CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-HIG-24-010
Improved results on Higgs boson pair production in the 4b final state
Abstract: Measurements of Higgs boson pair (HH) production in the four bottom quark final state are presented using a data set of proton-proton (pp) collisions at $ \sqrt{s}= $ 13.6 TeV collected by the CMS experiment during 2022-2023 and corresponding to an integrated luminosity of 62 fb$ ^{-1} $. Events in which each Higgs boson decay is separately reconstructed as a pair of small-radius jets (resolved), as well as events in which each $ \mathrm{H}\to\mathrm{b}\bar{\mathrm{b}} $ decay is reconstructed as a single large-radius jet (merged) are analyzed exclusively. Benefiting from novel analysis techniques, the combination of resolved and merged channels gives an observed (expected) upper limit at 95% confidence level (CL) on the HH signal strength $ \mu_{\mathrm{HH}} $, defined as the observed HH production cross section divided by the standard model (SM) prediction, of 4.4 (4.4). Compared to previous LHC results, the expected limit with an equivalent integrated luminosity is improved by more than a factor two in the resolved topology and significantly improved in the merged topology as well. The allowed ranges at 95% CL for the Higgs trilinear self-coupling and quartic coupling between two Higgs bosons and two vector bosons, relative to the standard model expectation, are observed (expected, in absence of signal) to be $ [-3.3,9.7] $ ($ [-3.4,10.0] $) and $ [0.63,1.43] $ ($ [0.54,1.51] $), respectively. An updated analysis of the resolved topology using a 13 TeV pp collision data set corresponding to 138 fb$ ^{-1} $ and collected in 2016-2018, reports an observed (expected) 95% CL upper limit on $ \mu_{\mathrm{HH}} $ of 10.0 (5.9), an improvement of about 25% in the expected limit compared to the published results using the same data.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Feynman diagrams that contribute to ggF and VBF HH production at leading order with coupling modifiers affecting the Higgs-to-fermion coupling $ \kappa_f $, to vector-boson coupling $ \kappa_{\text{V}} $, to two-vector-boson vertices $ \kappa_{\text{2V}} $ and self-coupling $ \kappa_{\lambda} $.

png pdf
Figure 1-a:
Feynman diagrams that contribute to ggF and VBF HH production at leading order with coupling modifiers affecting the Higgs-to-fermion coupling $ \kappa_f $, to vector-boson coupling $ \kappa_{\text{V}} $, to two-vector-boson vertices $ \kappa_{\text{2V}} $ and self-coupling $ \kappa_{\lambda} $.

png pdf
Figure 1-b:
Feynman diagrams that contribute to ggF and VBF HH production at leading order with coupling modifiers affecting the Higgs-to-fermion coupling $ \kappa_f $, to vector-boson coupling $ \kappa_{\text{V}} $, to two-vector-boson vertices $ \kappa_{\text{2V}} $ and self-coupling $ \kappa_{\lambda} $.

png pdf
Figure 1-c:
Feynman diagrams that contribute to ggF and VBF HH production at leading order with coupling modifiers affecting the Higgs-to-fermion coupling $ \kappa_f $, to vector-boson coupling $ \kappa_{\text{V}} $, to two-vector-boson vertices $ \kappa_{\text{2V}} $ and self-coupling $ \kappa_{\lambda} $.

png pdf
Figure 1-d:
Feynman diagrams that contribute to ggF and VBF HH production at leading order with coupling modifiers affecting the Higgs-to-fermion coupling $ \kappa_f $, to vector-boson coupling $ \kappa_{\text{V}} $, to two-vector-boson vertices $ \kappa_{\text{2V}} $ and self-coupling $ \kappa_{\lambda} $.

png pdf
Figure 1-e:
Feynman diagrams that contribute to ggF and VBF HH production at leading order with coupling modifiers affecting the Higgs-to-fermion coupling $ \kappa_f $, to vector-boson coupling $ \kappa_{\text{V}} $, to two-vector-boson vertices $ \kappa_{\text{2V}} $ and self-coupling $ \kappa_{\lambda} $.

