CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIG-23-011 ; CERN-EP-2025-007
Search for $ \gamma \mathrm{H} $ production and constraints on the Yukawa couplings of light quarks to the Higgs boson
Submitted to Phys. Rev. D
Abstract: A search for $ \gamma \mathrm{H} $ production is performed with data from the CMS experiment at the LHC corresponding to an integrated luminosity of 138 fb$ ^{-1} $ at a proton-proton center-of-mass collision energy of 13 TeV. The analysis focuses on the topology of a boosted Higgs boson recoiling against a high-energy photon. The final states of $ \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}} $ and $ \mathrm{H}\to4\ell $ are analyzed. This study examines effective $ \mathrm{H}\mathrm{Z}\gamma $ and $ \mathrm{H}\gamma\gamma $ anomalous couplings within the context of an effective field theory. In this approach, the production cross section is constrained to be $ \sigma_{\gamma \mathrm{H}} < $ 16.4 fb at 95% confidence level (CL). Simultaneous constraints on four anomalous couplings involving $ \mathrm{H}\mathrm{Z}\gamma $ and $ \mathrm{H}\gamma\gamma $ are provided. Additionally, the production rate for $ \mathrm{H}\to4\ell $ is examined to assess potential enhancements in the Yukawa couplings between light quarks and the Higgs boson. Assuming the standard model values for the Yukawa couplings of the bottom and top quarks, the following simultaneous constraints are obtained: $ \kappa_\mathrm{u}=$ (0.0 $ \pm $ 1.5) $\times $ 10$^{3} $, $ \kappa_\mathrm{d}= $ (0.0 $ \pm $ 7.1) $ \times $ 10$^{2} $, $ \kappa_\mathrm{s}= $ 0 $ ^{+33}_{-34} $, and $ \kappa_\mathrm{c}= $ 0.0 $ ^{+2.7}_{-3.0} $. This rules out the hypothesis that up- or down-type quarks in the first or second generation have the same Yukawa couplings as those in the third generation, with a CL greater than 95%.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Examples of Feynman diagrams describing $ \gamma \mathrm{H} $ production at the LHC via a loop-generated $ \mathrm{H}\gamma\gamma $ or $ \mathrm{H}\mathrm{Z}\gamma $ interaction (left), with the dot representing an effective point-like coupling, and through H boson production in $ \mathrm{q}\overline{\mathrm{q}} $ annihilation with photon radiation (right). The diagrams highlight the couplings of interest.

png pdf
Figure 2:
The spectrum of the photon transverse momentum in $ \gamma \mathrm{H} $ production, as generated by the leading-order diagrams shown in Figs. 1 and 3. The four distributions correspond to production resulting from couplings $ \kappa_\mathrm{q} $, $ c_{z\gamma} $ ($ \widetilde{c}_{z\gamma} $), $ c_{\gamma\gamma} $ ($ \widetilde{c}_{\gamma\gamma} $), and $ c_{\mathrm{q}\gamma} $.

png pdf
Figure 3:
Feynman diagrams describing the $ \mathrm{q}\overline{\mathrm{q}} $ annihilation with production of $ \gamma \mathrm{H} $ through a point-like EFT operator (left) and with photon production (right).

png pdf
Figure 4:
Feynman diagrams describing the H boson production at LHC through direct $ \mathrm{q}\overline{\mathrm{q}} $ annihilation (left) and gluon fusion production (right).

png pdf
Figure 5:
Distributions of events for the $ {\mathcal{D}}_{\text{bkg}} $ observable in the $ \gamma $-tagged (left) and Untagged (right) categories of the $ \mathrm{H}\to 4\ell $ candidate events. Observed events (black markers) and expected background estimates (solid histograms) from MC simulation (ZZ/Z$ \gamma^* $) or control samples in data ($ \mathrm{Z}+\mathrm{X} $) are shown. The $ \gamma \mathrm{H} $ signal contribution, stacked on top of background, is shown with an open histogram for an assumed cross section of $ \sigma_{\gamma\mathrm{H}}\,\mathcal{B}_{4\ell}= $ 1 fb for either the $ c_{\gamma\gamma} $ (solid) and $ c_{z\gamma} $ (dashed) coupling hypothesis.

png pdf
Figure 5-a:
Distributions of events for the $ {\mathcal{D}}_{\text{bkg}} $ observable in the $ \gamma $-tagged (left) and Untagged (right) categories of the $ \mathrm{H}\to 4\ell $ candidate events. Observed events (black markers) and expected background estimates (solid histograms) from MC simulation (ZZ/Z$ \gamma^* $) or control samples in data ($ \mathrm{Z}+\mathrm{X} $) are shown. The $ \gamma \mathrm{H} $ signal contribution, stacked on top of background, is shown with an open histogram for an assumed cross section of $ \sigma_{\gamma\mathrm{H}}\,\mathcal{B}_{4\ell}= $ 1 fb for either the $ c_{\gamma\gamma} $ (solid) and $ c_{z\gamma} $ (dashed) coupling hypothesis.

