CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIG-21-012 ; CERN-EP-2022-233
Search for boosted Higgs boson decay to a charm quark-antiquark pair in proton-proton collisions at $ \sqrt{s} = $ 13 TeV
Phys. Rev. Lett. 131 (2023) 041801
Abstract: A search for the standard model (SM) Higgs boson (H) produced with transverse momentum greater than 450 GeV and decaying to a charm quark-antiquark ($ \mathrm{c} \overline{\mathrm{c}} $) pair is presented. The search is performed using proton-proton collision data collected at $ \sqrt{s}= $ 13 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb$ ^{-1} $. Boosted $ \mathrm{H}\to\mathrm{c}\overline{\mathrm{c}} $ decay products are reconstructed as a single large-radius jet and identified using a deep neural network charm tagging technique. The method is validated by measurement of the $ \mathrm{Z}\to\mathrm{c}\overline{\mathrm{c}} $ decay process, which is observed with a signal strength of 1.00 $ _{-0.14}^{+0.17} $ (syst) $ \pm $ 0.08 (theo) $ \pm $ 0.06 (stat), defined as the ratio of the observed process rate to the standard model expectation. The observed (expected) upper limit on $\sigma (\mathrm{H}) \mathcal{B} (\mathrm{ H \to c\bar{c} })$ is set at 47 (39) times the SM prediction at 95% confidence level.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
The DDCvL and DDCvB performance for $ \mathrm{H}\to\mathrm{c}\overline{\mathrm{c}} $ identification versus QCD and $ \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}} $ processes respectively. No selection apart from the displayed $ m_{\mathrm{SD}} $ and $ p_{\mathrm{T}} $ requirements is applied. The working points used in this search are marked with a cross. The AUC is the area-under-curve metric.

png pdf
Figure 2:
The observed and fitted $ m_{\mathrm{SD}} $ distributions for the passing (left) and failing (right) regions, combining all $ p_{\mathrm{T}} $ categories and the three data-taking years. The fit is performed under the signal-plus-background hypothesis with a single inclusive $ \mathrm{H}(\mathrm{c}\overline{\mathrm{c}}) $ signal strength parameter. The $ \mathrm{t} \overline{\mathrm{t}} $ background yields and the QCD background yields and shapes are estimated from data. The $ \mathrm{t} \overline{\mathrm{t}} $ process constitutes the majority of contributions labeled ``Other''. The dashed line represents the $ \mathrm{H}\to\mathrm{c}\overline{\mathrm{c}} $ expectation, multiplied by a factor of 200. The step-like features at 166 and 180 GeV are due to $ m_{\mathrm{SD}} $ bins excluded from the $ \rho $ acceptance region. The lower panel shows the residual difference between the data and the overall background (excluding $ \mathrm{Z}\to\mathrm{c}\overline{\mathrm{c}} $), divided by the statistical uncertainty in the data. The near perfect model agreement with data in the failing region (right) is by construction.

png pdf
Figure 2-a:
The observed and fitted $ m_{\mathrm{SD}} $ distributions for the passing region, combining all $ p_{\mathrm{T}} $ categories and the three data-taking years. The fit is performed under the signal-plus-background hypothesis with a single inclusive $ \mathrm{H}(\mathrm{c}\overline{\mathrm{c}}) $ signal strength parameter. The $ \mathrm{t} \overline{\mathrm{t}} $ background yields and the QCD background yields and shapes are estimated from data. The $ \mathrm{t} \overline{\mathrm{t}} $ process constitutes the majority of contributions labeled ``Other''. The dashed line represents the $ \mathrm{H}\to\mathrm{c}\overline{\mathrm{c}} $ expectation, multiplied by a factor of 200. The step-like features at 166 and 180 GeV are due to $ m_{\mathrm{SD}} $ bins excluded from the $ \rho $ acceptance region. The lower panel shows the residual difference between the data and the overall background (excluding $ \mathrm{Z}\to\mathrm{c}\overline{\mathrm{c}} $), divided by the statistical uncertainty in the data.