png pdf
Figure 2:
Left: the b tagging performance of the Run 3 PNET@HLT algorithm (in blue) compared to the best-performing algorithm deployed at HLT in Run 2 (DEEPCSV, in red), as evaluated from $ \mathrm{t} \overline{\mathrm{t}} $ simulation on trigger-level AK4 jets with $ p_{\mathrm{T}} > $ 30 GeV and $ {|\eta| < 2.5} $. Right: efficiency of the triggers targeting the resolved $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ topology as a function of the generator-level $ m_{\mathrm{H}\mathrm{H}} $ in simulated SM $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ signal events in which the generator-level jets from the b quarks produced by $ \mathrm{H}\to \mathrm{b}\overline{\mathrm{b}} $ decays have $ p_{\mathrm{T}} $ larger than 25 GeV and $ {|\eta| < 2.5} $. The teal histogram shows the expected distribution for the SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ signal prior to any trigger selections.

png pdf
Figure 2-a:
Left: the b tagging performance of the Run 3 PNET@HLT algorithm (in blue) compared to the best-performing algorithm deployed at HLT in Run 2 (DEEPCSV, in red), as evaluated from $ \mathrm{t} \overline{\mathrm{t}} $ simulation on trigger-level AK4 jets with $ p_{\mathrm{T}} > $ 30 GeV and $ {|\eta| < 2.5} $. Right: efficiency of the triggers targeting the resolved $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ topology as a function of the generator-level $ m_{\mathrm{H}\mathrm{H}} $ in simulated SM $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ signal events in which the generator-level jets from the b quarks produced by $ \mathrm{H}\to \mathrm{b}\overline{\mathrm{b}} $ decays have $ p_{\mathrm{T}} $ larger than 25 GeV and $ {|\eta| < 2.5} $. The teal histogram shows the expected distribution for the SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ signal prior to any trigger selections.

png pdf
Figure 2-b:
Left: the b tagging performance of the Run 3 PNET@HLT algorithm (in blue) compared to the best-performing algorithm deployed at HLT in Run 2 (DEEPCSV, in red), as evaluated from $ \mathrm{t} \overline{\mathrm{t}} $ simulation on trigger-level AK4 jets with $ p_{\mathrm{T}} > $ 30 GeV and $ {|\eta| < 2.5} $. Right: efficiency of the triggers targeting the resolved $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ topology as a function of the generator-level $ m_{\mathrm{H}\mathrm{H}} $ in simulated SM $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ signal events in which the generator-level jets from the b quarks produced by $ \mathrm{H}\to \mathrm{b}\overline{\mathrm{b}} $ decays have $ p_{\mathrm{T}} $ larger than 25 GeV and $ {|\eta| < 2.5} $. The teal histogram shows the expected distribution for the SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ signal prior to any trigger selections.

png pdf
Figure 3:
Left: the $ \mathrm{b}\overline{\mathrm{b}} $ tagging performance of the PNET@HLT algorithm (in blue) compared to the highest-performing Run 2 algorithm (DOUBLEBB, in red), as evaluated on AK8 jets in the HLT from simulated $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ and QCD multijet events with $ p_{\mathrm{T}} > $ 300 GeV and $ {|\eta| < 2.5} $. Right: efficiency of the logical or of the trigger paths developed for the merged topology, as a function of the generator-level leading H candidate $ p_{\mathrm{T}} $ in simulated SM $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ events in which $ {\Delta R(\mathrm{b},\overline{\mathrm{b}}) < 0.8} $. The teal histogram shows the expected distribution for the SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ signal prior to any selections.

png pdf
Figure 3-a:
Left: the $ \mathrm{b}\overline{\mathrm{b}} $ tagging performance of the PNET@HLT algorithm (in blue) compared to the highest-performing Run 2 algorithm (DOUBLEBB, in red), as evaluated on AK8 jets in the HLT from simulated $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ and QCD multijet events with $ p_{\mathrm{T}} > $ 300 GeV and $ {|\eta| < 2.5} $. Right: efficiency of the logical or of the trigger paths developed for the merged topology, as a function of the generator-level leading H candidate $ p_{\mathrm{T}} $ in simulated SM $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ events in which $ {\Delta R(\mathrm{b},\overline{\mathrm{b}}) < 0.8} $. The teal histogram shows the expected distribution for the SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ signal prior to any selections.