png pdf
Figure 5-b:
Distributions of events for the $ {\mathcal{D}}_{\text{bkg}} $ observable in the $ \gamma $-tagged (left) and Untagged (right) categories of the $ \mathrm{H}\to 4\ell $ candidate events. Observed events (black markers) and expected background estimates (solid histograms) from MC simulation (ZZ/Z$ \gamma^* $) or control samples in data ($ \mathrm{Z}+\mathrm{X} $) are shown. The $ \gamma \mathrm{H} $ signal contribution, stacked on top of background, is shown with an open histogram for an assumed cross section of $ \sigma_{\gamma\mathrm{H}}\,\mathcal{B}_{4\ell}= $ 1 fb for either the $ c_{\gamma\gamma} $ (solid) and $ c_{z\gamma} $ (dashed) coupling hypothesis.

png pdf
Figure 6:
The $ M_{\textrm{PNet}} $ distributions for the number of observed events (black markers) compared with the backgrounds estimated in the fit to the data (filled histograms) in the $ \mathrm{b} \overline{\mathrm{b}} $ channel. Fail (left), medium (middle) and tight (right) regions of the $ \gamma $-tagged (lower) and Untagged (upper) categories are shown. The signal contribution, stacked on top of background, is shown with an open histogram for an assumed cross section of $ \sigma_{\gamma\mathrm{H}}\,\mathcal{B}_{\mathrm{b}\overline{\mathrm{b}}}= $ 10 fb.

png pdf
Figure 6-a:
The $ M_{\textrm{PNet}} $ distributions for the number of observed events (black markers) compared with the backgrounds estimated in the fit to the data (filled histograms) in the $ \mathrm{b} \overline{\mathrm{b}} $ channel. Fail (left), medium (middle) and tight (right) regions of the $ \gamma $-tagged (lower) and Untagged (upper) categories are shown. The signal contribution, stacked on top of background, is shown with an open histogram for an assumed cross section of $ \sigma_{\gamma\mathrm{H}}\,\mathcal{B}_{\mathrm{b}\overline{\mathrm{b}}}= $ 10 fb.

png pdf
Figure 6-b:
The $ M_{\textrm{PNet}} $ distributions for the number of observed events (black markers) compared with the backgrounds estimated in the fit to the data (filled histograms) in the $ \mathrm{b} \overline{\mathrm{b}} $ channel. Fail (left), medium (middle) and tight (right) regions of the $ \gamma $-tagged (lower) and Untagged (upper) categories are shown. The signal contribution, stacked on top of background, is shown with an open histogram for an assumed cross section of $ \sigma_{\gamma\mathrm{H}}\,\mathcal{B}_{\mathrm{b}\overline{\mathrm{b}}}= $ 10 fb.

png pdf
Figure 6-c:
The $ M_{\textrm{PNet}} $ distributions for the number of observed events (black markers) compared with the backgrounds estimated in the fit to the data (filled histograms) in the $ \mathrm{b} \overline{\mathrm{b}} $ channel. Fail (left), medium (middle) and tight (right) regions of the $ \gamma $-tagged (lower) and Untagged (upper) categories are shown. The signal contribution, stacked on top of background, is shown with an open histogram for an assumed cross section of $ \sigma_{\gamma\mathrm{H}}\,\mathcal{B}_{\mathrm{b}\overline{\mathrm{b}}}= $ 10 fb.

png pdf
Figure 6-d:
The $ M_{\textrm{PNet}} $ distributions for the number of observed events (black markers) compared with the backgrounds estimated in the fit to the data (filled histograms) in the $ \mathrm{b} \overline{\mathrm{b}} $ channel. Fail (left), medium (middle) and tight (right) regions of the $ \gamma $-tagged (lower) and Untagged (upper) categories are shown. The signal contribution, stacked on top of background, is shown with an open histogram for an assumed cross section of $ \sigma_{\gamma\mathrm{H}}\,\mathcal{B}_{\mathrm{b}\overline{\mathrm{b}}}= $ 10 fb.

png pdf
Figure 6-e:
The $ M_{\textrm{PNet}} $ distributions for the number of observed events (black markers) compared with the backgrounds estimated in the fit to the data (filled histograms) in the $ \mathrm{b} \overline{\mathrm{b}} $ channel. Fail (left), medium (middle) and tight (right) regions of the $ \gamma $-tagged (lower) and Untagged (upper) categories are shown. The signal contribution, stacked on top of background, is shown with an open histogram for an assumed cross section of $ \sigma_{\gamma\mathrm{H}}\,\mathcal{B}_{\mathrm{b}\overline{\mathrm{b}}}= $ 10 fb.