png pdf
Figure 2-b:
The observed and fitted $ m_{\mathrm{SD}} $ distributions for the passing failing region, combining all $ p_{\mathrm{T}} $ categories and the three data-taking years. The fit is performed under the signal-plus-background hypothesis with a single inclusive $ \mathrm{H}(\mathrm{c}\overline{\mathrm{c}}) $ signal strength parameter. The $ \mathrm{t} \overline{\mathrm{t}} $ background yields and the QCD background yields and shapes are estimated from data. The $ \mathrm{t} \overline{\mathrm{t}} $ process constitutes the majority of contributions labeled ``Other''. The dashed line represents the $ \mathrm{H}\to\mathrm{c}\overline{\mathrm{c}} $ expectation, multiplied by a factor of 200. The step-like features at 166 and 180 GeV are due to $ m_{\mathrm{SD}} $ bins excluded from the $ \rho $ acceptance region. The lower panel shows the residual difference between the data and the overall background (excluding $ \mathrm{Z}\to\mathrm{c}\overline{\mathrm{c}} $), divided by the statistical uncertainty in the data. The near perfect model agreement with data in this failing region is by construction.
Tables

png pdf
Table 1:
Summary of the applied data-to-simulation scale factors for the jet mass, jet mass resolution, $ N_{2}^{1\mathrm{,DDT}} $ selection, and DEEPDOUBLEX selections for different data-taking periods. The jet mass correction is additive, in units of GeV.

png pdf
Table 2:
Sources of uncertainty in the measurement of the signal strength $ \mu_{\mathrm{H}}=$ 9.4$_{-19.9}^{+20.3} $, and their observed impact ($ \Delta\mu_{\mathrm{H}} $) in the fit to the full data set. The impact of each uncertainty is evaluated by computing the uncertainty excluding that source and subtracting it in quadrature from the total uncertainty. The total uncertainty does not match the sum in quadrature of each source because of correlations among the components.
Summary
In conclusion, a search for standard model (SM) Z and Higgs bosons produced with transverse momenta greater than 450 GeV and decaying to charm quark-antiquark ($ \mathrm{c} \overline{\mathrm{c}} $) pairs has been performed in a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ at $ \sqrt{s}= $ 13 TeV. New algorithms based on deep neural networks have been developed to identify jets originating from charm quark pairs. The $ \mathrm{Z}\to\mathrm{c}\overline{\mathrm{c}} $ process is observed in association with jets at a hadron collider for the first time, with a signal strength of 1.00 $ _{-0.17}^{+0.19} $ relative to the SM prediction. An observed (expected) upper limit on the product of the Higgs boson production cross section and branching fraction to $ \mathrm{c} \overline{\mathrm{c}} $ of 47 (39) times the SM expectation is set at 95% confidence level.
References
1 ATLAS Collaboration Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 CMS Collaboration Observation of the Higgs boson decay to a pair of $ \tau $ leptons with the CMS detector PLB 779 (2018) 283 CMS-HIG-16-043
1708.00373
5 ATLAS Collaboration Measurements of Higgs boson production cross-sections in the $ \mathrm{H}\to\tau^{+}\tau^{-} $ decay channel in pp collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector JHEP 08 (2022) 175 2201.08269
6 CMS Collaboration Observation of $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $ production PRL 120 (2018) 231801 CMS-HIG-17-035
1804.02610
7 ATLAS Collaboration Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector PLB 784 (2018) 173 1806.00425
8 ATLAS Collaboration Observation of $ H \rightarrow b\bar{b} $ decays and VH production with the ATLAS detector PLB 786 (2018) 59 1808.08238
9 CMS Collaboration Observation of Higgs boson decay to bottom quarks PRL 121 (2018) 121801 CMS-HIG-18-016
1808.08242
10 CMS Collaboration Search for the Higgs boson decaying to two muons in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PRL 122 (2019) 021801 CMS-HIG-17-019
1807.06325
11 ATLAS Collaboration A search for the dimuon decay of the standard model Higgs boson with the ATLAS detector Phys. Lett. B 812 () 135980, 2021
link
2007.07830
12 ATLAS Collaboration Search for the dimuon decay of the Higgs boson in pp collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector PRL 119 (2017) 051802 1705.04582
13 CMS Collaboration Evidence for Higgs boson decay to a pair of muons JHEP 01 (2021) 148 CMS-HIG-19-006
2009.04363
