CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIG-24-018 ; CERN-EP-2025-202
Simultaneous probe of the charm and bottom quark Yukawa couplings using $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $ events
Accepted for publication in Phys. Rev. Lett.
Abstract: A search for the standard model Higgs boson decaying to a charm quark-antiquark pair, $ \mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}} $, produced in association with a top quark-antiquark pair ($ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $) is presented. The search is performed with data from proton-proton collisions at $ \sqrt{s}= $ 13 TeV, corresponding to an integrated luminosity of 138 fb$ ^{-1} $. Advanced machine learning techniques are employed for jet flavor identification and event classification. The Higgs boson decay to a bottom quark-antiquark pair is measured simultaneously and the observed $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}}) $ event rate relative to the standard model expectation is 0.91$^{+0.26}_{-0.22}$. The observed (expected) upper limit on the product of production cross section and branching fraction $ \sigma({\mathrm{t}\overline{\mathrm{t}}} \mathrm{H})\mathcal{B}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}}) $ is 0.11 (0.13$^{+0.06}_{-0.04}$) pb at 95% confidence level, corresponding to 7.8 (8.7$^{+4.0}_{-2.6}$) times the standard model prediction. When combined with the previous search for $ \mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}} $ via associated production with a W or Z boson, the observed (expected) 95% confidence interval on the Higgs-charm Yukawa coupling modifier, $ \kappa_{\mathrm{c}} $, is $ |\kappa_{\mathrm{c}}| < $ 3.5 (2.7), the most stringent constraint to date.
Figures & Tables Summary Additional Figures References CMS Publications
Figures

png pdf
Figure 1:
Distribution of b, c, and light jets in the two-dimensional PARTICLENET discriminant plane. The vertical and horizontal lines correspond to the edges of the tagging categories. The numbers in each bin correspond to the tagging efficiencies for b (red), c (blue), and light (yellow) jets, evaluated on a sample of simulated $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}}) $ events. The contour lines represent constant density values for each jet type in steps of 5%.

png pdf
Figure 2:
Observed and expected event yields from all SRs and CRs as a function of $ \log_{10}(S/B) $, where $ S $ are the expected $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}}) $ (left) and $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}}) $ (right) yields, and $ B $ are the post-fit total background yields. Signal contributions are shown for the best fit signal strength (red) and for the SM prediction, $ \mu= $ 1 (orange). The lower panel shows the ratio of the data to the post-fit background predictions, compared to the signal-plus-background predictions.

png pdf
Figure 2-a:
Observed and expected event yields from all SRs and CRs as a function of $ \log_{10}(S/B) $, where $ S $ are the expected $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}}) $ (left) and $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}}) $ (right) yields, and $ B $ are the post-fit total background yields. Signal contributions are shown for the best fit signal strength (red) and for the SM prediction, $ \mu= $ 1 (orange). The lower panel shows the ratio of the data to the post-fit background predictions, compared to the signal-plus-background predictions.

png pdf
Figure 2-b:
Observed and expected event yields from all SRs and CRs as a function of $ \log_{10}(S/B) $, where $ S $ are the expected $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}}) $ (left) and $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}}) $ (right) yields, and $ B $ are the post-fit total background yields. Signal contributions are shown for the best fit signal strength (red) and for the SM prediction, $ \mu= $ 1 (orange). The lower panel shows the ratio of the data to the post-fit background predictions, compared to the signal-plus-background predictions.

png pdf
Figure 3:
The 95% CL upper limits on $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $. The yellow and blue bands indicate the expected 68% and 95% CL regions, respectively, under the background-only hypothesis. The vertical red line indicates the SM value $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})}= $ 1.

png pdf
Figure 4:
Constraints on the Higgs boson coupling modifiers $ \kappa_{\mathrm{c}} $ and $ \kappa_{\mathrm{b}} $. The 68% (95%) CL intervals are indicated by the dashed (solid) lines. The observed (expected) best fit values are shown by the orange (blue) markers.

png pdf
Figure 5:
Event categorization flowchart.

png pdf
Figure 6:
Distributions of the PART discriminants in data (points) and predicted signal and backgrounds (colored histograms) after the fit to data. The vertical bars on the points represent the statistical uncertainties in data. The hatched band represents the total uncertainty in the sum of the signal and background predictions. The lower panel shows the ratio of the data to the sum of the signal and background predictions.

png pdf
Figure B1:
Rejection factors for the subdominant jet flavors in each of the tagging bins. The filled bars represent the rejection factors achieved with the PARTICLENET tagger and the corresponding working point definitions. The black bars represent the rejection factors achieved with the DEEPJET tagger with working points mimicking the dominant flavor tagging efficiencies. Each bin is labeled with the relative improvement of the PARTICLENET tagger compared to the DEEPJET tagger. All rejection factors and tagging efficiencies are evaluated using simulated $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}}) $ events with 2018 detector conditions.

png pdf
Figure B2:
Confusion matrices of the PART event classifier in the $ \text{0L} $ (upper), $ \text{1L} $ (lower left), and $ \text{2L} $ (lower right) channels after the baseline selection. For each event, the predicted label is the process with the highest output discriminant. The event yield fractions are normalized per true label such that each row sums up to unity.

png pdf
Figure B2-a:
Confusion matrices of the PART event classifier in the $ \text{0L} $ (upper), $ \text{1L} $ (lower left), and $ \text{2L} $ (lower right) channels after the baseline selection. For each event, the predicted label is the process with the highest output discriminant. The event yield fractions are normalized per true label such that each row sums up to unity.

png pdf
Figure B2-b:
Confusion matrices of the PART event classifier in the $ \text{0L} $ (upper), $ \text{1L} $ (lower left), and $ \text{2L} $ (lower right) channels after the baseline selection. For each event, the predicted label is the process with the highest output discriminant. The event yield fractions are normalized per true label such that each row sums up to unity.