png pdf
Figure 6-f:
The $ M_{\textrm{PNet}} $ distributions for the number of observed events (black markers) compared with the backgrounds estimated in the fit to the data (filled histograms) in the $ \mathrm{b} \overline{\mathrm{b}} $ channel. Fail (left), medium (middle) and tight (right) regions of the $ \gamma $-tagged (lower) and Untagged (upper) categories are shown. The signal contribution, stacked on top of background, is shown with an open histogram for an assumed cross section of $ \sigma_{\gamma\mathrm{H}}\,\mathcal{B}_{\mathrm{b}\overline{\mathrm{b}}}= $ 10 fb.

png pdf
Figure 7:
Constraints on $ \sigma_{\gamma\mathrm{H}} $ from the combination of the $ \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}} $ and 4 $ \ell $ channels. The results are shown with only $ c_{\gamma\gamma} $ and $ \widetilde{c}_{\gamma\gamma} $ floating in the fit (blue) and with all four couplings allowed to float (black). Observed (solid) and expected (dashed) likelihood scans are shown. The dashed horizontal lines show the 68 and 95% CL intervals.

png pdf
Figure 8:
Constraints on the square of $ |c_{\gamma\gamma}| $ (or $ |\widetilde{c}_{\gamma\gamma}| $) and $ |c_{z\gamma}| $ (or $ |\widetilde{c}_{z\gamma}| $) from the combination of the $ \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}} $ and 4 $ \ell $ channels. The other couplings are either fixed to the null SM expectation (blue) or are left floating in the fit (red). Observed (solid) and expected (dashed) likelihood scans are shown. The dashed horizontal lines show the 68 and 95% CL intervals.

png pdf
Figure 8-a:
Constraints on the square of $ |c_{\gamma\gamma}| $ (or $ |\widetilde{c}_{\gamma\gamma}| $) and $ |c_{z\gamma}| $ (or $ |\widetilde{c}_{z\gamma}| $) from the combination of the $ \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}} $ and 4 $ \ell $ channels. The other couplings are either fixed to the null SM expectation (blue) or are left floating in the fit (red). Observed (solid) and expected (dashed) likelihood scans are shown. The dashed horizontal lines show the 68 and 95% CL intervals.

png pdf
Figure 8-b:
Constraints on the square of $ |c_{\gamma\gamma}| $ (or $ |\widetilde{c}_{\gamma\gamma}| $) and $ |c_{z\gamma}| $ (or $ |\widetilde{c}_{z\gamma}| $) from the combination of the $ \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}} $ and 4 $ \ell $ channels. The other couplings are either fixed to the null SM expectation (blue) or are left floating in the fit (red). Observed (solid) and expected (dashed) likelihood scans are shown. The dashed horizontal lines show the 68 and 95% CL intervals.

png pdf
Figure 9:
Constraints on $ \kappa_{\mathrm{u}} $, $ \kappa_{\mathrm{d}} $, $ \kappa_{\mathrm{s}} $, and $ \kappa_{\mathrm{c}} $ are shown using the $ \mathrm{H}\to4\ell $ channel. In scenario one (black), all couplings except the one being shown are fixed at their SM values. In scenario two (blue), the Yukawa couplings for the three other light quarks are left unconstrained, and BSM contributions are allowed: $ \kappa_{\mathrm{Z}\mathrm{Z}}^2\le $ 1 and $ \Gamma^\text{BSM}_\mathrm{H}\ge $ 0. Both observed (solid) and expected (dashed) constraints are presented. The crossings of dashed horizontal lines and the likelihood curves indicate the 68 and 95% CL intervals.

png pdf
Figure 9-a:
Constraints on $ \kappa_{\mathrm{u}} $, $ \kappa_{\mathrm{d}} $, $ \kappa_{\mathrm{s}} $, and $ \kappa_{\mathrm{c}} $ are shown using the $ \mathrm{H}\to4\ell $ channel. In scenario one (black), all couplings except the one being shown are fixed at their SM values. In scenario two (blue), the Yukawa couplings for the three other light quarks are left unconstrained, and BSM contributions are allowed: $ \kappa_{\mathrm{Z}\mathrm{Z}}^2\le $ 1 and $ \Gamma^\text{BSM}_\mathrm{H}\ge $ 0. Both observed (solid) and expected (dashed) constraints are presented. The crossings of dashed horizontal lines and the likelihood curves indicate the 68 and 95% CL intervals.

png pdf
Figure 9-b:
Constraints on $ \kappa_{\mathrm{u}} $, $ \kappa_{\mathrm{d}} $, $ \kappa_{\mathrm{s}} $, and $ \kappa_{\mathrm{c}} $ are shown using the $ \mathrm{H}\to4\ell $ channel. In scenario one (black), all couplings except the one being shown are fixed at their SM values. In scenario two (blue), the Yukawa couplings for the three other light quarks are left unconstrained, and BSM contributions are allowed: $ \kappa_{\mathrm{Z}\mathrm{Z}}^2\le $ 1 and $ \Gamma^\text{BSM}_\mathrm{H}\ge $ 0. Both observed (solid) and expected (dashed) constraints are presented. The crossings of dashed horizontal lines and the likelihood curves indicate the 68 and 95% CL intervals.

