CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-HIG-17-034
Constraints on anomalous HVV couplings in the production of Higgs bosons decaying to tau lepton pairs
Abstract: A study of anomalous HVV interactions of the Higgs boson and its $CP$ properties is presented. The study uses Higgs boson candidates produced in vector boson fusion, WH and ZH processes and subsequently decaying to a pair of tau leptons. The data were recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 35.9 fb$^{-1}$. A matrix element technique is employed for optimal analysis of four types of anomalous interactions. Constraints are further improved by combination of the H$\to\tau\tau$ and H$\to 4\ell$ decay channels resulting in the most stringent constraints on anomalous Higgs boson couplings to date: $f_{a3}\cos(\phi_{a3})= (0.00 \pm 0.27 )\times10^{-3}$, $f_{a2}\cos(\phi_{a2})=(0.08^{+1.04}_{-0.21})\times10^{-3}$, $f_{\lambda 1}\cos(\phi_{\lambda 1})=(0.00^{+0.53}_{-0.09})\times10^{-3}$, and $f_{\lambda 1}^{Z\gamma}\cos(\phi_{\lambda 1}^{Z\gamma})=(0.0^{+1.1}_{-1.3})\times10^{-3}$. These results are consistent with expectations of the standard model.
Figures & Tables Summary Additional Figures References CMS Publications
Figures

png pdf
Figure 1:
Illustrations of $ {\mathrm {H}} $ production in strong $q{q^\prime}\to gg(q{q^\prime})\to {\mathrm {H}} (q{q^\prime})\to \tau \tau (q{q^\prime})$ or weak vector boson fusion $q{q^\prime}\to V^*V^*(q{q^\prime})\to {\mathrm {H}} (q{q^\prime})\to \tau \tau (q{q^\prime})$ (left) and $q\bar{q}^\prime \to V^*\to \mathrm {V} {\mathrm {H}} \to q\bar{q}^\prime \tau \tau $ (right). The decay $ {\mathrm {H}} \to \tau \tau $ is shown without further illustrating the $\tau $ decay chain. Angles and invariant masses fully characterize the orientation of the production and two-body decay chain and are defined in suitable rest frames [37,42].

png pdf
Figure 1-a:
Illustrations of $ {\mathrm {H}} $ production in strong $q{q^\prime}\to gg(q{q^\prime})\to {\mathrm {H}} (q{q^\prime})\to \tau \tau (q{q^\prime})$ or weak vector boson fusion $q{q^\prime}\to V^*V^*(q{q^\prime})\to {\mathrm {H}} (q{q^\prime})\to \tau \tau (q{q^\prime})$ (left) and $q\bar{q}^\prime \to V^*\to \mathrm {V} {\mathrm {H}} \to q\bar{q}^\prime \tau \tau $ (right). The decay $ {\mathrm {H}} \to \tau \tau $ is shown without further illustrating the $\tau $ decay chain. Angles and invariant masses fully characterize the orientation of the production and two-body decay chain and are defined in suitable rest frames [37,42].

png pdf
Figure 1-b:
Illustrations of $ {\mathrm {H}} $ production in strong $q{q^\prime}\to gg(q{q^\prime})\to {\mathrm {H}} (q{q^\prime})\to \tau \tau (q{q^\prime})$ or weak vector boson fusion $q{q^\prime}\to V^*V^*(q{q^\prime})\to {\mathrm {H}} (q{q^\prime})\to \tau \tau (q{q^\prime})$ (left) and $q\bar{q}^\prime \to V^*\to \mathrm {V} {\mathrm {H}} \to q\bar{q}^\prime \tau \tau $ (right). The decay $ {\mathrm {H}} \to \tau \tau $ is shown without further illustrating the $\tau $ decay chain. Angles and invariant masses fully characterize the orientation of the production and two-body decay chain and are defined in suitable rest frames [37,42].

png pdf
Figure 2:
The distribution of $ {m_\text {vis}} $ and $ {m_{{\tau} {\tau}}} $ in the 0-jet category of the $\mu {{\tau} _\mathrm {h}} + {\mathrm {e}} {{\tau} _\mathrm {h}} $ (left) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (right) decay channels. The BSM hypothesis corresponds to $f_{a3}\cos\phi _{a3}=1$.