png pdf
Figure B2-c:
Confusion matrices of the PART event classifier in the $ \text{0L} $ (upper), $ \text{1L} $ (lower left), and $ \text{2L} $ (lower right) channels after the baseline selection. For each event, the predicted label is the process with the highest output discriminant. The event yield fractions are normalized per true label such that each row sums up to unity.

png pdf
Figure B3:
Distribution of the PART $\mathcal{D}_ \text{QCD} $ discriminant used in the $ \text{0L} $ channel to remove the $ \text{QCD} $ background. The gray area indicates the region that is rejected in the analysis. The shaded band indicates the uncertainty in the $ \text{QCD} $ prediction due to limited size of simulated $ \text{QCD} $ multijet samples. All contributions are normalized to unity.

png pdf
Figure B4:
Distribution of the PART $\mathcal{D}_ {{\mathrm{t}\overline{\mathrm{t}}} {+}\text{light}} $ discriminant used to reduce the $ {{\mathrm{t}\overline{\mathrm{t}}} {+}\text{light}} $ background in the $ \text{2L} $ channel. The gray area indicates the region that is rejected in the analysis. All contributions are normalized to unity. The last bin includes the overflow.

png pdf
Figure B5:
Distribution of the PART $\mathcal{D}_{ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{X} } $ discriminant used to define the different regions in the $ \text{1L} $ channel. The purple (yellow) area indicates the region that is used for the validation (analysis). The dashed line indicates the separation of SRs and CRs in the analysis. All contributions are normalized to unity.

png pdf
Figure B6:
Distributions of the PART discriminants in data (points) and predicted signal and backgrounds (colored histograms) after the maximum likelihood fit to data in the VR, defined by 0.4 $ < \score{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{X}} < $ 0.6. The vertical bars on the points represent the statistical uncertainties in data. The hatched band represents the total uncertainty in the sum of the signal and background predictions. The lower panel shows the ratio of the data to the sum of the signal and background predictions. The ratio of the pre-fit expectation to the sum of the signal and background predictions after the fit is shown as a red line in the lower panel, including the pre-fit uncertainties as a shaded band.

png pdf
Figure B7:
Distributions of the PART discriminants in data (points) and predicted signal and backgrounds (colored histograms) after the maximum likelihood fit to data. The vertical bars on the points represent the statistical uncertainties in data. The hatched band represents the total uncertainty in the sum of the signal and background predictions. The lower panel shows the ratio of the data to the sum of the signal and background predictions. The ratio of the pre-fit expectation to the sum of the signal and background predictions after the fit is shown as a red line in the lower panel, including the pre-fit uncertainties as a shaded band.

png pdf
Figure B8:
On the left, observed and expected event yields from all SRs and CRs as a function of $ \log_{10}(S/B) $, where $ S $ are the observed $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}}) $ yields, and $ B $ are the total background yields in the combined fit to data. The signals are shown for the best fit signal strength (red), and the SM prediction, $ \mu= $ 1 (orange). The lower panel shows the ratio of the data to the post-fit background prediction, compared to the signal-plus-background predictions. On the right, fit results of $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}})} $ in the combination of channels (first row) and the channels individually (lower rows). The left panel shows the observed signal strength, compared to the expected results. The right panel shows the expected and observed significance.

png pdf
Figure B8-a:
On the left, observed and expected event yields from all SRs and CRs as a function of $ \log_{10}(S/B) $, where $ S $ are the observed $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}}) $ yields, and $ B $ are the total background yields in the combined fit to data. The signals are shown for the best fit signal strength (red), and the SM prediction, $ \mu= $ 1 (orange). The lower panel shows the ratio of the data to the post-fit background prediction, compared to the signal-plus-background predictions. On the right, fit results of $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}})} $ in the combination of channels (first row) and the channels individually (lower rows). The left panel shows the observed signal strength, compared to the expected results. The right panel shows the expected and observed significance.

png pdf
Figure B8-b:
On the left, observed and expected event yields from all SRs and CRs as a function of $ \log_{10}(S/B) $, where $ S $ are the observed $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}}) $ yields, and $ B $ are the total background yields in the combined fit to data. The signals are shown for the best fit signal strength (red), and the SM prediction, $ \mu= $ 1 (orange). The lower panel shows the ratio of the data to the post-fit background prediction, compared to the signal-plus-background predictions. On the right, fit results of $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}})} $ in the combination of channels (first row) and the channels individually (lower rows). The left panel shows the observed signal strength, compared to the expected results. The right panel shows the expected and observed significance.

png pdf
Figure B9:
On the left, observed and expected event yields from all SRs and CRs as a function of $ \log_{10}(S/B) $, where $ S $ are the observed $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}}) $ yields, and $ B $ are the total background yields in the combined fit to data. The signals are shown for the best fit signal strength (red), and the SM prediction, $ \mu = $ 1 (orange). The lower panel shows the ratio of the data to the post-fit background prediction, compared to the signal-plus-background predictions. On the right, fit results of $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}})} $ in the combination of channels (first row) and the channels individually (lower rows). The left panel shows the observed signal strength, compared to the expected results. The right panel shows the expected and observed significance.

png pdf
Figure B9-a:
On the left, observed and expected event yields from all SRs and CRs as a function of $ \log_{10}(S/B) $, where $ S $ are the observed $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}}) $ yields, and $ B $ are the total background yields in the combined fit to data. The signals are shown for the best fit signal strength (red), and the SM prediction, $ \mu = $ 1 (orange). The lower panel shows the ratio of the data to the post-fit background prediction, compared to the signal-plus-background predictions. On the right, fit results of $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}})} $ in the combination of channels (first row) and the channels individually (lower rows). The left panel shows the observed signal strength, compared to the expected results. The right panel shows the expected and observed significance.