png pdf
Figure 9-c:
Constraints on $ \kappa_{\mathrm{u}} $, $ \kappa_{\mathrm{d}} $, $ \kappa_{\mathrm{s}} $, and $ \kappa_{\mathrm{c}} $ are shown using the $ \mathrm{H}\to4\ell $ channel. In scenario one (black), all couplings except the one being shown are fixed at their SM values. In scenario two (blue), the Yukawa couplings for the three other light quarks are left unconstrained, and BSM contributions are allowed: $ \kappa_{\mathrm{Z}\mathrm{Z}}^2\le $ 1 and $ \Gamma^\text{BSM}_\mathrm{H}\ge $ 0. Both observed (solid) and expected (dashed) constraints are presented. The crossings of dashed horizontal lines and the likelihood curves indicate the 68 and 95% CL intervals.

png pdf
Figure 9-d:
Constraints on $ \kappa_{\mathrm{u}} $, $ \kappa_{\mathrm{d}} $, $ \kappa_{\mathrm{s}} $, and $ \kappa_{\mathrm{c}} $ are shown using the $ \mathrm{H}\to4\ell $ channel. In scenario one (black), all couplings except the one being shown are fixed at their SM values. In scenario two (blue), the Yukawa couplings for the three other light quarks are left unconstrained, and BSM contributions are allowed: $ \kappa_{\mathrm{Z}\mathrm{Z}}^2\le $ 1 and $ \Gamma^\text{BSM}_\mathrm{H}\ge $ 0. Both observed (solid) and expected (dashed) constraints are presented. The crossings of dashed horizontal lines and the likelihood curves indicate the 68 and 95% CL intervals.
Tables

png pdf
Table 1:
Observed and expected constraints on the $ \gamma \mathrm{H} $ cross section $ \sigma_{\gamma\mathrm{H}} $ and on the $ c_{\gamma\gamma} $, $ c_{z\gamma} $, $ \widetilde{c}_{\gamma\gamma} $, and $ \widetilde{c}_{z\gamma} $ couplings using the $ \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}} $ and 4 $ \ell $ channels combined. The third and fourth rows show constraints on cross section multiplied by the branching fraction using the $ \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}} $ and $ \mathrm{H}\to4\ell $ channels only, respectively. The 68% (central value with uncertainties) and 95% (upper limit or allowed intervals) CL intervals are shown.

png pdf
Table 2:
Central values of the input and derived parameters used in calculations involving Eqs. (4) and (5). The list of partons ($ p $) comprises gluons ($ \mathrm{g} $) and five quark flavors ($ \mathrm{q} $). All cross sections $ \sigma_i $ are computed for the inclusive on-shell H boson production using the SM values for all couplings, except for the specific coupling $ \kappa_{\mathrm{q}} $ that is explicitly mentioned.

png pdf
Table 3:
Observed and expected constraints on the $ \kappa_{\mathrm{u}} $, $ \kappa_{\mathrm{d}} $, $ \kappa_{\mathrm{s}} $, and $ \kappa_{\mathrm{c}} $ couplings are shown using the $ \mathrm{H}\to4\ell $ channel. In one scenario, all couplings except the one being shown are fixed at their SM values. In the other scenario, the Yukawa couplings for the three other light quarks are left unconstrained, and BSM contributions are allowed. The 68% (central value with error bars) and 95% (bracketed range or upper limit) CL intervals are displayed.