png pdf
Figure 2-a:
The distribution of $ {m_\text {vis}} $ and $ {m_{{\tau} {\tau}}} $ in the 0-jet category of the $\mu {{\tau} _\mathrm {h}} + {\mathrm {e}} {{\tau} _\mathrm {h}} $ (left) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (right) decay channels. The BSM hypothesis corresponds to $f_{a3}\cos\phi _{a3}=1$.

png pdf
Figure 2-b:
The distribution of $ {m_\text {vis}} $ and $ {m_{{\tau} {\tau}}} $ in the 0-jet category of the $\mu {{\tau} _\mathrm {h}} + {\mathrm {e}} {{\tau} _\mathrm {h}} $ (left) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (right) decay channels. The BSM hypothesis corresponds to $f_{a3}\cos\phi _{a3}=1$.

png pdf
Figure 3:
The distribution of transverse momentum of the Higgs boson in the boosted category of the $\mu {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\mu}}$ (left) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (right) decay channels. The BSM hypothesis corresponds to $f_{a3}\cos\phi _{a3}=1$.

png pdf
Figure 3-a:
The distribution of transverse momentum of the Higgs boson in the boosted category of the $\mu {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\mu}}$ (left) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (right) decay channels. The BSM hypothesis corresponds to $f_{a3}\cos\phi _{a3}=1$.

png pdf
Figure 3-b:
The distribution of transverse momentum of the Higgs boson in the boosted category of the $\mu {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\mu}}$ (left) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (right) decay channels. The BSM hypothesis corresponds to $f_{a3}\cos\phi _{a3}=1$.

png pdf
Figure 4:
The distributions of $\mathcal {D}_\mathrm {0-}$, $\mathcal {D}_{CP}$, $\mathcal {D}_{\rm 0h+}$, $\mathcal {D}_{\lambda 1}$, and $\mathcal {D}_{\lambda 1}^{Z\gamma}$ in the VBF category. In these figures, all four decay channels, $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $, $\mu {{\tau} _\mathrm {h}} $, $ {\mathrm {e}} {{\tau} _\mathrm {h}} $, $ {\mathrm {e}} {{\mu}}$ are summed. The BSM hypothesis depends on the variable shown: it corresponds to $f_{a3}\cos\phi _{a3}=1$ for the $\mathcal {D}_\mathrm {0-}$ (top left) distributions, the maximal mixing ("BSM mix") in VBF production for the $\mathcal {D}_{CP}$ distribution (top right), $f_{a2}\cos\phi _{a2}=1$ for the $\mathcal {D}_{\rm 0h+}$ distribution (center left), $f_{\lambda 1}\cos\phi _{\lambda 1}=1$ for the $\mathcal {D}_{\lambda 1}$ distribution (center right), and $f_{\lambda 1}^{Z\gamma}\cos\phi _{\lambda 1}^{Z\gamma}=1$ for the $\mathcal {D}_{\lambda 1}^{Z\gamma}$ distribution (bottom).

png pdf
Figure 4-a:
The distributions of $\mathcal {D}_\mathrm {0-}$, $\mathcal {D}_{CP}$, $\mathcal {D}_{\rm 0h+}$, $\mathcal {D}_{\lambda 1}$, and $\mathcal {D}_{\lambda 1}^{Z\gamma}$ in the VBF category. In these figures, all four decay channels, $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $, $\mu {{\tau} _\mathrm {h}} $, $ {\mathrm {e}} {{\tau} _\mathrm {h}} $, $ {\mathrm {e}} {{\mu}}$ are summed. The BSM hypothesis depends on the variable shown: it corresponds to $f_{a3}\cos\phi _{a3}=1$ for the $\mathcal {D}_\mathrm {0-}$ (top left) distributions, the maximal mixing ("BSM mix") in VBF production for the $\mathcal {D}_{CP}$ distribution (top right), $f_{a2}\cos\phi _{a2}=1$ for the $\mathcal {D}_{\rm 0h+}$ distribution (center left), $f_{\lambda 1}\cos\phi _{\lambda 1}=1$ for the $\mathcal {D}_{\lambda 1}$ distribution (center right), and $f_{\lambda 1}^{Z\gamma}\cos\phi _{\lambda 1}^{Z\gamma}=1$ for the $\mathcal {D}_{\lambda 1}^{Z\gamma}$ distribution (bottom).