png pdf
Figure B9-b:
On the left, observed and expected event yields from all SRs and CRs as a function of $ \log_{10}(S/B) $, where $ S $ are the observed $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}}) $ yields, and $ B $ are the total background yields in the combined fit to data. The signals are shown for the best fit signal strength (red), and the SM prediction, $ \mu = $ 1 (orange). The lower panel shows the ratio of the data to the post-fit background prediction, compared to the signal-plus-background predictions. On the right, fit results of $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}})} $ in the combination of channels (first row) and the channels individually (lower rows). The left panel shows the observed signal strength, compared to the expected results. The right panel shows the expected and observed significance.

png pdf
Figure B10:
Fit results of $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $. The left panel shows the observed signal strength, compared to the expected results. The right panel shows the expected and observed significance.

png pdf
Figure B11:
Likelihood scans of $ \kappa_{\mathrm{c}} $ with fixed $ \kappa_{\mathrm{b}}= $ 1 (red) and floating $ \kappa_{\mathrm{b}} $ (blue). The 68% and 95% CL intervals are indicated by the horizontal dotted lines.

png pdf
Figure B12:
The 95% CL upper limits on $ \mu_{\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}}} $. The blue and yellow bands indicate the expected 68% and 95% CL regions, respectively, under the background-only hypothesis. The vertical red line indicates the SM value $ \mu_{\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}}}= $ 1.

png pdf
Figure B13:
Likelihood scans of $ \kappa_{\mathrm{c}} $ with fixed $ \kappa_{\mathrm{b}}= $ 1 in the individual $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $ (red) and VH (blue) channels and their combination (black). The 68% and 95% CL intervals are indicated by the horizontal dotted lines.

png pdf
Figure B14:
Likelihood scans for the simultaneous fit of $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (upper left), $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (upper right), $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}})} $ (lower left), and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (lower right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best fit values are shown by the orange (blue) markers.

png pdf
Figure B14-a:
Likelihood scans for the simultaneous fit of $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (upper left), $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (upper right), $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}})} $ (lower left), and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (lower right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best fit values are shown by the orange (blue) markers.

png pdf
Figure B14-b:
Likelihood scans for the simultaneous fit of $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (upper left), $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (upper right), $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}})} $ (lower left), and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (lower right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best fit values are shown by the orange (blue) markers.

png pdf
Figure B14-c:
Likelihood scans for the simultaneous fit of $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (upper left), $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (upper right), $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}})} $ (lower left), and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (lower right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best fit values are shown by the orange (blue) markers.

png pdf
Figure B14-d:
Likelihood scans for the simultaneous fit of $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (upper left), $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (upper right), $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}})} $ (lower left), and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (lower right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best fit values are shown by the orange (blue) markers.

png pdf
Figure B15:
Likelihood scans for the simultaneous fit of $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and the $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{b} $ scale factor (upper left), $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and the $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{b} $ scale factor (upper right), $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and the $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{c} $ scale factor (lower left), and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and the $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{c} $ scale factor (lower right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best fit values are shown by the orange (blue) markers.

png pdf
Figure B15-a:
Likelihood scans for the simultaneous fit of $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and the $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{b} $ scale factor (upper left), $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and the $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{b} $ scale factor (upper right), $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and the $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{c} $ scale factor (lower left), and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and the $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{c} $ scale factor (lower right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best fit values are shown by the orange (blue) markers.

png pdf
Figure B15-b:
Likelihood scans for the simultaneous fit of $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and the $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{b} $ scale factor (upper left), $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and the $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{b} $ scale factor (upper right), $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and the $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{c} $ scale factor (lower left), and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and the $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{c} $ scale factor (lower right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best fit values are shown by the orange (blue) markers.

png pdf
Figure B15-c:
Likelihood scans for the simultaneous fit of $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and the $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{b} $ scale factor (upper left), $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and the $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{b} $ scale factor (upper right), $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and the $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{c} $ scale factor (lower left), and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and the $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{c} $ scale factor (lower right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best fit values are shown by the orange (blue) markers.

png pdf
Figure B15-d:
Likelihood scans for the simultaneous fit of $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and the $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{b} $ scale factor (upper left), $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and the $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{b} $ scale factor (upper right), $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and the $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{c} $ scale factor (lower left), and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and the $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{c} $ scale factor (lower right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best fit values are shown by the orange (blue) markers.

png pdf
Figure B16:
Likelihood scans for the simultaneous fit of the $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{b} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{b} $ scale factors (left), and of the $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{c} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{c} $ scale factors (right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best fit values are shown by the orange (blue) markers.

png pdf
Figure B16-a:
Likelihood scans for the simultaneous fit of the $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{b} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{b} $ scale factors (left), and of the $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{c} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{c} $ scale factors (right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best fit values are shown by the orange (blue) markers.

png pdf
Figure B16-b:
Likelihood scans for the simultaneous fit of the $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{b} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{b} $ scale factors (left), and of the $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{c} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{c} $ scale factors (right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best fit values are shown by the orange (blue) markers.
Tables

png pdf
Table 1:
Best fit values of the $ {\mathrm{t}\overline{\mathrm{t}}} {+}\text{jets} $ background normalization factors for each analysis category (Cat.).

png pdf
Table 2:
The absolute (relative) contributions to the total uncertainties, $ \Delta\mu $ ($ \Delta\mu/\Delta\mu_{\text{tot}} $).

png pdf
Table B1:
Generator settings for signal and major background samples. The ``Groups'' column refers to the grouping of processes in the maximum likelihood fits. Here, $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\text{Other}) $ and $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\text{Other}) $ refer to all Higgs boson and Z boson decay channels other than those to b and c quark pairs.

png pdf
Table B2:
Generator settings for minor background samples. The ``Group'' column refers to the grouping of processes in the maximum likelihood fits.