png pdf
Figure 3-b:
Left: the $ \mathrm{b}\overline{\mathrm{b}} $ tagging performance of the PNET@HLT algorithm (in blue) compared to the highest-performing Run 2 algorithm (DOUBLEBB, in red), as evaluated on AK8 jets in the HLT from simulated $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ and QCD multijet events with $ p_{\mathrm{T}} > $ 300 GeV and $ {|\eta| < 2.5} $. Right: efficiency of the logical or of the trigger paths developed for the merged topology, as a function of the generator-level leading H candidate $ p_{\mathrm{T}} $ in simulated SM $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ events in which $ {\Delta R(\mathrm{b},\overline{\mathrm{b}}) < 0.8} $. The teal histogram shows the expected distribution for the SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ signal prior to any selections.

png pdf
Figure 4:
Left: invariant mass distributions for the leading ($ m_{\mathrm{H}_1} $) and subleading ($ m_{\mathrm{H}_2} $) $ p_{\mathrm{T}} \mathrm{H} $ candidates in SM $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ events obtained before and after the application of the PNET jet $ p_{\mathrm{T}} $ regression. Right: distribution of the $ p_{\mathrm{T}} $ balance, $ r=p_{\mathrm{T}}^{\mathrm{j_{1}}}/p_{\mathrm{T}}^{\mu\mu} $, in 2023 data and simulated events for the selected $ \mathrm{Z}(\mu\mu)+\mathrm{b}\text{-jet} $ region with $ \alpha=p_{\mathrm{T}}^{\mathrm{j_{2}}}/p_{\mathrm{T}}^{\mu\mu} < $ 0.15, obtained after applying the PNET jet $ p_{\mathrm{T}} $ regression. The $ \mu $ values quoted in the legend correspond to the mean of the distributions.

png pdf
Figure 4-a:
Left: invariant mass distributions for the leading ($ m_{\mathrm{H}_1} $) and subleading ($ m_{\mathrm{H}_2} $) $ p_{\mathrm{T}} \mathrm{H} $ candidates in SM $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ events obtained before and after the application of the PNET jet $ p_{\mathrm{T}} $ regression. Right: distribution of the $ p_{\mathrm{T}} $ balance, $ r=p_{\mathrm{T}}^{\mathrm{j_{1}}}/p_{\mathrm{T}}^{\mu\mu} $, in 2023 data and simulated events for the selected $ \mathrm{Z}(\mu\mu)+\mathrm{b}\text{-jet} $ region with $ \alpha=p_{\mathrm{T}}^{\mathrm{j_{2}}}/p_{\mathrm{T}}^{\mu\mu} < $ 0.15, obtained after applying the PNET jet $ p_{\mathrm{T}} $ regression. The $ \mu $ values quoted in the legend correspond to the mean of the distributions.

png pdf
Figure 4-b:
Left: invariant mass distributions for the leading ($ m_{\mathrm{H}_1} $) and subleading ($ m_{\mathrm{H}_2} $) $ p_{\mathrm{T}} \mathrm{H} $ candidates in SM $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ events obtained before and after the application of the PNET jet $ p_{\mathrm{T}} $ regression. Right: distribution of the $ p_{\mathrm{T}} $ balance, $ r=p_{\mathrm{T}}^{\mathrm{j_{1}}}/p_{\mathrm{T}}^{\mu\mu} $, in 2023 data and simulated events for the selected $ \mathrm{Z}(\mu\mu)+\mathrm{b}\text{-jet} $ region with $ \alpha=p_{\mathrm{T}}^{\mathrm{j_{2}}}/p_{\mathrm{T}}^{\mu\mu} < $ 0.15, obtained after applying the PNET jet $ p_{\mathrm{T}} $ regression. The $ \mu $ values quoted in the legend correspond to the mean of the distributions.

png pdf
Figure 5:
The ROC curve for GLOPART and PNET for discriminating $ \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}} $ from QCD jets with 400 $ < p_{\mathrm{T}} < $ 600 GeV, $ |\eta| < $ 2.4, and 60 $ < m_\text{SD} < $ 150 GeV (left). The mass regression performance for GLOPART and PNET for jets with $ p_{\mathrm{T}} > $ 200 GeV, $ |\eta| < $ 2.4, and satisfying a PNET selection corresponding to 30% signal efficiency (right). The conditions correspond to those during data collection in 2023.