png pdf
Table 4:
Observed and expected constraints on the $ \overline{\kappa}_{\mathrm{u}} $, $ \overline{\kappa}_{\mathrm{d}} $, $ \overline{\kappa}_{\mathrm{s}} $, and $ \overline{\kappa}_{\mathrm{c}} $ defined as $ \overline{\kappa}_{\mathrm{q}}=y_{\mathrm{q}}v/m_{\mathrm{b}} $, following the same conventions as outlined in Table 3.
Summary
A search for $ \gamma \mathrm{H} $ production is performed with the data from the CMS experiment at the LHC corresponding to an integrated luminosity of 138 fb$ ^{-1} $ at a proton-proton center-of-mass collision energy of 13 TeV. The analysis focuses on the topology of a boosted Higgs boson recoiling against a high-energy photon. The final states of $ \mathrm{H}\to \mathrm{b}\overline{\mathrm{b}} $ and $ \mathrm{H}\to4\ell $ are analyzed. This study examines effective $ \mathrm{H}\mathrm{Z}\gamma $ and $ \mathrm{H}\gamma\gamma $ anomalous couplings within the context of an effective field theory. In this approach, the observed (expected) constraint on the $ \gamma \mathrm{H} $ production cross section is $ \sigma_{\gamma\mathrm{H}} < $ 16.4 (21.5) fb at 95% CL. Simultaneous constraints on four anomalous couplings involving $ \mathrm{H}\mathrm{Z}\gamma $ and $ \mathrm{H}\gamma\gamma $ are provided. Additionally, the production rate for $ \mathrm{H}\to4\ell $ is examined to assess potential enhancements in the Yukawa couplings between light quarks and the Higgs boson. This includes examining modifications to both direct quark-antiquark annihilation and gluon fusion loop processes. Assuming the standard model Yukawa couplings for the bottom and top quarks ($ \kappa_{\mathrm{b}}=\kappa_{\mathrm{t}}= $ 1), along with the constraints on the $ \mathrm{H}\mathrm{V}\mathrm{V} $ couplings ($ \kappa_{\mathrm{W}\mathrm{W}}^2\le $ 1 and $ \kappa_{\mathrm{Z}\mathrm{Z}}^2\le $ 1), the following simultaneous constraints are obtained: $ \kappa_{\mathrm{u}}= $ (0.0 $ \pm $ 1.5) $\times$ 10$^{3} $, $ \kappa_{\mathrm{d}}= $ (0.0 $ \pm $ 7.1) $\times$ 10$^{2} $, $ \kappa_{\mathrm{s}}= $ 0 $ ^{+33}_{-34} $, and $ \kappa_{\mathrm{c}}= $ 0.0 $ ^{+2.7}_{-3.0} $. The hypothesis that up- or down-type quarks in the first or second generation have the same Yukawa couplings as those in the third generation is excluded with a CL greater than 95%.
References
1 ATLAS Collaboration Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s}= $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 S. L. Glashow Partial-symmetries of weak interactions NP 22 (1961) 579
5 F. Englert and R. Brout Broken symmetry and the mass of gauge vector mesons PRL 13 (1964) 321
6 P. W. Higgs Broken symmetries, massless particles and gauge fields PL 12 (1964) 132
7 P. W. Higgs Broken symmetries and the masses of gauge bosons PRL 13 (1964) 508
8 G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble Global conservation laws and massless particles PRL 13 (1964) 585
9 S. Weinberg A model of leptons PRL 19 (1967) 1264
10 A. Salam Weak and electromagnetic interactions in Elementary particle physics: relativistic groups and analyticity, N. Svartholm, ed., Almqvist & Wiksell, Stockholm, Proceedings of the eighth Nobel symposium, 1968
11 CMS Collaboration On the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs PRL 110 (2013) 081803 CMS-HIG-12-041
1212.6639
12 CMS Collaboration Measurement of the properties of a Higgs boson in the four-lepton final state PRD 89 (2014) 092007 CMS-HIG-13-002
1312.5353
13 CMS Collaboration Constraints on the spin-parity and anomalous $ \mathrm{H}\mathrm{V}\mathrm{V} $ couplings of the Higgs boson in proton collisions at 7 and 8 TeV PRD 92 (2015) 012004 CMS-HIG-14-018
1411.3441
14 CMS Collaboration Limits on the Higgs boson lifetime and width from its decay to four charged leptons PRD 92 (2015) 072010 CMS-HIG-14-036
1507.06656
15 CMS Collaboration Combined search for anomalous pseudoscalar $ \mathrm{H}\mathrm{V}\mathrm{V} $ couplings in VH ($ \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}} $) production and $ \mathrm{H}\to\mathrm{V}\mathrm{V} $ decay PLB 759 (2016) 672 CMS-HIG-14-035
1602.04305
16 CMS Collaboration Constraints on anomalous Higgs boson couplings using production and decay information in the four-lepton final state PLB 775 (2017) 1 CMS-HIG-17-011
1707.00541
17 CMS Collaboration Measurements of the Higgs boson width and anomalous HVV couplings from on-shell and off-shell production in the four-lepton final state PRD 99 (2019) 112003 CMS-HIG-18-002
1901.00174
18 CMS Collaboration Constraints on anomalous HVV couplings from the production of Higgs bosons decaying to $ \tau $ lepton pairs PRD 100 (2019) 112002 CMS-HIG-17-034
1903.06973