png pdf
Table B3:
Summary of generator settings used for the $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{b}\overline{\mathrm{b}} $ and inclusive $ \mathrm{t} \overline{\mathrm{t}} $ samples. The transverse mass is defined as $ m_{\mathrm{T}}=\sqrt{\smash[b]{m^2 + p_{\mathrm{T}}^2}} $.

png pdf
Table B4:
Baseline selection criteria in the $ \text{0L} $, $ \text{1L} $, and $ \text{2L} $ channels. Where the selection criteria differ per year, they are quoted as 2016/2017/2018.

png pdf
Table B5:
Definition of the PART event classifier discriminant for each category in the maximum likelihood fit.

png pdf
Table B6:
Event yields in the $ \text{2L} $ channel. Values in brackets correspond to the pre-fit expectations.

png pdf
Table B7:
Event yields in the $ \text{1L} $ channel. Values in brackets correspond to the pre-fit expectations.

png pdf
Table B8:
Event yields in the $ \text{0L} $ channel. Values in brackets correspond to the pre-fit expectations.

png pdf
Table B9:
Event yields in the full analysis, separated in the SRs and CRs. Values in brackets correspond to the pre-fit expectations.

png pdf
Table B10:
Event yields in the full analysis, separated per lepton channel. Values in brackets correspond to the pre-fit expectations.

png pdf
Table B11:
Summary of the systematic uncertainty sources in the measurement. The first column lists the source of the uncertainty. The second (third) column indicates the treatment of correlations of the uncertainties between different data-taking periods (processes), where $ \checkmark $ means fully correlated, $ \sim $ means partially correlated (i.e.,, contains sub-sources that are either fully correlated or uncorrelated), and $ \times $ means uncorrelated. The last column indicates whether the uncertainties are applied to all processes or only a subset.

png pdf
Table B12:
Observed signal strengths for $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}}) $, $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}}) $, $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}}) $, and $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}}) $ as obtained by the fits using alternative background models. In brackets are the observed upper limits for $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}}) $ and the significance values for $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}}) $, $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}}) $, and $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}}) $, respectively.

png pdf
Table B13:
Observed normalization scale factors for the background components as obtained by the fits using alternative background models. The background normalization scale factors are given for the $ \text{2L} $ & $ \text{1L} $ ($ \text{0L} $) channels.
Summary
In summary, a search for the SM Higgs boson decaying to a charm quark-antiquark pair via $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $ production is presented, alongside a simultaneous measurement of the Higgs boson decay to a bottom quark-antiquark pair. Novel jet flavor identification tools and event classification techniques using advanced machine learning algorithms are developed for this analysis. The observed $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $ signals relative to the SM predictions are $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})}=- $1.6 $ \pm $ 4.5 and $ \mu_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})}=$ 0.91$^{+0.26}_{-0.22} $, with an observed (expected) significance of 4.4 (4.5) standard deviations for the $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}}) $ process. The observed (expected) upper limit on $ \sigma({\mathrm{t}\overline{\mathrm{t}}} \mathrm{H})\mathcal{B}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}}) $ is 0.11 (0.13$^{+0.06}_{-0.04}$) pb, corresponding to 7.8 (8.7$^{+4.0}_{-2.6}$) times the theoretical prediction for an SM Higgs boson mass of 125.38 GeV. When combined with the previous search for $ \mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}} $ via associated production with a W or Z boson, the observed (expected) 95% CL interval on the charm quark Yukawa coupling modifier, $ \kappa_{\mathrm{c}} $, is $ |\kappa_{\mathrm{c}}| < $ 3.5 (2.7). This represents the most stringent constraint on $ \kappa_{\mathrm{c}} $ to date.
Additional Figures

png pdf
Additional Figure 1:
The nuisance-parameter uncertainties and impacts $ \Delta\hat{\mu}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ on the signal strength $ \mu_{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ from the fit to the data, ordered by their relative summed impact. Only the 30 highest ranked parameters are shown. Each row gives the name of the nuisance parameter, the difference in its maximum likelihood estimate ($ \hat{\theta} $, black points) with respect to its default value $ \theta_{0} $ relative to its uncertainty $ \Delta\theta $, and the impact with respect to the signal strength parameter $ \Delta\hat{\mu}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $. The nuisance parameter constraints and impacts are calculated using the observed data set. The red and blue shaded boxes in each row represent the positive impact $ \Delta\hat{\mu}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})}^{+} $ and negative impact $ \Delta\hat{\mu}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})}^{-} $, respectively, for the observed data. The error bars on the fit constraint values indicate the ratio of $ \Delta^{+}\theta $ or $ \Delta^{-}\theta $, to their default values. The numerical values displayed in the figure give the value of $ \hat{\theta}^{+\Delta^{+}\theta}_{-\Delta^{-}\theta} $ for the nuisance parameters associated with the $ {\mathrm{t}\overline{\mathrm{t}}} {+}\text{jets} $ normalization, which do not have well-defined default uncertainty values. The blue points show the pull ($ (\hat{\theta}-\theta_{0})\sqrt{(\Delta\theta)^2-(\Delta\theta_0)^2} $) of the nuisance parameters.