png pdf
Figure 5-a:
The ROC curve for GLOPART and PNET for discriminating $ \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}} $ from QCD jets with 400 $ < p_{\mathrm{T}} < $ 600 GeV, $ |\eta| < $ 2.4, and 60 $ < m_\text{SD} < $ 150 GeV (left). The mass regression performance for GLOPART and PNET for jets with $ p_{\mathrm{T}} > $ 200 GeV, $ |\eta| < $ 2.4, and satisfying a PNET selection corresponding to 30% signal efficiency (right). The conditions correspond to those during data collection in 2023.

png pdf
Figure 5-b:
The ROC curve for GLOPART and PNET for discriminating $ \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}} $ from QCD jets with 400 $ < p_{\mathrm{T}} < $ 600 GeV, $ |\eta| < $ 2.4, and 60 $ < m_\text{SD} < $ 150 GeV (left). The mass regression performance for GLOPART and PNET for jets with $ p_{\mathrm{T}} > $ 200 GeV, $ |\eta| < $ 2.4, and satisfying a PNET selection corresponding to 30% signal efficiency (right). The conditions correspond to those during data collection in 2023.

png pdf
Figure 6:
Comparison between data and fit prediction from a simultaneous signal-plus-background fit to the GLOPART regressed jet mass distributions in $ \mathrm{Z} \to \mathrm{b}\overline{\mathrm{b}} $ VHP (left) and HP (middle) categories. Data corresponds to the full integrated luminosity collected by the CMS detector in 2022. The same comparison is performed for the $ m_{\mu\mu} $ distributions in the $ \mathrm{Z} \to \mu\mu $ region (right). Each process considered in the fit is modeled via a parametric function as described in the text.

png pdf
Figure 6-a:
Comparison between data and fit prediction from a simultaneous signal-plus-background fit to the GLOPART regressed jet mass distributions in $ \mathrm{Z} \to \mathrm{b}\overline{\mathrm{b}} $ VHP (left) and HP (middle) categories. Data corresponds to the full integrated luminosity collected by the CMS detector in 2022. The same comparison is performed for the $ m_{\mu\mu} $ distributions in the $ \mathrm{Z} \to \mu\mu $ region (right). Each process considered in the fit is modeled via a parametric function as described in the text.

png pdf
Figure 6-b:
Comparison between data and fit prediction from a simultaneous signal-plus-background fit to the GLOPART regressed jet mass distributions in $ \mathrm{Z} \to \mathrm{b}\overline{\mathrm{b}} $ VHP (left) and HP (middle) categories. Data corresponds to the full integrated luminosity collected by the CMS detector in 2022. The same comparison is performed for the $ m_{\mu\mu} $ distributions in the $ \mathrm{Z} \to \mu\mu $ region (right). Each process considered in the fit is modeled via a parametric function as described in the text.

png pdf
Figure 6-c:
Comparison between data and fit prediction from a simultaneous signal-plus-background fit to the GLOPART regressed jet mass distributions in $ \mathrm{Z} \to \mathrm{b}\overline{\mathrm{b}} $ VHP (left) and HP (middle) categories. Data corresponds to the full integrated luminosity collected by the CMS detector in 2022. The same comparison is performed for the $ m_{\mu\mu} $ distributions in the $ \mathrm{Z} \to \mu\mu $ region (right). Each process considered in the fit is modeled via a parametric function as described in the text.

png pdf
Figure 7:
Left: schematic diagram of the signal regions (dark shaded circles) and control regions (annular regions) in the $ m_{\mathrm{H}_1} $--$ m_{\mathrm{H}_2} $ mass plane as a function of $N_{\mathrm{b jet}}$. Right: schematic diagram showing the background estimation strategy, which applies a multidimensional reweighting of events from $ \mathrm{SR_{2\mathrm{b}}} $ to $ \mathrm{SR_{4\mathrm{b}}} $.