19 CMS Collaboration Constraints on anomalous Higgs boson couplings to vector bosons and fermions in its production and decay using the four-lepton final state PRD 104 (2021) 052004 CMS-HIG-19-009
2104.12152
20 CMS Collaboration Measurement of the Higgs boson width and evidence of its off-shell contributions to ZZ production Nature Phys. 18 (2022) 1329 CMS-HIG-21-013
2202.06923
21 CMS Collaboration Constraints on anomalous Higgs boson couplings to vector bosons and fermions from the production of Higgs bosons using the $\tau\tau$ final state PRD 108 (2023) 032013 CMS-HIG-20-007
2205.05120
22 ATLAS Collaboration Evidence for the spin-0 nature of the Higgs boson using ATLAS data PLB 726 (2013) 120 1307.1432
23 ATLAS Collaboration Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector EPJC 75 (2015) 476 1506.05669
24 ATLAS Collaboration Test of CP invariance in vector-boson fusion production of the Higgs boson using the Optimal Observable method in the ditau decay channel with the ATLAS detector EPJC 76 (2016) 658 1602.04516
25 ATLAS Collaboration Measurement of inclusive and differential cross sections in the $ \mathrm{H} \rightarrow \mathrm{Z}\mathrm{Z}^{*} \rightarrow 4\ell $ decay channel in pp collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector JHEP 10 (2017) 132 1708.02810
26 ATLAS Collaboration Measurement of the Higgs boson coupling properties in the $ H\rightarrow ZZ^{*} \rightarrow 4\ell $ decay channel at $ \sqrt{s} = $ 13 TeV with the ATLAS detector JHEP 03 (2018) 095 1712.02304
27 ATLAS Collaboration Measurements of Higgs boson properties in the diphoton decay channel with 36 fb$ ^{-1} $ of pp collision data at $ \sqrt{s} = $ 13 TeV with the ATLAS detector PRD 98 (2018) 052005 1802.04146
28 ATLAS Collaboration Higgs boson production cross-section measurements and their EFT interpretation in the 4 $ \ell $ decay channel at $ \sqrt{s} = $ 13 TeV with the ATLAS detector EPJC 80 (2020) 957 2004.03447
29 ATLAS Collaboration Test of CP invariance in Higgs boson vector-boson-fusion production using the $ \mathrm{H}\rightarrow{\gamma}{\gamma} $ channel with the ATLAS detector PRL 131 (2023) 061802 2208.02338
30 ATLAS Collaboration Test of CP-invariance of the Higgs boson in vector-boson fusion production and its decay into four leptons JHEP 05 (2023) 105 2304.09612
31 D. de Florian et al. Handbook of LHC Higgs cross sections: 4. deciphering the nature of the Higgs sector CERN Report CERN-2017-002-M
link
1610.07922
32 ATLAS and CMS Collaborations Evidence for the Higgs boson decay to a Z boson and a photon at the LHC PRL 132 (2024) 021803 2309.03501
33 CMS Collaboration Observation of $ \mathrm{W}\mathrm{W}\gamma $ production and search for $ \mathrm{H}\gamma $ production in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PRL 132 (2024) 121901 CMS-SMP-22-006
2310.05164
34 CMS Collaboration Search for narrow $ \mathrm{H}\gamma $ resonances in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PRL 122 (2019) 081804 CMS-EXO-17-019
1808.01257
35 ATLAS Collaboration Search for heavy resonances decaying to a photon and a hadronically decaying $ \mathrm{Z}/\mathrm{W}/\mathrm{H} $ boson in pp collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector PRD 98 (2018) 032015 1805.01908
36 ATLAS Collaboration Search for heavy resonances decaying into a photon and a hadronically decaying Higgs boson in pp collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector PRL 125 (2020) 251802 2008.05928
37 A. Abbasabadi, D. Bowser-Chao, D. A. Dicus, and W. W. Repko Higgs-photon associated production at hadron colliders PRD 58 (1998) 057301 hep-ph/9706335
38 H. Khanpour, S. Khatibi, and M. M. Najafabadi Probing Higgs boson couplings in $ \mathrm{H}+\gamma $ production at the LHC PLB 773 (2017) 462 1702.05753
39 L. Shi, Z. Liang, B. Liu, and Z. He Constraining the anomalous Higgs boson coupling in $ \mathrm{H}+\gamma $ production Chin. Phys. C 43 (2019) 043001 1811.02261
40 J. Davis et al. Constraining anomalous Higgs boson couplings to virtual photons PRD 105 (2022) 096027 2109.13363
41 I. Brivio, Y. Jiang, and M. Trott The SMEFTsim package, theory and tools JHEP 12 (2017) 070 1709.06492
42 I. Brivio SMEFTsim 3.0 -- a practical guide JHEP 04 (2021) 073 2012.11343
43 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
44 A. Dedes et al. Feynman rules for the standard model effective field theory in R$ _{\xi} $ -gauges JHEP 06 (2017) 143 1704.03888
45 ATLAS Collaboration Drell--Yan tails beyond the standard model JHEP 03 (2023) 064
46 A. L. Kagan et al. Exclusive window onto Higgs Yukawa couplings PRL 114 (2015) 101802 1406.1722