png pdf
Figure 4-b:
The distributions of $\mathcal {D}_\mathrm {0-}$, $\mathcal {D}_{CP}$, $\mathcal {D}_{\rm 0h+}$, $\mathcal {D}_{\lambda 1}$, and $\mathcal {D}_{\lambda 1}^{Z\gamma}$ in the VBF category. In these figures, all four decay channels, $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $, $\mu {{\tau} _\mathrm {h}} $, $ {\mathrm {e}} {{\tau} _\mathrm {h}} $, $ {\mathrm {e}} {{\mu}}$ are summed. The BSM hypothesis depends on the variable shown: it corresponds to $f_{a3}\cos\phi _{a3}=1$ for the $\mathcal {D}_\mathrm {0-}$ (top left) distributions, the maximal mixing ("BSM mix") in VBF production for the $\mathcal {D}_{CP}$ distribution (top right), $f_{a2}\cos\phi _{a2}=1$ for the $\mathcal {D}_{\rm 0h+}$ distribution (center left), $f_{\lambda 1}\cos\phi _{\lambda 1}=1$ for the $\mathcal {D}_{\lambda 1}$ distribution (center right), and $f_{\lambda 1}^{Z\gamma}\cos\phi _{\lambda 1}^{Z\gamma}=1$ for the $\mathcal {D}_{\lambda 1}^{Z\gamma}$ distribution (bottom).

png pdf
Figure 4-c:
The distributions of $\mathcal {D}_\mathrm {0-}$, $\mathcal {D}_{CP}$, $\mathcal {D}_{\rm 0h+}$, $\mathcal {D}_{\lambda 1}$, and $\mathcal {D}_{\lambda 1}^{Z\gamma}$ in the VBF category. In these figures, all four decay channels, $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $, $\mu {{\tau} _\mathrm {h}} $, $ {\mathrm {e}} {{\tau} _\mathrm {h}} $, $ {\mathrm {e}} {{\mu}}$ are summed. The BSM hypothesis depends on the variable shown: it corresponds to $f_{a3}\cos\phi _{a3}=1$ for the $\mathcal {D}_\mathrm {0-}$ (top left) distributions, the maximal mixing ("BSM mix") in VBF production for the $\mathcal {D}_{CP}$ distribution (top right), $f_{a2}\cos\phi _{a2}=1$ for the $\mathcal {D}_{\rm 0h+}$ distribution (center left), $f_{\lambda 1}\cos\phi _{\lambda 1}=1$ for the $\mathcal {D}_{\lambda 1}$ distribution (center right), and $f_{\lambda 1}^{Z\gamma}\cos\phi _{\lambda 1}^{Z\gamma}=1$ for the $\mathcal {D}_{\lambda 1}^{Z\gamma}$ distribution (bottom).

png pdf
Figure 4-d:
The distributions of $\mathcal {D}_\mathrm {0-}$, $\mathcal {D}_{CP}$, $\mathcal {D}_{\rm 0h+}$, $\mathcal {D}_{\lambda 1}$, and $\mathcal {D}_{\lambda 1}^{Z\gamma}$ in the VBF category. In these figures, all four decay channels, $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $, $\mu {{\tau} _\mathrm {h}} $, $ {\mathrm {e}} {{\tau} _\mathrm {h}} $, $ {\mathrm {e}} {{\mu}}$ are summed. The BSM hypothesis depends on the variable shown: it corresponds to $f_{a3}\cos\phi _{a3}=1$ for the $\mathcal {D}_\mathrm {0-}$ (top left) distributions, the maximal mixing ("BSM mix") in VBF production for the $\mathcal {D}_{CP}$ distribution (top right), $f_{a2}\cos\phi _{a2}=1$ for the $\mathcal {D}_{\rm 0h+}$ distribution (center left), $f_{\lambda 1}\cos\phi _{\lambda 1}=1$ for the $\mathcal {D}_{\lambda 1}$ distribution (center right), and $f_{\lambda 1}^{Z\gamma}\cos\phi _{\lambda 1}^{Z\gamma}=1$ for the $\mathcal {D}_{\lambda 1}^{Z\gamma}$ distribution (bottom).