png pdf
Figure 7-a:
Left: schematic diagram of the signal regions (dark shaded circles) and control regions (annular regions) in the $ m_{\mathrm{H}_1} $--$ m_{\mathrm{H}_2} $ mass plane as a function of $N_{\mathrm{b jet}}$. Right: schematic diagram showing the background estimation strategy, which applies a multidimensional reweighting of events from $ \mathrm{SR_{2\mathrm{b}}} $ to $ \mathrm{SR_{4\mathrm{b}}} $.

png pdf
Figure 7-b:
Left: schematic diagram of the signal regions (dark shaded circles) and control regions (annular regions) in the $ m_{\mathrm{H}_1} $--$ m_{\mathrm{H}_2} $ mass plane as a function of $N_{\mathrm{b jet}}$. Right: schematic diagram showing the background estimation strategy, which applies a multidimensional reweighting of events from $ \mathrm{SR_{2\mathrm{b}}} $ to $ \mathrm{SR_{4\mathrm{b}}} $.

png pdf
Figure 8:
Distribution of the SvsB classifier score in the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ category for $ \mathrm{SR_{3\mathrm{b}}} $ data (black points) compared to the data-driven background prediction (blue histogram), for the pre-ParkingHH (left) and post-ParkingHH (right) data sets. The middle panel shows the ratio of data to the pre-fit (red open markers) and post b-only fit (black solid markers) background prediction, with the gray band indicating the background post-fit uncertainty. The lower panel show the distribution of the pulls, defined as the difference between the data and the post-fit background prediction, divided by the statistical uncertainty in the data.

png pdf
Figure 8-a:
Distribution of the SvsB classifier score in the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ category for $ \mathrm{SR_{3\mathrm{b}}} $ data (black points) compared to the data-driven background prediction (blue histogram), for the pre-ParkingHH (left) and post-ParkingHH (right) data sets. The middle panel shows the ratio of data to the pre-fit (red open markers) and post b-only fit (black solid markers) background prediction, with the gray band indicating the background post-fit uncertainty. The lower panel show the distribution of the pulls, defined as the difference between the data and the post-fit background prediction, divided by the statistical uncertainty in the data.

png pdf
Figure 8-b:
Distribution of the SvsB classifier score in the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ category for $ \mathrm{SR_{3\mathrm{b}}} $ data (black points) compared to the data-driven background prediction (blue histogram), for the pre-ParkingHH (left) and post-ParkingHH (right) data sets. The middle panel shows the ratio of data to the pre-fit (red open markers) and post b-only fit (black solid markers) background prediction, with the gray band indicating the background post-fit uncertainty. The lower panel show the distribution of the pulls, defined as the difference between the data and the post-fit background prediction, divided by the statistical uncertainty in the data.

png pdf
Figure 9:
A schematic diagram of the 4b validation regions defined in the $ m_{\mathrm{H}_1} $--$ m_{\mathrm{H}_2} $ mass plane and orthogonal to the $ \mathrm{SR_{4\mathrm{b}}} $. In each validation region, the solid blue area identifies the signal region, while the dashed blue lines indicate the corresponding control region. The ``leading'' H candidate is the one with largest $ p_{\mathrm{T}} $(H).

png pdf
Figure 10:
Pre-fit and post b-only fit distributions of the SvsB classifier output for the sum of all 4b validation regions in pre-ParkingHH (left) and post-ParkingHH (right) data.

png pdf
Figure 10-a:
Pre-fit and post b-only fit distributions of the SvsB classifier output for the sum of all 4b validation regions in pre-ParkingHH (left) and post-ParkingHH (right) data.

png pdf
Figure 10-b:
Pre-fit and post b-only fit distributions of the SvsB classifier output for the sum of all 4b validation regions in pre-ParkingHH (left) and post-ParkingHH (right) data.

png pdf
Figure 11:
Post-fit distributions of the SvsB classifier score in the $ \mathrm{SR_{4\mathrm{b}}} $ of the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ resolved analysis for data (black points) and the predicted background (blue filled histograms), for pre-ParkingHH (left) and post-ParkingHH (right) data. The distributions of the SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ (orange line) and $ \text{qq}\mathrm{H}\mathrm{H} $ (red line) signals, scaled to improve their visibility, are overlaid.

