CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIG-17-010 ; CERN-EP-2017-207
Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair
Phys. Rev. Lett. 120 (2018) 071802
Abstract: An inclusive search for the standard model Higgs boson (H) produced with large transverse momentum (${p_{\mathrm{T}}}$) and decaying to a bottom quark-antiquark pair ($\mathrm{b\bar{b}}$) is performed using a data set of ${\mathrm{p}}{\mathrm{p}}$ collisions at $\sqrt{s} = $ 13 TeV collected with the CMS experiment at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$. A highly Lorentz-boosted Higgs boson decaying to $\mathrm{b\bar{b}}$ is reconstructed as a single, large radius jet and is identified using jet substructure and dedicated b tagging techniques. The method is validated with $\mathrm{Z}\to\mathrm{b\bar{b}}$ decays. The $\mathrm{Z}\to\mathrm{b\bar{b}}$ process is observed for the first time in the single-jet topology with a local significance of 5.1 standard deviations (5.8 expected). For a Higgs boson mass of 125 GeV, an excess of events above the expected background is observed (expected) with a local significance of 1.5 (0.7) standard deviations. The measured cross section times branching fraction for production via gluon fusion of $\mathrm{H} \rightarrow \mathrm{b\bar{b}}$ with ${p_{\mathrm{T}}} > $ 450 GeV and in the pseudorapidity range $-2.5 < \eta < 2.5$ is 74 $\pm$ 48 (stat) $_{-{10} }^{+{17} }$ (syst) fb, which is consistent within uncertainties with the standard model prediction.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Data to simulation comparison of the $ {m_{\mathrm {SD}}} $ distribution for the leading jet, after the online selection and the jet $ {p_{\mathrm {T}}} > $ 450 GeV requirement. The QCD simulation is corrected by an overall factor of 0.78 to match the data yield.

png pdf
Figure 2:
The $ {m_{\mathrm {SD}}} $ distributions in data for the failing (left) and passing (right) regions and combined $ {p_{\mathrm {T}}} $ categories. The QCD multijet background in the passing region is predicted using the failing region and the pass-fail ratio $R_{\mathrm {p}/\mathrm {f}}$. The features at 166 and 180 GeV in the $ {m_{\mathrm {SD}}} $ distribution are due to the kinematic selection on $\rho $, which affects each $ {p_{\mathrm {T}}} $ category differently. In the bottom panel, the ratio of the data to its statistical uncertainty, after subtracting the nonresonant backgrounds, is shown.

png pdf
Figure 2-a:
The $ {m_{\mathrm {SD}}} $ distribution in data for the failing region and combined $ {p_{\mathrm {T}}} $ categories. The features at 166 and 180 GeV in the $ {m_{\mathrm {SD}}} $ distribution are due to the kinematic selection on $\rho $, which affects each $ {p_{\mathrm {T}}} $ category differently. In the bottom panel, the ratio of the data to its statistical uncertainty, after subtracting the nonresonant backgrounds, is shown.

png pdf
Figure 2-b:
The $ {m_{\mathrm {SD}}} $ distribution in data for the passing region and combined $ {p_{\mathrm {T}}} $ categories. The QCD multijet background is predicted using the failing region and the pass-fail ratio $R_{\mathrm {p}/\mathrm {f}}$. The features at 166 and 180 GeV in the $ {m_{\mathrm {SD}}} $ distribution are due to the kinematic selection on $\rho $, which affects each $ {p_{\mathrm {T}}} $ category differently. In the bottom panel, the ratio of the data to its statistical uncertainty, after subtracting the nonresonant backgrounds, is shown.

png pdf
Figure 3:
Profile likelihood test statistic $-2\Delta \log \mathcal {L}$ scan in data as a function of the Higgs and $\mathrm{Z} $ bosons signal strengths ($\mu _\mathrm{H}, \mu _\mathrm{Z} $).
Tables

png pdf
Table 1:
Summary of the systematic uncertainties for signal and background. Dashes ($ {\text {--}} $) indicate that the uncertainty does not apply.