14 CMS Collaboration Performance of deep tagging algorithms for boosted double quark jet topology in proton-proton collisions at 13 TeV with the Phase-0 CMS detector CMS Detector Performance Note CMS-DP-2018-046, 2018
CDS
15 ATLAS Collaboration Search for the decay of the Higgs boson to charm quarks with the ATLAS experiment PRL 120 (2018) 211802 1802.04329
16 ATLAS Collaboration Direct constraint on the Higgs-charm coupling from a search for Higgs boson decays into charm quarks with the ATLAS detector EPJC 82 (2022) 717 2201.11428
17 CMS Collaboration A search for the standard model Higgs boson decaying to charm quarks JHEP 03 (2020) 131 CMS-HIG-18-031
1912.01662
18 CMS Collaboration Search for Higgs boson decay to a charm quark-antiquark pair in proton-proton collisions at $\sqrt{s}= $ 13 TeV submitted to PRL CMS-HIG-21-008
2205.05550
19 CMS Collaboration Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair PRL 120 (2018) 071802 CMS-HIG-17-010
1709.05543
20 CMS Collaboration Inclusive search for highly boosted Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 12 (2020) 085 CMS-HIG-19-003
2006.13251
21 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
22 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
23 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
24 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) P05014 CMS-EGM-17-001
2012.06888
25 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
26 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
27 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
28 CMS Collaboration Performance of reconstruction and identification of $ \tau $ leptons decaying to hadrons and $ \nu_{\!\tau} $ in pp collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P10005 CMS-TAU-16-003
1809.02816
29 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
30 CMS Collaboration Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s} = $ 13 TeV using the CMS detector JINST 14 (2019) P07004 CMS-JME-17-001
1903.06078
31 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
32 J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions EPJC 53 (2008) 473 0706.2569
33 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
34 S. Frixione, P. Nason, and G. Ridolfi A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction JHEP 09 (2007) 126 0707.3088
35 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
36 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
37 E. Re Single-top Wt-channel production matched with parton showers using the POWHEG method EPJC 71 (2011) 1547 1009.2450
38 R. Frederix, E. Re, and P. Torrielli Single-top $ t $-channel hadroproduction in the four-flavour scheme with POWHEG and aMC@NLO JHEP 09 (2012) 130 1207.5391
39 T. Sjöstrand et al. An introduction to PYTHIA8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
40 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
41 S. Kallweit et al. NLO electroweak automation and precise predictions for W+multijet production at the LHC JHEP 04 (2015) 012 1412.5157
42 S. Kallweit et al. NLO QCD+EW automation and precise predictions for V+multijet production 50th Rencontres de Moriond, QCD and high energy interactions, 2015
Kallweit in 5 (2015) 121
1505.05704
43 S. Kallweit et al. NLO QCD+EW predictions for V+jets including off-shell vector-boson decays and multijet merging JHEP 04 (2016) 021 1511.08692
44 J. M. Lindert et al. Precise predictions for V+jets dark matter backgrounds EPJC 77 (2017) 829 1705.04664
45 J. M. Campbell and R. K. Ellis MCFM for the Tevatron and the LHC Nucl. Phys. Proc. Suppl. 20 (2010) 5 1007.3492
46 K. Hamilton, P. Nason, C. Oleari, and G. Zanderighi Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching JHEP 05 (2013) 082 1212.4504
47 G. Luisoni, P. Nason, C. Oleari, and F. Tramontano HW$^{\pm} $/HZ+0 and 1 jet at NLO with the POWHEG box interfaced to GoSam and their merging within MiNLO JHEP 10 (2013) 083 1306.2542
48 K. Becker et al. Precise predictions for boosted Higgs production 2005.07762
49 E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM JHEP 02 (2012) 088 1111.2854
50 P. Nason and C. Oleari NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG JHEP 02 (2010) 037 0911.5299
51 H. B. Hartanto, B. Jäger, L. Reina, and D. Wackeroth Higgs boson production in association with top quarks in the POWHEG BOX PRD 91 (2015) 094003 1501.04498
52 CMS Collaboration Event generator tunes obtained from underlying event and multiparton scattering measurements EPJC 76 (2016) 155 CMS-GEN-14-001