png pdf
Figure 11-a:
Post-fit distributions of the SvsB classifier score in the $ \mathrm{SR_{4\mathrm{b}}} $ of the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ resolved analysis for data (black points) and the predicted background (blue filled histograms), for pre-ParkingHH (left) and post-ParkingHH (right) data. The distributions of the SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ (orange line) and $ \text{qq}\mathrm{H}\mathrm{H} $ (red line) signals, scaled to improve their visibility, are overlaid.

png pdf
Figure 11-b:
Post-fit distributions of the SvsB classifier score in the $ \mathrm{SR_{4\mathrm{b}}} $ of the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ resolved analysis for data (black points) and the predicted background (blue filled histograms), for pre-ParkingHH (left) and post-ParkingHH (right) data. The distributions of the SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ (orange line) and $ \text{qq}\mathrm{H}\mathrm{H} $ (red line) signals, scaled to improve their visibility, are overlaid.

png pdf
Figure 12:
Post-fit distributions of the SvsB output score in the $ \mathrm{SR_{4\mathrm{b}}} $ of the $ \text{qq}\mathrm{H}\mathrm{H} $ resolved analysis reported for data (black points) and the predicted background (blue filled histograms) for pre-ParkingHH (left) and post-ParkingHH (right) data. The distributions of the SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ (orange line) and $ \text{qq}\mathrm{H}\mathrm{H} $(red line) signals, scaled to improve their visibility, are overlaid.

png pdf
Figure 12-a:
Post-fit distributions of the SvsB output score in the $ \mathrm{SR_{4\mathrm{b}}} $ of the $ \text{qq}\mathrm{H}\mathrm{H} $ resolved analysis reported for data (black points) and the predicted background (blue filled histograms) for pre-ParkingHH (left) and post-ParkingHH (right) data. The distributions of the SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ (orange line) and $ \text{qq}\mathrm{H}\mathrm{H} $(red line) signals, scaled to improve their visibility, are overlaid.

png pdf
Figure 12-b:
Post-fit distributions of the SvsB output score in the $ \mathrm{SR_{4\mathrm{b}}} $ of the $ \text{qq}\mathrm{H}\mathrm{H} $ resolved analysis reported for data (black points) and the predicted background (blue filled histograms) for pre-ParkingHH (left) and post-ParkingHH (right) data. The distributions of the SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ (orange line) and $ \text{qq}\mathrm{H}\mathrm{H} $(red line) signals, scaled to improve their visibility, are overlaid.

png pdf
Figure 13:
The expected HH, ZH, and ZZ signal yields as estimated from simulation (left) and the observed data (right) for the Run 3 dataset, in the 3T1M region, as a function of the reconstructed masses of the leading and subleading in $ p_{\mathrm{T}} \mathrm{H} $ candidates. The signal region is defined by the union of the regions enclosed by the dashed red lines.

png pdf
Figure 13-a:
The expected HH, ZH, and ZZ signal yields as estimated from simulation (left) and the observed data (right) for the Run 3 dataset, in the 3T1M region, as a function of the reconstructed masses of the leading and subleading in $ p_{\mathrm{T}} \mathrm{H} $ candidates. The signal region is defined by the union of the regions enclosed by the dashed red lines.

png pdf
Figure 13-b:
The expected HH, ZH, and ZZ signal yields as estimated from simulation (left) and the observed data (right) for the Run 3 dataset, in the 3T1M region, as a function of the reconstructed masses of the leading and subleading in $ p_{\mathrm{T}} \mathrm{H} $ candidates. The signal region is defined by the union of the regions enclosed by the dashed red lines.

png pdf
Figure 14:
Distribution of the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $, $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $, ZZ, and ZH signal processes, normalized to unity, as a function of the three FEYNNET probability scores.

png pdf
Figure 15:
Postfit distribution of the $ D $ ($\mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H}$-vs-bkg) (upper left), $ D $ ($\mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H}$-vs-bkg) (upper right), $ D $ ($\mathrm{Z}\mathrm{Z}$-vs-bkg) (lower left), and $ D $ ($\mathrm{Z}\mathrm{H}$-vs-bkg) (lower right) scores in the validation region $ \text{SR}_{\text{3MnT}} $ for data (black points) and the predicted background (cyan filled histograms) with the Run 3 dataset.