png pdf
Figure 4-e:
The distributions of $\mathcal {D}_\mathrm {0-}$, $\mathcal {D}_{CP}$, $\mathcal {D}_{\rm 0h+}$, $\mathcal {D}_{\lambda 1}$, and $\mathcal {D}_{\lambda 1}^{Z\gamma}$ in the VBF category. In these figures, all four decay channels, $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $, $\mu {{\tau} _\mathrm {h}} $, $ {\mathrm {e}} {{\tau} _\mathrm {h}} $, $ {\mathrm {e}} {{\mu}}$ are summed. The BSM hypothesis depends on the variable shown: it corresponds to $f_{a3}\cos\phi _{a3}=1$ for the $\mathcal {D}_\mathrm {0-}$ (top left) distributions, the maximal mixing ("BSM mix") in VBF production for the $\mathcal {D}_{CP}$ distribution (top right), $f_{a2}\cos\phi _{a2}=1$ for the $\mathcal {D}_{\rm 0h+}$ distribution (center left), $f_{\lambda 1}\cos\phi _{\lambda 1}=1$ for the $\mathcal {D}_{\lambda 1}$ distribution (center right), and $f_{\lambda 1}^{Z\gamma}\cos\phi _{\lambda 1}^{Z\gamma}=1$ for the $\mathcal {D}_{\lambda 1}^{Z\gamma}$ distribution (bottom).

png pdf
Figure 5:
Observed and expected distributions in the VBF category in bins of $m_{\tau \tau}$, $m_{jj}$ and $\mathcal {D}_\mathrm {0-}$ for the $\mu {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\mu}}$ (top) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (middle and bottom) decay channels.

png pdf
Figure 5-a:
Observed and expected distributions in the VBF category in bins of $m_{\tau \tau}$, $m_{jj}$ and $\mathcal {D}_\mathrm {0-}$ for the $\mu {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\mu}}$ (top) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (middle and bottom) decay channels.

png pdf
Figure 5-b:
Observed and expected distributions in the VBF category in bins of $m_{\tau \tau}$, $m_{jj}$ and $\mathcal {D}_\mathrm {0-}$ for the $\mu {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\mu}}$ (top) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (middle and bottom) decay channels.

png pdf
Figure 5-c:
Observed and expected distributions in the VBF category in bins of $m_{\tau \tau}$, $m_{jj}$ and $\mathcal {D}_\mathrm {0-}$ for the $\mu {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\mu}}$ (top) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (middle and bottom) decay channels.

png pdf
Figure 6:
Observed and expected distributions in the VBF category in bins of $m_{\tau \tau}$, $m_{jj}$ and $\mathcal {D}_{\rm 0h+}$ for the $\mu {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\mu}}$ (top) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (middle and bottom) decay channels.

png pdf
Figure 6-a:
Observed and expected distributions in the VBF category in bins of $m_{\tau \tau}$, $m_{jj}$ and $\mathcal {D}_{\rm 0h+}$ for the $\mu {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\mu}}$ (top) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (middle and bottom) decay channels.

png pdf
Figure 6-b:
Observed and expected distributions in the VBF category in bins of $m_{\tau \tau}$, $m_{jj}$ and $\mathcal {D}_{\rm 0h+}$ for the $\mu {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\mu}}$ (top) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (middle and bottom) decay channels.

png pdf
Figure 6-c:
Observed and expected distributions in the VBF category in bins of $m_{\tau \tau}$, $m_{jj}$ and $\mathcal {D}_{\rm 0h+}$ for the $\mu {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\mu}}$ (top) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (middle and bottom) decay channels.

png pdf
Figure 7:
Observed and expected distributions in the VBF category in bins of $m_{\tau \tau}$, $m_{jj}$ and $\mathcal {D}_{\lambda 1}$ for the $\mu {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\mu}}$ (top) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (middle and bottom) decay channels.

png pdf
Figure 7-a:
Observed and expected distributions in the VBF category in bins of $m_{\tau \tau}$, $m_{jj}$ and $\mathcal {D}_{\lambda 1}$ for the $\mu {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\mu}}$ (top) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (middle and bottom) decay channels.

png pdf
Figure 7-b:
Observed and expected distributions in the VBF category in bins of $m_{\tau \tau}$, $m_{jj}$ and $\mathcal {D}_{\lambda 1}$ for the $\mu {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\mu}}$ (top) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (middle and bottom) decay channels.

png pdf
Figure 7-c:
Observed and expected distributions in the VBF category in bins of $m_{\tau \tau}$, $m_{jj}$ and $\mathcal {D}_{\lambda 1}$ for the $\mu {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\mu}}$ (top) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (middle and bottom) decay channels.