47 J. A. Aguilar-Saavedra, J. M. Cano, and J. M. No More light on Higgs flavor at the LHC: Higgs boson couplings to light quarks through $ \mathrm{H}+\gamma $ production PRD 103 (2021) 095023 2008.12538
48 Y. Zhou Constraining the Higgs boson coupling to light quarks in the $ \mathrm{H}\rightarrow\mathrm{Z}\mathrm{Z} $ final states PRD 93 (2016) 013019 1505.06369
49 Y. Zhou Probing anomalous couplings of the Higgs boson to weak bosons and fermions with precision calculations PhD thesis, Johns Hopkins University, CERN-THESIS-2019-007, 2019
link
50 E. Balzani, R. Gröber, and M. Vitti Light-quark Yukawa couplings from off-shell Higgs production JHEP 10 (2023) 027 2304.09772
51 F. Bishara, U. Haisch, P. F. Monni, and E. Re Constraining light-quark Yukawa couplings from Higgs distributions PRL 118 (2017) 121801 1606.09253
52 CMS Collaboration Measurement and interpretation of differential cross sections for Higgs boson production at $ \sqrt{s} = $ 13 TeV PLB 792 (2019) 369 CMS-HIG-17-028
1812.06504
53 ATLAS Collaboration Measurement of the total and differential Higgs boson production cross-sections at $ \sqrt{s} = $ 13 TeV with the ATLAS detector by combining the $ \mathrm{H}\rightarrow \mathrm{Z}\mathrm{Z} \rightarrow 4\ell $ and $ \mathrm{H} \rightarrow{\gamma}{\gamma} $ decay channels JHEP 05 (2023) 028 2207.08615
54 CMS Collaboration Measurements of inclusive and differential cross sections for the Higgs boson production and decay to four-leptons in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 08 (2023) 040 CMS-HIG-21-009
2305.07532
55 G. T. Bodwin, F. Petriello, S. Stoynev, and M. Velasco Higgs boson decays to quarkonia and the $ \mathrm{H}\overline{\mathrm{c}}\mathrm{c} $ coupling PRD 88 (2013) 053003 1306.5770
56 CMS Collaboration Search for Higgs boson decay to a charm quark-antiquark pair in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PRL 131 (2023) 061801 CMS-HIG-21-008
2205.05550
57 ATLAS Collaboration Direct constraint on the Higgs-charm coupling from a search for Higgs boson decays into charm quarks with the ATLAS detector EPJC 82 (2022) 717 2201.11428
58 CMS Collaboration HEPData record for this analysis link
59 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
60 CMS Tracker Group Collaboration The CMS Phase-1 Pixel Detector Upgrade JINST 16 (2021) P02027 2012.14304
61 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
62 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
63 CMS Collaboration Performance of the CMS high-level trigger during LHC Run 2 JINST 19 (2024) P11021 CMS-TRG-19-001
2410.17038
64 CMS Collaboration Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015
CDS
65 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
66 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
67 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
68 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
69 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
70 CMS Collaboration Measurement of the inelastic proton-proton cross section at $ \sqrt{s} = $ 13 TeV JHEP 07 (2018) 161 CMS-FSQ-15-005
1802.02613
71 NNPDF Collaboration Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO NPB 855 (2012) 153 1107.2652
72 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
73 Y. Gao et al. Spin determination of single-produced resonances at hadron colliders PRD 81 (2010) 075022 1001.3396
74 S. Bolognesi et al. Spin and parity of a single-produced resonance at the LHC PRD 86 (2012) 095031 1208.4018
75 I. Anderson et al. Constraining anomalous $ \mathrm{H}\mathrm{V}\mathrm{V} $ interactions at proton and lepton colliders PRD 89 (2014) 035007 1309.4819
76 A. V. Gritsan, R. Röntsch, M. Schulze, and M. Xiao Constraining anomalous Higgs boson couplings to the heavy flavor fermions using matrix element techniques PRD 94 (2016) 055023 1606.03107
77 A. V. Gritsan et al. New features in the JHU generator framework: constraining Higgs boson properties from on-shell and off-shell production PRD 102 (2020) 056022 2002.09888
78 J. M. Campbell and R. K. Ellis MCFM for the Tevatron and the LHC Nucl. Phys. Proc. Suppl. 205-206 (2010) 10 1007.3492
79 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
80 E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM JHEP 02 (2012) 088 1111.2854
81 P. Nason and C. Oleari NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG JHEP 02 (2010) 037 0911.5299
82 G. Luisoni, P. Nason, C. Oleari, and F. Tramontano $ \mathrm{H}\mathrm{W}^{\pm} $/$\mathrm{HZ}$ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO JHEP 10 (2013) 083 1306.2542
83 H. B. Hartanto, B. Jager, L. Reina, and D. Wackeroth Higgs boson production in association with top quarks in the POWHEG BOX PRD 91 (2015) 094003 1501.04498