png pdf
Table 2:
Fitted signal strength, expected and observed significance of the Higgs and $\mathrm{Z} $ boson signal. The 95% confidence level upper limit (UL) on the Higgs boson signal strength is also listed.
Summary
In summary, an inclusive search for the standard model Higgs boson with $p_{\mathrm{T}} > $ 450 GeV decaying to bottom quark-antiquark pairs and reconstructed as a single, large-radius jet is presented. The Z+jets process is observed for the first time in the single-jet topology with a significance of 5.1$\sigma$. The Higgs production is measured with an observed (expected) significance of 1.5$\sigma$ (0.7$\sigma$) when including Higgs boson $p_{\mathrm{T}}$ spectrum corrections accounting for higher-order and finite top quark mass effects. The measured cross section times branching fraction for the gluon fusion $\mathrm{H}(\mathrm{b\bar{b}})$ production for $p_{\mathrm{T}} > $ 450 GeV and $ | \eta | < $ 2.5 is 74 $\pm$ 48 (stat) $_{-10}^{+17}$ (syst) fb, which is consistent with the SM prediction within uncertainties.
References
1 Salam, A. Weak and electromagnetic interactions in Elementary particle physics: relativistic groups and analyticity, N. Svartholm, ed., p. 367 Almqvist \& Wiksell, Stockholm, 1968 Proceedings of the eighth Nobel symposium
2 S. L. Glashow Partial-symmetries of weak interactions NP 22 (1961) 579
3 S. Weinberg A model of leptons PRL 19 (1967) 1264
4 F. Englert and R. Brout Broken symmetry and the mass of gauge vector mesons PRL 13 (1964) 321
5 P. W. Higgs Broken symmetries, massless particles and gauge fields PRL 12 (1964) 132
6 P. W. Higgs Broken symmetries and the masses of gauge bosons PRL 13 (1964) 508
7 P. W. Higgs Spontaneous symmetry breakdown without massless bosons PRL 145 (May, 1966) 1156
8 G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble Global conservation laws and massless particless PRL 13 (1964) 585
9 ATLAS Collaboration Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
10 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
11 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
12 ATLAS and CMS Collaboration Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $ \sqrt{s}= $ 7 and 8 TeV JHEP 08 (2016) 045 1606.02266
13 D. de Florian et al. Handbook of LHC Higgs cross sections: 4. deciphering the nature of the Higgs sector CERN-2017-002-M 1610.07922
14 J. M. Butterworth, A. R. Davison, M. Rubin, and G. P. Salam Jet substructure as a new Higgs-search channel at the Large Hadron Collider PRL 100 (2008) 242001 0802.2470
15 C. Grojean, E. Salvioni, M. Schlaffer, and A. Weiler Very boosted Higgs in gluon fusion JHEP 05 (2014) 022 1312.3317
16 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
17 GEANT4 Collaboration GEANT4 --- a simulation toolkit NIMA 506 (2003) 250
18 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
19 J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions EPJC 53 (2008) 473 0706.2569
20 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
21 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
22 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
23 T. Sjostrand et al. An introduction to PYTHIA 8.2 CPC 191 (2015) 159 1410.3012
24 CMS Collaboration Event generator tunes obtained from underlying event and multiparton scattering measurements EPJC 76 (2016) 155 CMS-GEN-14-001
1512.00815
25 J. M. Campbell and R. K. Ellis MCFM for the Tevatron and the LHC NPPS 205-206 (2010) 10 1007.3492
26 M. Czakon, P. Fiedler, and A. Mitov Total top-quark pair-production cross section at hadron colliders through O($ \alpha_S^4 $) PRL 110 (2013) 252004 1303.6254
27 S. Kallweit et al. NLO electroweak automation and precise predictions for W+multijet production at the LHC JHEP 04 (2015) 012 1412.5157
28 S. Kallweit et al. NLO QCD+EW predictions for V+jets including off-shell vector-boson decays and multijet merging JHEP 04 (2016) 021 1511.08692
29 S. Kallweit et al. NLO QCD+EW automation and precise predictions for V+multijet production in Proceedings, 50th Rencontres de Moriond, QCD and high energy interactions, p. 121 2015 1505.05704
30 J. M. Lindert et al. Precise predictions for V+jets dark matter backgrounds 1705.04664
31 NNPDF Collaboration Parton distributions for the LHC run II JHEP 04 (2015) 040 1410.8849