png pdf
Additional Figure 2:
The nuisance-parameter uncertainties and impacts $ \Delta\hat{\mu}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ on the signal strength $ {\mu}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ from the fit to the data, ordered by their relative summed impact. Only the 30 highest ranked parameters are shown. Each row gives the name of the nuisance parameter, the difference in its maximum likelihood estimate ($ \hat{\theta} $, black points) with respect to its default value $ \theta_{0} $ relative to its uncertainty $ \Delta\theta $, and the impact with respect to the signal strength parameter $ \Delta\hat{\mu}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $. The nuisance parameter constraints and impacts are calculated using the observed data set. The red and blue shaded boxes in each row represent the positive impact $ \Delta\hat{\mu}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})}^{+} $ and negative impact $ \Delta\hat{\mu}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})}^{-} $, respectively, for the observed data. The error bars on the fit constraint values indicate the ratio of $ \Delta^{+}\theta $ or $ \Delta^{-}\theta $, to their default values. The numerical values displayed in the figure give the value of $ \hat{\theta}^{+\Delta^{+}\theta}_{-\Delta^{-}\theta} $ for the nuisance parameters associated with the $ {\mathrm{t}\overline{\mathrm{t}}} {+}\text{jets} $ normalization, which do not have well-defined default uncertainty values. The blue points show the pull ($ (\hat{\theta}-\theta_{0})\sqrt{(\Delta\theta)^2-(\Delta\theta_0)^2} $) of the nuisance parameters.

png pdf
Additional Figure 3:
Distributions of the $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}}) $ Particle Transformer discriminants in data (points) and predicted signal and backgrounds (colored histograms) after the fit to data. The vertical bars on the points represent the statistical uncertainties in data. The hatched band represents the total uncertainty in the sum of the signal and background predictions. The lower panel shows the ratio of the data to the sum of the signal and background predictions.

png pdf
Additional Figure 4:
Distributions of the $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}}) $ Particle Transformer discriminants in data (points) and predicted signal and backgrounds (colored histograms) after the fit to data. The vertical bars on the points represent the statistical uncertainties in data. The hatched band represents the total uncertainty in the sum of the signal and background predictions. The lower panel shows the ratio of the data to the sum of the signal and background predictions.

png pdf
Additional Figure 5:
Distributions of the $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}}) $ Particle Transformer discriminants in data (points) and predicted signal and backgrounds (colored histograms) after the fit to data. The vertical bars on the points represent the statistical uncertainties in data. The hatched band represents the total uncertainty in the sum of the signal and background predictions. The lower panel shows the ratio of the data to the sum of the signal and background predictions.

png pdf
Additional Figure 6:
Distributions of the $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}}) $ Particle Transformer discriminants in data (points) and predicted signal and backgrounds (colored histograms) after the fit to data. The vertical bars on the points represent the statistical uncertainties in data. The hatched band represents the total uncertainty in the sum of the signal and background predictions. The lower panel shows the ratio of the data to the sum of the signal and background predictions.

png pdf
Additional Figure 7:
Distributions of the $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{c} $ Particle Transformer discriminants in data (points) and predicted signal and backgrounds (colored histograms) after the fit to data. The vertical bars on the points represent the statistical uncertainties in data. The hatched band represents the total uncertainty in the sum of the signal and background predictions. The lower panel shows the ratio of the data to the sum of the signal and background predictions.

png pdf
Additional Figure 8:
Distributions of the $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{c} $ Particle Transformer discriminants in data (points) and predicted signal and backgrounds (colored histograms) after the fit to data. The vertical bars on the points represent the statistical uncertainties in data. The hatched band represents the total uncertainty in the sum of the signal and background predictions. The lower panel shows the ratio of the data to the sum of the signal and background predictions.

png pdf
Additional Figure 9:
Distributions of the $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{b} $ Particle Transformer discriminants in data (points) and predicted signal and backgrounds (colored histograms) after the fit to data. The vertical bars on the points represent the statistical uncertainties in data. The hatched band represents the total uncertainty in the sum of the signal and background predictions. The lower panel shows the ratio of the data to the sum of the signal and background predictions.

png pdf
Additional Figure 10:
Distributions of the $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{b} $ Particle Transformer discriminants in data (points) and predicted signal and backgrounds (colored histograms) after the fit to data. The vertical bars on the points represent the statistical uncertainties in data. The hatched band represents the total uncertainty in the sum of the signal and background predictions. The lower panel shows the ratio of the data to the sum of the signal and background predictions.

png pdf
Additional Figure 11:
Distributions of the $ {\mathrm{t}\overline{\mathrm{t}}} {+}\text{light} $ Particle Transformer discriminants in data (points) and predicted signal and backgrounds (colored histograms) after the fit to data. The vertical bars on the points represent the statistical uncertainties in data. The hatched band represents the total uncertainty in the sum of the signal and background predictions. The lower panel shows the ratio of the data to the sum of the signal and background predictions.

png pdf
Additional Figure 12:
The PARTICLENET jet identification scale factors (SFs) for c jets as a function of the jet $ p_{\mathrm{T}} $ for the first part of the 2016 data-taking period. The individual colored points represent the SFs for each of the 11 tagging categories. The gray arrows indicate SFs of unity with an uncertainty covering the range $ [0.3, 3] $ as described in the text.

png pdf
Additional Figure 13:
The PARTICLENET jet identification scale factors (SFs) for c jets as a function of the jet $ p_{\mathrm{T}} $ for the first part of the 2016 data-taking period. The individual colored points represent the SFs for each of the 11 tagging categories. The gray arrows indicate SFs of unity with an uncertainty covering the range $ [0.3, 3] $ as described in the text.

png pdf
Additional Figure 14:
The PARTICLENET jet identification scale factors (SFs) for c jets as a function of the jet $ p_{\mathrm{T}} $ for the first part of the 2016 data-taking period. The individual colored points represent the SFs for each of the 11 tagging categories. The gray arrows indicate SFs of unity with an uncertainty covering the range $ [0.3, 3] $ as described in the text.

png pdf
Additional Figure 15:
The PARTICLENET jet identification scale factors (SFs) for c jets as a function of the jet $ p_{\mathrm{T}} $ for the first part of the 2016 data-taking period. The individual colored points represent the SFs for each of the 11 tagging categories. The gray arrows indicate SFs of unity with an uncertainty covering the range $ [0.3, 3] $ as described in the text.