png pdf
Figure 8:
Observed and expected distributions in the VBF category in bins of $m_{\tau \tau}$, $m_{jj}$ and $\mathcal {D}_{\lambda 1}^{Z\gamma}$ for the $\mu {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\mu}}$ (top) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (middle and bottom) decay channels.

png pdf
Figure 8-a:
Observed and expected distributions in the VBF category in bins of $m_{\tau \tau}$, $m_{jj}$ and $\mathcal {D}_{\lambda 1}^{Z\gamma}$ for the $\mu {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\mu}}$ (top) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (middle and bottom) decay channels.

png pdf
Figure 8-b:
Observed and expected distributions in the VBF category in bins of $m_{\tau \tau}$, $m_{jj}$ and $\mathcal {D}_{\lambda 1}^{Z\gamma}$ for the $\mu {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\mu}}$ (top) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (middle and bottom) decay channels.

png pdf
Figure 8-c:
Observed and expected distributions in the VBF category in bins of $m_{\tau \tau}$, $m_{jj}$ and $\mathcal {D}_{\lambda 1}^{Z\gamma}$ for the $\mu {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\tau} _\mathrm {h}} $+$ {\mathrm {e}} {{\mu}}$ (top) and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (middle and bottom) decay channels.

png pdf
Figure 9:
Observed (solid) and expected (dashed) likelihood scans of $f_{a3}\cos(\phi _{a3})$ (a), $f_{a2}\cos(\phi _{a2})$ (b), $f_{\lambda 1}\cos(\phi _{\lambda 1})$ (c), and $f_{\lambda 1}^{Z\gamma}\cos(\phi _{\lambda 1}^{Z\gamma})$ (d).

png pdf
Figure 9-a:
Observed (solid) and expected (dashed) likelihood scans of $f_{a3}\cos(\phi _{a3})$ (a), $f_{a2}\cos(\phi _{a2})$ (b), $f_{\lambda 1}\cos(\phi _{\lambda 1})$ (c), and $f_{\lambda 1}^{Z\gamma}\cos(\phi _{\lambda 1}^{Z\gamma})$ (d).

png pdf
Figure 9-b:
Observed (solid) and expected (dashed) likelihood scans of $f_{a3}\cos(\phi _{a3})$ (a), $f_{a2}\cos(\phi _{a2})$ (b), $f_{\lambda 1}\cos(\phi _{\lambda 1})$ (c), and $f_{\lambda 1}^{Z\gamma}\cos(\phi _{\lambda 1}^{Z\gamma})$ (d).

png pdf
Figure 9-c:
Observed (solid) and expected (dashed) likelihood scans of $f_{a3}\cos(\phi _{a3})$ (a), $f_{a2}\cos(\phi _{a2})$ (b), $f_{\lambda 1}\cos(\phi _{\lambda 1})$ (c), and $f_{\lambda 1}^{Z\gamma}\cos(\phi _{\lambda 1}^{Z\gamma})$ (d).

png pdf
Figure 9-d:
Observed (solid) and expected (dashed) likelihood scans of $f_{a3}\cos(\phi _{a3})$ (a), $f_{a2}\cos(\phi _{a2})$ (b), $f_{\lambda 1}\cos(\phi _{\lambda 1})$ (c), and $f_{\lambda 1}^{Z\gamma}\cos(\phi _{\lambda 1}^{Z\gamma})$ (d).

png pdf
Figure 10:
Combination of results presented in this note using the $ {\mathrm {H}} \to \tau \tau $ decay and results in Ref. [14] using the $ {\mathrm {H}} \to ZZ$ decay. The combined observed (solid) and expected (dashed) likelihood scans of $f_{a3}\cos(\phi _{a3})$ (a), $f_{a2}\cos(\phi _{a2})$ (b), $f_{\lambda 1}\cos(\phi _{\lambda 1})$ (c), and $f_{\lambda 1}^{Z\gamma}\cos(\phi _{\lambda 1}^{Z\gamma})$ (d).

png pdf
Figure 10-a:
Combination of results presented in this note using the $ {\mathrm {H}} \to \tau \tau $ decay and results in Ref. [14] using the $ {\mathrm {H}} \to ZZ$ decay. The combined observed (solid) and expected (dashed) likelihood scans of $f_{a3}\cos(\phi _{a3})$ (a), $f_{a2}\cos(\phi _{a2})$ (b), $f_{\lambda 1}\cos(\phi _{\lambda 1})$ (c), and $f_{\lambda 1}^{Z\gamma}\cos(\phi _{\lambda 1}^{Z\gamma})$ (d).