png pdf
Figure 15-a:
Postfit distribution of the $ D $ ($\mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H}$-vs-bkg) (upper left), $ D $ ($\mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H}$-vs-bkg) (upper right), $ D $ ($\mathrm{Z}\mathrm{Z}$-vs-bkg) (lower left), and $ D $ ($\mathrm{Z}\mathrm{H}$-vs-bkg) (lower right) scores in the validation region $ \text{SR}_{\text{3MnT}} $ for data (black points) and the predicted background (cyan filled histograms) with the Run 3 dataset.

png pdf
Figure 15-b:
Postfit distribution of the $ D $ ($\mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H}$-vs-bkg) (upper left), $ D $ ($\mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H}$-vs-bkg) (upper right), $ D $ ($\mathrm{Z}\mathrm{Z}$-vs-bkg) (lower left), and $ D $ ($\mathrm{Z}\mathrm{H}$-vs-bkg) (lower right) scores in the validation region $ \text{SR}_{\text{3MnT}} $ for data (black points) and the predicted background (cyan filled histograms) with the Run 3 dataset.

png pdf
Figure 15-c:
Postfit distribution of the $ D $ ($\mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H}$-vs-bkg) (upper left), $ D $ ($\mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H}$-vs-bkg) (upper right), $ D $ ($\mathrm{Z}\mathrm{Z}$-vs-bkg) (lower left), and $ D $ ($\mathrm{Z}\mathrm{H}$-vs-bkg) (lower right) scores in the validation region $ \text{SR}_{\text{3MnT}} $ for data (black points) and the predicted background (cyan filled histograms) with the Run 3 dataset.

png pdf
Figure 15-d:
Postfit distribution of the $ D $ ($\mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H}$-vs-bkg) (upper left), $ D $ ($\mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H}$-vs-bkg) (upper right), $ D $ ($\mathrm{Z}\mathrm{Z}$-vs-bkg) (lower left), and $ D $ ($\mathrm{Z}\mathrm{H}$-vs-bkg) (lower right) scores in the validation region $ \text{SR}_{\text{3MnT}} $ for data (black points) and the predicted background (cyan filled histograms) with the Run 3 dataset.

png pdf
Figure 16:
Postfit distributions of the transformed $ D $ ($\mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H}$-vs-bkg) score in the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} \text{SR}_{\text{3T1M}} $ (left) and $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} \text{SR}_{\text{3T1L}} $ (middle) categories, and $ D $ ($\mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H}$-vs-bkg) score in the $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} \text{SR}_{\text{3T1M}} $ (right) category for data (black points) and the predicted background (cyan filled histograms) for the Run 3 dataset. The distributions of the SM $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ (orange line) and $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ (red line) signal processes, scaled to improve their visibility, are also overlaid.

png pdf
Figure 16-a:
Postfit distributions of the transformed $ D $ ($\mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H}$-vs-bkg) score in the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} \text{SR}_{\text{3T1M}} $ (left) and $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} \text{SR}_{\text{3T1L}} $ (middle) categories, and $ D $ ($\mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H}$-vs-bkg) score in the $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} \text{SR}_{\text{3T1M}} $ (right) category for data (black points) and the predicted background (cyan filled histograms) for the Run 3 dataset. The distributions of the SM $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ (orange line) and $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ (red line) signal processes, scaled to improve their visibility, are also overlaid.

png pdf
Figure 16-b:
Postfit distributions of the transformed $ D $ ($\mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H}$-vs-bkg) score in the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} \text{SR}_{\text{3T1M}} $ (left) and $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} \text{SR}_{\text{3T1L}} $ (middle) categories, and $ D $ ($\mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H}$-vs-bkg) score in the $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} \text{SR}_{\text{3T1M}} $ (right) category for data (black points) and the predicted background (cyan filled histograms) for the Run 3 dataset. The distributions of the SM $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ (orange line) and $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ (red line) signal processes, scaled to improve their visibility, are also overlaid.