png pdf
Additional Figure 16:
The PARTICLENET jet identification scale factors (SFs) for b jets as a function of the jet $ p_{\mathrm{T}} $ for the first part of the 2016 data-taking period. The individual colored points represent the SFs for each of the 11 tagging categories. The gray arrows indicate SFs of unity with an uncertainty covering the range $ [0.3, 3] $ as described in the text.

png pdf
Additional Figure 17:
The PARTICLENET jet identification scale factors (SFs) for b jets as a function of the jet $ p_{\mathrm{T}} $ for the first part of the 2016 data-taking period. The individual colored points represent the SFs for each of the 11 tagging categories. The gray arrows indicate SFs of unity with an uncertainty covering the range $ [0.3, 3] $ as described in the text.

png pdf
Additional Figure 18:
The PARTICLENET jet identification scale factors (SFs) for b jets as a function of the jet $ p_{\mathrm{T}} $ for the first part of the 2016 data-taking period. The individual colored points represent the SFs for each of the 11 tagging categories. The gray arrows indicate SFs of unity with an uncertainty covering the range $ [0.3, 3] $ as described in the text.

png pdf
Additional Figure 19:
The PARTICLENET jet identification scale factors (SFs) for b jets as a function of the jet $ p_{\mathrm{T}} $ for the first part of the 2016 data-taking period. The individual colored points represent the SFs for each of the 11 tagging categories. The gray arrows indicate SFs of unity with an uncertainty covering the range $ [0.3, 3] $ as described in the text.

png pdf
Additional Figure 20:
The PARTICLENET jet identification scale factors (SFs) for light jets as a function of the jet $ p_{\mathrm{T}} $ for the first part of the 2016 data-taking period. The individual colored points represent the SFs for each of the 11 tagging categories. The gray arrows indicate SFs of unity with an uncertainty covering the range $ [0.3, 3] $ as described in the text.

png pdf
Additional Figure 21:
The PARTICLENET jet identification scale factors (SFs) for light jets as a function of the jet $ p_{\mathrm{T}} $ for the first part of the 2016 data-taking period. The individual colored points represent the SFs for each of the 11 tagging categories. The gray arrows indicate SFs of unity with an uncertainty covering the range $ [0.3, 3] $ as described in the text.

png pdf
Additional Figure 22:
The PARTICLENET jet identification scale factors (SFs) for light jets as a function of the jet $ p_{\mathrm{T}} $ for the first part of the 2016 data-taking period. The individual colored points represent the SFs for each of the 11 tagging categories. The gray arrows indicate SFs of unity with an uncertainty covering the range $ [0.3, 3] $ as described in the text.