png pdf
Figure 10-b:
Combination of results presented in this note using the $ {\mathrm {H}} \to \tau \tau $ decay and results in Ref. [14] using the $ {\mathrm {H}} \to ZZ$ decay. The combined observed (solid) and expected (dashed) likelihood scans of $f_{a3}\cos(\phi _{a3})$ (a), $f_{a2}\cos(\phi _{a2})$ (b), $f_{\lambda 1}\cos(\phi _{\lambda 1})$ (c), and $f_{\lambda 1}^{Z\gamma}\cos(\phi _{\lambda 1}^{Z\gamma})$ (d).

png pdf
Figure 10-c:
Combination of results presented in this note using the $ {\mathrm {H}} \to \tau \tau $ decay and results in Ref. [14] using the $ {\mathrm {H}} \to ZZ$ decay. The combined observed (solid) and expected (dashed) likelihood scans of $f_{a3}\cos(\phi _{a3})$ (a), $f_{a2}\cos(\phi _{a2})$ (b), $f_{\lambda 1}\cos(\phi _{\lambda 1})$ (c), and $f_{\lambda 1}^{Z\gamma}\cos(\phi _{\lambda 1}^{Z\gamma})$ (d).

png pdf
Figure 10-d:
Combination of results presented in this note using the $ {\mathrm {H}} \to \tau \tau $ decay and results in Ref. [14] using the $ {\mathrm {H}} \to ZZ$ decay. The combined observed (solid) and expected (dashed) likelihood scans of $f_{a3}\cos(\phi _{a3})$ (a), $f_{a2}\cos(\phi _{a2})$ (b), $f_{\lambda 1}\cos(\phi _{\lambda 1})$ (c), and $f_{\lambda 1}^{Z\gamma}\cos(\phi _{\lambda 1}^{Z\gamma})$ (d).
Tables

png pdf
Table 1:
Kinematic selection criteria for the four decay channels. For the trigger threshold requirements, the numbers indicate the approximate trigger thresholds in GeV. The lepton selection criteria include transverse momentum threshold, pseudo-rapidity range as well as isolation criteria.

png pdf
Table 2:
Summary of allowed 68% CL (central values with uncertainties) and 95% CL (in square brackets) intervals on anomalous coupling parameters using the $ {\mathrm {H}} \to \tau \tau $ decay.

png pdf
Table 3:
Summary of allowed 68% CL (central values with uncertainties) and 95% CL (in square brackets) intervals on anomalous coupling parameters using combination of the $ {\mathrm {H}} \to \tau \tau $ and $ {\mathrm {H}} \to 4\ell $ [14] decay channels.
Summary
A study of anomalous HVV interactions of the Higgs boson, including CP violation, has been presented, using its associated production with two quark jets in vector boson fusion and VH with subsequent decay to a pair of tau leptons. Constraints on the CP-violating parameter $f_{a3}$ and on the CP-conserving parameters $f_{a2}$, $f_{\lambda 1}$, and $f_{\lambda 1}^{Z\gamma}$ are set using matrix element techniques. The observed and expected limits on parameters are summarized in Table 2. The 68% CL constraints are generally tighter than those from previous measurements using either production or decay information. Further constraints are obtained in the combination of the $\mathrm{H}\to\tau\tau$ and $\mathrm{H}\to 4\ell$ decay channels and are summarized in Table 3. This results in the most stringent constraints on anomalous Higgs boson couplings: $f_{a3}\cos(\phi_{a3})=(0.00 \pm 0.27 )\times10^{-3}$, $f_{a2}\cos(\phi_{a2})=(0.08^{+1.04}_{-0.21})\times10^{-3}$, $f_{\lambda 1}\cos(\phi_{\lambda 1})=(0.00^{+0.53}_{-0.09})\times10^{-3}$, and $f_{\lambda 1}^{Z\gamma}\cos(\phi_{\lambda 1}^{Z\gamma})=(0.0^{+1.1}_{-1.3})\times10^{-3}$. The results are consistent with expectations for the standard model Higgs boson.
Additional Figures