1512.00815
53 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
54 NNPDF Collaboration Parton distributions for the LHC run II JHEP 04 (2015) 040 1410.8849
55 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
56 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
57 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
58 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
59 D. Bertolini, P. Harris, M. Low, and N. Tran Pileup per particle identification JHEP 10 (2014) 059 1407.6013
60 A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler Soft drop JHEP 05 (2014) 146 1402.2657
61 CMS Collaboration Performance of the reconstruction and identification of high-momentum muons in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P02027 CMS-MUO-17-001
1912.03516
62 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
63 M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam Towards an understanding of jet substructure JHEP 09 (2013) 029 1307.0007
64 J. Dolen et al. Thinking outside the ROCs: Designing decorrelated taggers (DDT) for jet substructure JHEP 05 (2016) 156 1603.00027
65 ATLAS Collaboration Measurement of soft-drop jet observables in pp collisions with the ATLAS detector at $ \sqrt{s} = $ 13 TeV PRD 101 (2020) 052007 1912.09837
66 I. Moult, L. Necib, and J. Thaler New angles on energy correlation functions JHEP 12 (2016) 153 1609.07483
67 A. J. Larkoski, G. P. Salam, and J. Thaler Energy correlation functions for jet substructure JHEP 06 (2013) 108 1305.0007
68 CMS Collaboration Performance of the mass-decorrelated DeepDoubleX classifier for double-b and double-c large-radius jets with the CMS detector CMS Detector Performance Note CMS-DP-2022-041, 2022
CDS
69 M. Sundararajan, A. Taly, and Q. Yan Axiomatic attribution for deep networks 34th International Conference on Machine Learning, PMLR, 2017
Proceedings of the 3 (2017) 3319
1703.01365
70 G. Montavon et al. Explaining nonlinear classification decisions with deep Taylor decomposition Pattern Recognit. 65 (2017) 211 1512.02479
71 J. Thaler and K. Van Tilburg Identifying boosted objects with N-subjettiness JHEP 03 (2011) 015 1011.2268
72 S. Bernstein Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités Comm. Kharkov Math. Soc. 13 (1912) 01
73 R. A. Fisher On the interpretation of $ \chi^{2} $ from contingency tables, and the calculation of P J. R. Stat. Soc. 85 (1922) 87
74 CMS Collaboration Jet energy scale and resolution performance with 13 TeV data collected by CMS in 2016–2018 CMS Detector Performance Note CMS-DP-2020-019, 2020
CDS
75 CMS Collaboration Performance of heavy flavour identification algorithms in proton-proton collisions at 13 TeV at the CMS experiment CMS Detector Performance Note CMS-DP-2017-012, 2017
CDS
76 CMS Collaboration Performance of b tagging algorithms in proton-proton collisions at 13 TeV with Phase 1 CMS detector CMS Detector Performance Note CMS-DP-2018-033, 2018
CDS
77 CMS Collaboration Performance of the pile up jet identification in CMS for Run 2 CMS Detector Performance Note CMS-DP-2020-020, 2020
CDS
78 R. J. Barlow and C. Beeston Fitting using finite Monte Carlo samples Comput. Phys. Commun. 77 (1993) 219
79 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
80 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $\sqrt{s} = $ 13 TeV CMS Physics Analysis Summary CMS-PAS-LUM-17-004, 2018
CDS
81 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $\sqrt{s} = $ 13 TeV CMS Physics Analysis Summary CMS-PAS-LUM-18-002, 2019
CDS
82 The ATLAS Collaboration, The CMS Collaboration, The LHC Higgs Combination Group Procedure for the LHC Higgs boson search combination in Summer 2011 Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011
83 CMS Collaboration Measurement of the Z boson differential production cross section using its invisible decay mode ($ \mathrm{Z}\to\nu\overline{\nu} $) in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 05 (2021) 205 CMS-SMP-18-003
2012.09254
84 Particle Data Group Review of Particle Physics PTEP 2022 (2022) 083C01
85 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435 hep-ex/9902006
86 A. L. Read Presentation of search results: the CL$ _\text{s} $ technique JPG 28 (2002) 2693
87 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
88 CMS Collaboration HEPData record for this analysis link
Compact Muon Solenoid
LHC, CERN