png pdf
Additional Figure 23:
The PARTICLENET jet identification scale factors (SFs) for light jets as a function of the jet $ p_{\mathrm{T}} $ for the first part of the 2016 data-taking period. The individual colored points represent the SFs for each of the 11 tagging categories. The gray arrows indicate SFs of unity with an uncertainty covering the range $ [0.3, 3] $ as described in the text.
References
1 ATLAS Collaboration Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 CMS Collaboration A measurement of the Higgs boson mass in the diphoton decay channel PLB 805 (2020) 135425 CMS-HIG-19-004
2002.06398
5 ATLAS Collaboration Measurement of Higgs boson production in the diphoton decay channel in $ {\mathrm{p}\mathrm{p}} $ collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector PRD 90 (2014) 112015 1408.7084
6 CMS Collaboration Observation of the diphoton decay of the Higgs boson and measurement of its properties EPJC 74 (2014) 3076 CMS-HIG-13-001
1407.0558
7 ATLAS Collaboration Measurements of Higgs boson production and couplings in the four-lepton channel in $ {\mathrm{p}\mathrm{p}} $ collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector PRD 91 (2015) 012006 1408.5191
8 CMS Collaboration Measurement of the properties of a Higgs boson in the four-lepton final state PRD 89 (2014) 092007 CMS-HIG-13-002
1312.5353
9 ATLAS Collaboration Observation and measurement of Higgs boson decays to $ {\mathrm{W}\mathrm{W}^\ast} $ with the ATLAS detector PRD 92 (2015) 012006 1412.2641
10 ATLAS Collaboration Study of $ {(\mathrm{W}\!/\mathrm{Z})\mathrm{H}} $ production and Higgs boson couplings using $ {\mathrm{H}\to\mathrm{W}\mathrm{W}^\ast} $ decays with the ATLAS detector JHEP 08 (2015) 137 1506.06641
11 CMS Collaboration Measurement of Higgs boson production and properties in the $ {\mathrm{W}\mathrm{W}} $ decay channel with leptonic final states JHEP 01 (2014) 096 CMS-HIG-13-023
1312.1129
12 ATLAS Collaboration Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector JHEP 04 (2015) 117 1501.04943
13 CMS Collaboration Evidence for the 125 GeV Higgs boson decaying to a pair of $ \tau $ leptons JHEP 05 (2014) 104 CMS-HIG-13-004
1401.5041
14 CMS Collaboration Observation of the Higgs boson decay to a pair of $ \tau $ leptons PLB 779 (2018) 283 CMS-HIG-16-043
1708.00373
15 CMS Collaboration Measurements of properties of the Higgs boson decaying to a W boson pair in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s} = $ 13 TeV PLB 791 (2019) 96 CMS-HIG-16-042
1806.05246
16 ATLAS Collaboration Measurements of the Higgs boson production and decay rates and coupling strengths using $ {\mathrm{p}\mathrm{p}} $ collision data at $ \sqrt{s}= $ 7 and 8 TeV in the ATLAS experiment EPJC 76 (2016) 6 1507.04548
17 CMS Collaboration Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV EPJC 75 (2015) 212 CMS-HIG-14-009
1412.8662
18 CMS Collaboration Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs PRL 110 (2013) 081803 CMS-HIG-12-041
1212.6639
19 ATLAS Collaboration Evidence for the spin-0 nature of the Higgs boson using ATLAS data PLB 726 (2013) 120 1307.1432
20 ATLAS and CMS Collaborations Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC $ {\mathrm{p}\mathrm{p}} $ collision data at $ \sqrt{s}= $ 7 and 8 TeV JHEP 08 (2016) 045 1606.02266
21 ATLAS and CMS Collaborations Combined measurement of the Higgs boson mass in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 7 and 8 TeV with the ATLAS and CMS experiments PRL 114 (2015) 191803 1503.07589
22 CMS Collaboration Measurements of properties of the Higgs boson decaying into the four-lepton final state in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s} = $ 13 TeV JHEP 11 (2017) 047 CMS-HIG-16-041
1706.09936
23 ATLAS Collaboration Combined measurement of differential and total cross sections in the $ {\mathrm{H}\to\gamma\gamma} $ and the $ {\mathrm{H}\to\mathrm{Z}\mathrm{Z}^\ast\to4\ell} $ decay channels at $ \sqrt{s} = $ 13 TeV with the ATLAS detector PLB 786 (2018) 114 1805.10197
24 ATLAS Collaboration Measurement of the Higgs boson mass in the $ {\mathrm{H}\to\mathrm{Z}\mathrm{Z}^\ast\to4\ell} $ and $ {\mathrm{H}\to\gamma\gamma} $ channels with $ \sqrt{s} = $ 13 TeV $ {\mathrm{p}\mathrm{p}} $ collisions using the ATLAS detector PLB 784 (2018) 345 1806.00242
25 CMS Collaboration Search for the Higgs boson decaying to two muons in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PRL 122 (2019) 021801 CMS-HIG-17-019
1807.06325
26 ATLAS Collaboration Measurements of $ {\mathrm{W}\mathrm{H}} $ and $ {\mathrm{Z}\mathrm{H}} $ production with Higgs boson decays into bottom quarks and direct constraints on the charm Yukawa coupling in 13 TeV $ {\mathrm{p}\mathrm{p}} $ collisions with the ATLAS detector JHEP 04 (2025) 075 2410.19611
27 CMS Collaboration Search for Higgs boson decay to a charm quark-antiquark pair in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PRL 131 (2023) 061801 CMS-HIG-21-008
2205.05550
28 CMS Collaboration Search for boosted Higgs boson decay to a charm quark-antiquark pair in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PRL 131 (2023) 041801 CMS-HIG-21-012
2211.14181
29 ATLAS and CMS Collaborations Snowmass white paper contribution: Physics with the Phase-2 ATLAS and CMS detectors CMS Physics Analysis Summary, ATL-PHYS-PUB-2022-018, 2022
CMS-PAS-FTR-22-001
30 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
31 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2018
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
32 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2019
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
33 H. Qu and L. Gouskos Jet tagging via particle clouds PRD 101 (2020) 056019 1902.08570
34 H. Qu, C. Li, and S. Qian Particle transformer for jet tagging in Proc. 39th International Conference on Machine Learning (ICML ): Baltimore MD, USA, 2022
PMLR 162 (2022) 18281
2202.03772
35 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
36 CMS Collaboration Development of the CMS detector for the CERN LHC Run 3 JINST 19 (2024) P05064 CMS-PRF-21-001
2309.05466
37 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
38 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
39 CMS Collaboration Performance of the CMS high-level trigger during LHC Run 2 JINST 19 (2024) P11021 CMS-TRG-19-001
2410.17038
40 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) P05014 CMS-EGM-17-001
2012.06888
41 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
42 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
43 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
44 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
45 M. Cacciari, G. P. Salam, and G. Soyez FASTJET user manual EPJC 72 (2012) 1896 1111.6097
46 CMS Collaboration Jet energy scale and resolution in the CMS experiment in $ {\mathrm{p}\mathrm{p}} $ collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
47 CMS Collaboration Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s} = $ 13 TeV using the CMS detector JINST 14 (2019) P07004 CMS-JME-17-001
1903.06078
48 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
49 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
50 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG box JHEP 06 (2010) 043 1002.2581
51 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in $ {\mathrm{p}\mathrm{p}} $ collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