png pdf
Additional Figure 1:
Summary of confidence level intervals of anomalous coupling parameters in $ {\mathrm {H}} \mathrm {V} \mathrm {V} $ interactions under the assumption that all the coupling ratios are real ($\phi _{ai}^{\mathrm {V} \mathrm {V}}=$ 0 or $\pi $). The $ {\mathrm {H}} {\mathrm {Z}} {\mathrm {Z}} + {\mathrm {H}} {\mathrm {W}} {\mathrm {W}}$ coupling limits assume that $a_{i}^{{\mathrm {Z}} {\mathrm {Z}}}=a_{i}^{{\mathrm {W}} {\mathrm {W}}}$. The expected 68% and 95% CL regions are shown as green and yellow bands. The observed intervals for 68% CL are shown as points with error bars, and the hatched areas indicate the excluded regions at 95% CL. The limits on $f_{a2,3}^{{\mathrm {Z}} \gamma,\gamma \gamma}$ are from Ref. [10], and the limits on $f_{\Lambda Q}$ are from Ref. [11].
References
1 S. L. Glashow Partial-symmetries of weak interactions NP 22 (1961) 579
2 F. Englert and R. Brout Broken Symmetry and the Mass of Gauge Vector Mesons PRL 13 (1964) 321
3 P. W. Higgs Broken symmetries, massless particles and gauge fields PL12 (1964) 132
4 P. W. Higgs Broken symmetries and the masses of gauge bosons PRL 13 (1964) 508
5 G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble Global conservation laws and massless particles PRL 13 (1964) 585
6 S. Weinberg A model of leptons PRL 19 (1967) 1264
7 A. Salam Weak and electromagnetic interactions in Elementary particle physics: relativistic groups and analyticity, N. Svartholm, ed., p. 367 Almqvist \& Wiksell, Stockholm, 1968 Proceedings of the eighth Nobel symposium
8 CMS Collaboration On the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs PRL 110 (2013) 081803 CMS-HIG-12-041
1212.6639
9 CMS Collaboration Measurement of the properties of a Higgs boson in the four-lepton final state PRD 89 (2014) 092007 CMS-HIG-13-002
1312.5353
10 CMS Collaboration Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV PRD 92 (2015) 012004 CMS-HIG-14-018
1411.3441
11 CMS Collaboration Limits on the Higgs boson lifetime and width from its decay to four charged leptons PRD 92 (2015) 072010 CMS-HIG-14-036
1507.06656
12 CMS Collaboration Combined search for anomalous pseudoscalar HVV couplings in VH(H $ \to \text{b}\bar{\text{b}} $) production and H $ \to $ VV decay PLB 759 (2016) 672 CMS-HIG-14-035
1602.04305
13 CMS Collaboration Constraints on anomalous Higgs boson couplings using production and decay information in the four-lepton final state PLB775 (2017) 1 CMS-HIG-17-011
1707.00541
14 CMS Collaboration Measurements of Higgs boson width and anomalous HVV couplings from on-shell and off-shell production in the four-lepton final state CDS
15 ATLAS Collaboration Evidence for the spin-0 nature of the Higgs boson using ATLAS data PLB 726 (2013) 120 1307.1432
16 ATLAS Collaboration Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector EPJC 75 (2015) 476 1506.05669
17 ATLAS Collaboration Test of CP invariance in vector-boson fusion production of the Higgs boson using the Optimal Observable method in the ditau decay channel with the ATLAS detector EPJC 76 (2016) 658 1602.04516
18 ATLAS Collaboration Measurement of inclusive and differential cross sections in the $ H \rightarrow ZZ^* \rightarrow 4\ell $ decay channel in $ pp $ collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector JHEP 10 (2017) 132 1708.02810
19 ATLAS Collaboration Measurement of the Higgs boson coupling properties in the $ H\rightarrow ZZ^{*} \rightarrow 4\ell $ decay channel at $ \sqrt{s} = $ 13 TeV with the ATLAS detector JHEP 03 (2018) 095 1712.02304
20 ATLAS Collaboration Measurements of Higgs boson properties in the diphoton decay channel with 36 fb$ ^{-1} $ of $ pp $ collision data at $ \sqrt{s} = $ 13 TeV with the ATLAS detector PRD98 (2018) 052005 1802.04146
21 CMS Collaboration Observation of the Higgs boson decay to a pair of $ \tau $ leptons with the CMS detector Submitted to PLB CMS-HIG-16-043
1708.00373
22 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