84 J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions EPJC 53 (2007) 473 0706.2569
85 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
86 J. M. Lindert et al. Precise predictions for V+jets dark matter backgrounds EPJC 77 (2017) 829 1705.04664
87 A. Denner, S. Dittmaier, M. Hecht, and C. Pasold NLO QCD and electroweak corrections to Z+$ \gamma $ production with leptonic Z-boson decays JHEP 02 (2016) 057 1510.08742
88 M. Grazzini, S. Kallweit, and D. Rathlev ZZ production at the LHC: fiducial cross sections and distributions in NNLO QCD PLB 750 (2015) 407 1507.06257
89 J. M. Campbell, R. K. Ellis, and C. Williams Vector boson pair production at the LHC JHEP 07 (2011) 018 1105.0020
90 J. M. Campbell, R. K. Ellis, and C. Williams Bounding the Higgs width at the LHC using full analytic results for $ \mathrm{g}\mathrm{g}\to \mathrm{e}^{-}\mathrm{e}^{+} \mu^{-} \mu^{+} $ JHEP 04 (2014) 060 1311.3589
91 J. M. Campbell and R. K. Ellis Higgs constraints from vector boson fusion and scattering JHEP 04 (2015) 030 1502.02990
92 CMS Collaboration Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at $ \sqrt{s}= $ 13 TeV JHEP 11 (2017) 047 CMS-HIG-16-041
1706.09936
93 CMS Collaboration Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton proton collisions at $ \sqrt{s} = $ 13 TeV EPJC 81 (2021) 488 CMS-HIG-19-001
2103.04956
94 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) P05014 CMS-EGM-17-001
2012.06888
95 H. Qu and L. Gouskos Jet tagging via particle clouds PRD 101 (2020) 056019 1902.08570
96 CMS Collaboration Mass regression of highly-boosted jets using graph neural networks CMS Detector Performance Note CMS-DP-2021-017, 2021
CDS
97 CMS Collaboration Calibration of the mass-decorrelated ParticleNet tagger for boosted $ \mathrm{b}\overline{\mathrm{b}} $ and $ \mathrm{c}\overline{\mathrm{c}} $ jets using LHC Run 2 data CMS Detector Performance Note CMS-DP-2022-005, 2022
CDS
98 CMS Collaboration Search for nonresonant pair production of highly energetic Higgs bosons decaying to bottom quarks PRL 131 (2023) 041803 2205.06667
99 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
100 E. Bols et al. Jet flavour classification using DeepJet JINST 15 (2020) P12012 2008.10519
101 CMS Collaboration Performance of heavy-flavour jet identification in boosted topologies in proton-proton collisions at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2023
CMS-PAS-BTV-22-001
CMS-PAS-BTV-22-001
102 CMS Collaboration The CMS statistical analysis and combination tool: Combine Comput. Softw. Big Sci. 8 (2024) 19 CMS-CAT-23-001
2404.06614
103 L. Demortier P values and nuisance parameters in Statistical issues for LHC physics, Proceedings, PHYSTAT-LHC, Geneva, 2007
link
104 R. G. Lomax and D. L. Hahs-Vaughn Statistical concepts: a second course Taylor and Francis, 2012
105 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
106 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2018
link
CMS-PAS-LUM-17-004
107 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2019
link
CMS-PAS-LUM-18-002
108 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
109 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435 hep-ex/9902006
110 A. L. Read Presentation of search results: the $ \text{CL}_\text{s} $ technique JPG 28 (2002) 2693
111 ATLAS Collaboration A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery Nature 607 (2022) 52 2207.00092
112 CMS Collaboration A portrait of the Higgs boson by the CMS experiment ten years after the discovery Nature 607 (2022) 60 CMS-HIG-22-001
2207.00043
113 M. Spira QCD effects in Higgs physics Fortsch. Phys. 46 (1998) 203 hep-ph/9705337
114 G.-y. Huang and S. Zhou Precise values of running quark and lepton masses in the standard model PRD 103 (2021) 016010 2009.04851
115 R. V. Harlander, S. Liebler, and H. Mantler SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the standard model and the MSSM Comput. Phys. Commun. 184 (2013) 1605 1212.3249
116 R. V. Harlander Higgs production in heavy quark annihilation through next-to-next-to-leading order QCD EPJC 76 (2016) 252 1512.04901
117 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 3. Higgs properties CERN Yellow Rep. Monogr. 4 (2013) 1307.1347
118 ATLAS Collaboration Evidence of off-shell Higgs boson production from ZZ leptonic decay channels and constraints on its total width with the ATLAS detector PLB 846 (2023) 138223 2304.01532
119 CMS Collaboration Measurement of the Higgs boson mass and width using the four-lepton final state in proton-proton collisions at 13 TeV CMS-HIG-21-019
2409.13663
Compact Muon Solenoid
LHC, CERN