52 T. Ježo and P. Nason On the treatment of resonances in next-to-leading order calculations matched to a parton shower JHEP 12 (2015) 065 1509.09071
53 T. Ježo, J. M. Lindert, N. Moretti, and S. Pozzorini New NLOPS predictions for $ \mathrm{t} \overline{\mathrm{t}} $ +b-jet production at the LHC EPJC 78 (2018) 502 1802.00426
54 F. Buccioni et al. OpenLoops 2 EPJC 79 (2019) 866 1907.13071
55 S. Frixione, G. Ridolfi, and P. Nason A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction JHEP 09 (2007) 126 0707.3088
56 CMS Collaboration Inclusive and differential cross section measurements of $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{b}\overline{\mathrm{b}} $ production in the lepton+jets channel at $ \sqrt{s} = $ 13 TeV JHEP 05 (2024) 042 CMS-TOP-22-009
2309.14442
57 ATLAS Collaboration Measurement of $ \mathrm{t} \overline{\mathrm{t}} $ production in association with additional b-jets in the $ {\mathrm{e}\mu} $ final state in proton-proton collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector JHEP 01 (2025) 068 2407.13473
58 CMS Collaboration First measurement of the cross section for top quark pair production with additional charm jets using dileptonic final states in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s} = $ 13 TeV PLB 820 (2021) 136565 CMS-TOP-20-003
2012.09225
59 ATLAS Collaboration Measurement of top-quark pair production in association with charm quarks in proton-proton collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector PLB 860 (2024) 139177 2409.11305
60 E. Re Single-top $ {\mathrm{W}\mathrm{t}} $-channel production matched with parton showers using the POWHEG method EPJC 71 (2011) 1547 1009.2450
61 R. Frederix, E. Re, and P. Torrielli Single-top $ t $-channel hadroproduction in the four-flavors scheme with POWHEG and aMC@NLO JHEP 09 (2012) 130 1207.5391
62 S. Alioli, P. Nason, C. Oleari, and E. Re NLO single-top production matched with shower in POWHEG: $ s $- and $ t $-channel contributions JHEP 09 (2009) 111 0907.4076
63 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
64 M. Czakon and A. Mitov top++: a program for the calculation of the top-pair cross-section at hadron colliders Comput. Phys. Commun. 185 (2014) 2930 1112.5675
65 N. Kidonakis Top quark production in Proc. Helmholtz International Summer School on Physics of Heavy Quarks and Hadrons (HQ 2013): Dubna, Russia, 2013 [DESY-PROC-2013-03]
link
1311.0283
66 M. Czakon et al. Top-pair production at the LHC through NNLO QCD and NLO EW JHEP 10 (2017) 186 1705.04105
67 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
68 J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions EPJC 53 (2008) 473 0706.2569
69 NNPDF Collaboration Parton distributions for the LHC run II JHEP 04 (2015) 040 1410.8849
70 T. Sjostrand et al. An introduction to PYTHIA8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
71 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
72 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
73 CMS Collaboration Supplemental Material: More details on simulated samples, jet flavor identification, baseline event selection, neural network event classifier, systematic uncertainties, validation of the background model, and additional results URL will be inserted by publisher
74 Y. Wang et al. Dynamic graph CNN for learning on point clouds ACM Trans. Graph. 38 (2018) 146 1801.07829
75 E. Bols et al. Jet flavour classification using DeepJet JINST 15 (2020) P12012 2008.10519
76 CMS Collaboration The CMS statistical analysis and combination tool: combine Comput. Softw. Big Sci. 8 (2024) 19 CMS-CAT-23-001
2404.06614
77 W. Verkerke and D. Kirkby The RooFit toolkit for data modeling in Proc. 13th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2003): La Jolla CA, United States, 2003 [eConf C0303241 (2003) MOLT007]
link
physics/0306116
78 L. Moneta et al. The RooStats project in Proc. 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2010): Jaipur, India, 2010 [PoS (ACAT2010) 057]
link
1009.1003
79 CMS Collaboration Measurement of top quark pair production in association with a Z boson in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 03 (2020) 056 CMS-TOP-18-009
1907.11270
80 CMS Collaboration Measurements of inclusive and differential cross sections for top quark production in association with a Z boson in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 02 (2025) 177 CMS-TOP-23-004
2410.23475
81 ATLAS Collaboration Inclusive and differential cross-section measurements of $ {{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}} $ production in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector, including EFT and spin-correlation interpretations JHEP 07 (2024) 163 2312.04450
82 ATLAS and CMS Collaborations, and LHC Higgs Combination Group Procedure for the LHC Higgs boson search combination in Summer 2011 Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011
83 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
84 CMS Collaboration Measurement of the $ {{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}} $ and $ {\mathrm{t}\mathrm{H}} $ production rates in the $ {\mathrm{H}\to\mathrm{b}\overline{\mathrm{b}}} $ decay channel using proton-proton collision data at $ \sqrt{s} = $ 13 TeV JHEP 02 (2025) 097 CMS-HIG-19-011
2407.10896
85 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435 hep-ex/9902006
86 A. L. Read Presentation of search results: The $ \text{CL}_\text{s} $ technique JPG 28 (2002) 2693
87 CMS Collaboration HEPData record for this analysis link
88 LHC Higgs Cross Section Working Group, S. Heinemeyer et al. Handbook of LHC Higgs cross sections: 3. Higgs properties CERN Report CERN-2013-004, 2013
link
1307.1347
89 LHC Higgs Cross Section Working Group, D. de Florian et al. Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector CERN Report CERN-2017-002-M, 2016
link
1610.07922
90 CMS Collaboration CMS data availability statement link
91 ATLAS Collaboration Study of the hard double-parton scattering contribution to inclusive four-lepton production in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 8 TeV with the ATLAS detector PLB 790 (2019) 595 1811.11094
92 P. Artoisenet, R. Frederix, O. Mattelaer, and R. Rietkerk Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations JHEP 03 (2013) 015 1212.3460
93 CMS Collaboration Pileup mitigation at CMS in 13 TeV data JINST 15 (2020) P09018 CMS-JME-18-001
2003.00503
94 A. Kulesza et al. Associated top quark pair production with a heavy boson: differential cross sections at NLO+NNLL accuracy EPJC 80 (2020) 428 2001.03031
95 S. Mrenna and P. Skands Automated parton-shower variations in PYTHIA8 PRD 94 (2016) 074005 1605.08352
96 CMS Collaboration Reweighting simulated events using machine-learning techniques in the CMS experiment EPJC 85 (2025) 495 CMS-MLG-24-001
2411.03023
97 CMS Collaboration Evidence for $ {\mathrm{t}\mathrm{W}\mathrm{Z}} $ production in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in multilepton final states PLB 855 (2024) 138815 CMS-TOP-22-008
2312.11668
98 L. Buonocore et al. Precise predictions for the associated production of a W boson with a top-antitop quark pair at the LHC PRL 131 (2023) 231901 2306.16311
99 ATLAS Collaboration Measurement of the associated production of a top-antitop-quark pair and a Higgs boson decaying into a $ \mathrm{b}\overline{\mathrm{b}} $ pair in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s} = $ 13 TeV using the ATLAS detector at the LHC EPJC 85 (2025) 210 2407.10904
Compact Muon Solenoid
LHC, CERN