23 CMS Collaboration Particle-flow reconstruction and global event description with the cms detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
24 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisons at $ \sqrt{s} = $ ~13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
25 CMS Collaboration Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P06005 CMS-EGM-13-001
1502.02701
26 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
27 M. Cacciari, G. P. Salam Dispelling the $ N^{3} $ myth for the $ k_t $ jet-finder PLB 641 (2006) 57 hep-ph/0512210
28 CMS Collaboration Reconstruction and identification of $ \tau $ lepton decays to hadrons and $ \nu_\tau $ at CMS JINST 11 (2016) P01019 CMS-TAU-14-001
1510.07488
29 CMS Collaboration Performance of reconstruction and identification of $ \tau $ leptons decaying to hardons and $ \nu_{\tau} $ in pp collisions at $ \sqrt{s} = $ 13 TeV CMS-TAU-16-003
1809.02816
30 H. Voss, A. Hocker, J. Stelzer, and F. Tegenfeldt TMVA, the toolkit for multivariate data analysis with ROOT in XI Int. Workshop on Advanced Computing and Analysis Techniques in Physics Research 2007 physics/0703039
31 CMS Collaboration Performance of missing transverse momentum in pp collisions at $ \sqrt{s} = $ 13 TeV using the CMS detector CDS
32 L. Bianchini, J. Conway, E. K. Friis, and C. Veelken Reconstruction of the Higgs mass in $ H \to \tau\tau $ Events by Dynamical Likelihood techniques J. Phys. Conf. Ser. 513 (2014) 022035
33 T. Plehn, D. L. Rainwater, and D. Zeppenfeld Determining the structure of Higgs couplings at the LHC PRL 88 (2002) 051801 hep-ph/0105325
34 V. Hankele, G. Klamke, D. Zeppenfeld, and T. Figy Anomalous Higgs boson couplings in vector boson fusion at the CERN LHC PRD 74 (2006) 095001 hep-ph/0609075
35 E. Accomando et al. Workshop on CP Studies and Non-Standard Higgs Physics hep-ph/0608079
36 K. Hagiwara, Q. Li, and K. Mawatari Jet angular correlation in vector-boson fusion processes at hadron colliders JHEP 07 (2009) 101 0905.4314
37 Y. Gao et al. Spin determination of single-produced resonances at hadron colliders PRD 81 (2010) 075022 1001.3396
38 A. De R\' ujula et al. Higgs look-alikes at the LHC PRD 82 (2010) 013003 1001.5300
39 S. Bolognesi et al. Spin and parity of a single-produced resonance at the LHC PRD 86 (2012) 095031 1208.4018
40 J. Ellis, D. S. Hwang, V. Sanz, and T. You A fast track towards the `Higgs' spin and parity JHEP 11 (2012) 134 1208.6002
41 P. Artoisenet et al. A framework for Higgs characterisation JHEP 11 (2013) 043 1306.6464
42 I. Anderson et al. Constraining anomalous HVV interactions at proton and lepton colliders PRD 89 (2014) 035007 1309.4819
43 M. J. Dolan, P. Harris, M. Jankowiak, and M. Spannowsky Constraining $ CP $-violating Higgs Sectors at the LHC using gluon fusion PRD90 (2014) 073008 1406.3322
44 A. Greljo, G. Isidori, J. M. Lindert, and D. Marzocca Pseudo-observables in electroweak Higgs production EPJC 76 (2016) 158 1512.06135
45 A. V. Gritsan, R. Rontsch, M. Schulze, and M. Xiao Constraining anomalous Higgs boson couplings to the heavy flavor fermions using matrix element techniques PRD 94 (2016) 055023 1606.03107
46 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with Parton Shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
47 E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM JHEP 02 (2012) 088 1111.2854
48 P. Nason and C. Oleari NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG JHEP 02 (2010) 037 0911.5299
49 G. Luisoni, P. Nason, C. Oleari, and F. Tramontano $ HW^{\pm} $/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO JHEP 10 (2013) 083 1306.2542
50 T. Sjostrand et al. An introduction to PYTHIA 8.2 CPC 191 (2015) 159 1410.3012
51 NNPDF Collaboration Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO NPB 855 (2012) 153 1107.2652
52 GEANT4 Collaboration GEANT4---a simulation toolkit NIMA 506 (2003) 250
53 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
54 S. S. Wilks The large-sample distribution of the likelihood ratio for testing composite hypotheses Ann. Math. Stat. 9 (1938) 60
Compact Muon Solenoid
LHC, CERN