32 D. de Florian, G. Ferrera, M. Grazzini, and D. Tommasini Higgs boson production at the LHC: transverse momentum resummation effects in the H$ \rightarrow 2\gamma $, H$ \rightarrow $WW$ \rightarrow \ell\nu\ell\nu $ and H$ \rightarrow $ZZ$ \rightarrow $4l decay modes JHEP 06 (2012) 132 1203.6321
33 M. Grazzini and H. Sargsyan Heavy-quark mass effects in Higgs boson production at the LHC JHEP 09 (2013) 129 1306.4581
34 E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM JHEP 02 (2012) 088 1111.2854
35 E. Bagnaschi and A. Vicini The Higgs transverse momentum distribution in gluon fusion as a multiscale problem JHEP 01 (2016) 056 1505.00735
36 U. J. Baur and E. W. N. Glover Higgs boson production at large transverse momentum in hadronic collisions NPB 339 (1990) 38
37 R. Boughezal et al. Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD JHEP 06 (2013) 072 1302.6216
38 R. Boughezal et al. Higgs boson production in association with a jet using jettiness subtraction PLB 748 (2015) 5 1505.03893
39 R. Boughezal et al. Color singlet production at NNLO in MCFM 1605.08011
40 X. Chen, T. Gehrmann, N. Glover, and M. Jaquier Higgs plus one jet production at NNLO in Proceedings, 12th International Symposium on Radiative Corrections (Radcor 2015) and LoopFest XIV (Radiative Corrections for the LHC and Future Colliders): Los Angeles, CA, USA, June 15-19, 2015 2016 1604.04085
41 S. Catani, F. Krauss, R. Kuhn, and B. R. Webber QCD matrix elements + parton showers JHEP 11 (2001) 063 hep-ph/0109231
42 L. Lonnblad Correcting the color-dipole cascade model with fixed order matrix elements JHEP 05 (2002) 046 hep-ph/0112284
43 V. Hirschi and O. Mattelaer Automated event generation for loop-induced processes JHEP 10 (2015) 146 1507.00020
44 M. Buschmann et al. Mass effects in the Higgs-gluon coupling: boosted vs. off-shell production JHEP 02 (2015) 038 1410.5806
45 N. Greiner et al. Phenomenological analysis of Higgs boson production through gluon fusion in association with jets JHEP 01 (2016) 169 1506.01016
46 T. Neumann and C. Williams Higgs bosons at high $ p_{\mathrm{T}} $ PRD 95 (2017) 014004 1609.00367
47 N. Greiner et al. Full mass dependence in Higgs boson production in association with jets at the LHC and FCC JHEP 01 (2017) 091 1608.01195
48 M. Cacciari et al. Fully Differential Vector-Boson-Fusion Higgs Production at Next-to-Next-to-Leading Order PRL 115 (2015) 082002 1506.02660
49 F. A. Dreyer and A. Karlberg Vector-Boson Fusion Higgs Production at Three Loops in QCD PRL 117 (2016), no. 7, 072001 1606.00840
50 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
51 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{t} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
52 D. Bertolini, P. Harris, M. Low, and N. Tran Pileup per particle identification JHEP 10 (2014) 059 1407.6013
53 D. Krohn, J. Thaler, and L. Wang Jet trimming JHEP 02 (2010) 084 0912.1342
54 M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam Towards an understanding of jet substructure JHEP 09 (2013) 029 1307.0007
55 A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler Soft drop JHEP 05 (2014) 146 1402.2657
56 CMS Collaboration Jet algorithms performance in 13 TeV data CMS-PAS-JME-16-003 CMS-PAS-JME-16-003
57 J. Dolen et al. Thinking outside the ROCs: Designing decorrelated taggers (DDT) for jet substructure JHEP 05 (2016) 156 1603.00027
58 I. Moult, L. Necib, and J. Thaler New angles on energy correlation functions JHEP 12 (2016) 153 1609.07483
59 A. J. Larkoski, G. P. Salam, and J. Thaler Energy correlation functions for jet substructure JHEP 06 (2013) 108 1305.0007
60 J. Thaler and K. Van Tilburg Identifying boosted objects with N-subjettiness JHEP 03 (2011) 015 1011.2268
61 CMS Collaboration Identification of double-b quark jets in boosted event topologies CMS-PAS-BTV-15-002 CMS-PAS-BTV-15-002
62 R. A. Fisher On the interpretation of $ \chi^{2} $ from contingency tables, and the calculation of P Journal of the Royal Statistical Society 85 (1922) 87
63 CMS Collaboration Determination of jet energy calibration and transverse momentum resolution in CMS JINST 6 (2011) 11002 CMS-JME-10-011
1107.4277
64 CMS Collaboration CMS luminosity measurements for the 2016 data taking period CMS-PAS-LUM-17-001 CMS-PAS-LUM-17-001
65 ATLAS Collaboration Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in $ pp $ collisions at $ {\sqrt{s}} = $ 7 TeV with the ATLAS detector New J. Phys. 16 (Jul, 2014) 113013
66 M. Bahr et al. Herwig++ physics and manual EPJC 58 (2008) 639 0803.0883
Compact Muon Solenoid
LHC, CERN