.1344
121 G. Passarino NLO inspired effective Lagrangians for Higgs physics NPB 868 (2013) 416 1209.5538
122 M. Klute et al. Measuring Higgs couplings from LHC data PRL 109 (2012) 101801 1205.2699
123 R. Contino et al. Effective Lagrangian for a light Higgs-like scalar JHEP 07 (2013) 35 1303.3876
124 W.-F. Chang, W.-P. Pan, and F. Xu Effective gauge-Higgs operators analysis of new physics associated with the Higgs boson PRD 88 (2013) 033004 1303.7035
125 P. P. Giardino et al. The universal Higgs fit JHEP 05 (2014) 46 1303.3570
126 M. Ghezzi, R. Gomez-Ambrosio, G. Passarino, and S. Uccirati NLO Higgs effective field theory and $ \kappa $-framework JHEP 07 (2015) 175 1505.03706
127 J. Ellis and T. You Global analysis of the Higgs candidate with mass $ \sim $ 125 GeV JHEP 09 (2012) 123 1207.1693
128 J. Ellis and T. You Updated global analysis of Higgs couplings JHEP 06 (2013) 103 1303.3879
129 Particle Data Group Review of particle physics CPC 40 (2016) 100001
130 G. C. Branco et al. Theory and phenomenology of two-Higgs-doublet models PR 516 (2012) 1 1106.0034
131 J. F. Gunion and H. E. Haber CP-conserving two-Higgs-doublet model: The approach to the decoupling limit PRD 67 (2003) 075019 hep-ph/0207010
132 L. Maiani, A. D. Polosa, and V. Riquer Bounds to the Higgs sector masses in minimal supersymmetry from LHC data PLB 724 (2013) 274 1305.2172
133 A. Djouadi The Anatomy of electroweak symmetry breaking Tome II. The Higgs bosons in the minimal supersymmetric model PR 459 (2008) 1 hep-ph/0503173
134 J. F. Gunion and H. E. Haber Higgs bosons in supersymmetric models (I) NPB 272 (1986) 1
135 H. E. Haber and G. L. Kane The search for supersymmetry: Probing physics beyond the standard model PR 117 (1985) 75
136 H. P. Nilles Supersymmetry, supergravity and particle physics PR 110 (1984) 1
137 A. Djouadi et al. The post-Higgs MSSM scenario: habemus MSSM? EPJC 73 (2013) 2650 1307.5205
138 A. Djouadi et al. Fully covering the MSSM Higgs sector at the LHC JHEP 06 (2015) 168 1502.05653
139 ATLAS Collaboration Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector JHEP 11 (2015) 206 1509.00672
140 M. Carena et al. MSSM Higgs boson searches at the LHC: benchmark scenarios after the discovery of a Higgs-like particle EPJC 73 (2013) 2552 1302.7033
141 ATLAS Collaboration Search for heavy resonances decaying into $ WW $ in the $ e\nu\mu\nu $ final state in $ pp $ collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector EPJC 78 (2018) 24 1710.01123
142 ATLAS Collaboration Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb$ ^{-1} $ of pp collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector JHEP 01 (2018) 55 1709.07242
143 ATLAS Collaboration Search for charged Higgs bosons produced in association with a top quark and decaying via $ H^{\pm} \rightarrow \tau\nu $ using $ pp $ collision data recorded at $ \sqrt{s} = $ 13 TeV by the ATLAS detector PLB 759 (2016) 555 1603.09203
144 CMS Collaboration Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions JHEP 10 (2014) 160 CMS-HIG-13-021
1408.3316
145 CMS Collaboration Search for a standard-model-like Higgs boson with a mass in the range 145 to 1000 GeV at the LHC EPJC 73 (2013) 2469 CMS-HIG-12-034
1304.0213
Compact Muon Solenoid
LHC, CERN