png pdf
Figure 16-c:
Postfit distributions of the transformed $ D $ ($\mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H}$-vs-bkg) score in the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} \text{SR}_{\text{3T1M}} $ (left) and $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} \text{SR}_{\text{3T1L}} $ (middle) categories, and $ D $ ($\mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H}$-vs-bkg) score in the $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} \text{SR}_{\text{3T1M}} $ (right) category for data (black points) and the predicted background (cyan filled histograms) for the Run 3 dataset. The distributions of the SM $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ (orange line) and $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ (red line) signal processes, scaled to improve their visibility, are also overlaid.

png pdf
Figure 17:
Postfit distribution of the transformed $ D $ ($\mathrm{Z}\mathrm{Z}$-vs-bkg) score in the $ \mathrm{Z}\mathrm{Z} \text{SR}_{\text{3T1M}} $ (upper left) and $ \mathrm{Z}\mathrm{Z} \text{SR}_{\text{3T1L}} $ (upper right) categories, and $ D $ ($\mathrm{Z}\mathrm{H}$-vs-bkg) score in the $ \mathrm{Z}\mathrm{H} \text{SR}_{\text{3T1M}} $ (lower left) and $ \mathrm{Z}\mathrm{H} \text{SR}_{\text{3T1L}} $ (lower right) SR for data (black points) and the predicted background (cyan filled histograms) for the Run 3 dataset. The distributions of the SM ZZ (green line) and ZH (purple line) processes are also overlaid.

png pdf
Figure 17-a:
Postfit distribution of the transformed $ D $ ($\mathrm{Z}\mathrm{Z}$-vs-bkg) score in the $ \mathrm{Z}\mathrm{Z} \text{SR}_{\text{3T1M}} $ (upper left) and $ \mathrm{Z}\mathrm{Z} \text{SR}_{\text{3T1L}} $ (upper right) categories, and $ D $ ($\mathrm{Z}\mathrm{H}$-vs-bkg) score in the $ \mathrm{Z}\mathrm{H} \text{SR}_{\text{3T1M}} $ (lower left) and $ \mathrm{Z}\mathrm{H} \text{SR}_{\text{3T1L}} $ (lower right) SR for data (black points) and the predicted background (cyan filled histograms) for the Run 3 dataset. The distributions of the SM ZZ (green line) and ZH (purple line) processes are also overlaid.

png pdf
Figure 17-b:
Postfit distribution of the transformed $ D $ ($\mathrm{Z}\mathrm{Z}$-vs-bkg) score in the $ \mathrm{Z}\mathrm{Z} \text{SR}_{\text{3T1M}} $ (upper left) and $ \mathrm{Z}\mathrm{Z} \text{SR}_{\text{3T1L}} $ (upper right) categories, and $ D $ ($\mathrm{Z}\mathrm{H}$-vs-bkg) score in the $ \mathrm{Z}\mathrm{H} \text{SR}_{\text{3T1M}} $ (lower left) and $ \mathrm{Z}\mathrm{H} \text{SR}_{\text{3T1L}} $ (lower right) SR for data (black points) and the predicted background (cyan filled histograms) for the Run 3 dataset. The distributions of the SM ZZ (green line) and ZH (purple line) processes are also overlaid.

png pdf
Figure 17-c:
Postfit distribution of the transformed $ D $ ($\mathrm{Z}\mathrm{Z}$-vs-bkg) score in the $ \mathrm{Z}\mathrm{Z} \text{SR}_{\text{3T1M}} $ (upper left) and $ \mathrm{Z}\mathrm{Z} \text{SR}_{\text{3T1L}} $ (upper right) categories, and $ D $ ($\mathrm{Z}\mathrm{H}$-vs-bkg) score in the $ \mathrm{Z}\mathrm{H} \text{SR}_{\text{3T1M}} $ (lower left) and $ \mathrm{Z}\mathrm{H} \text{SR}_{\text{3T1L}} $ (lower right) SR for data (black points) and the predicted background (cyan filled histograms) for the Run 3 dataset. The distributions of the SM ZZ (green line) and ZH (purple line) processes are also overlaid.

png pdf
Figure 17-d:
Postfit distribution of the transformed $ D $ ($\mathrm{Z}\mathrm{Z}$-vs-bkg) score in the $ \mathrm{Z}\mathrm{Z} \text{SR}_{\text{3T1M}} $ (upper left) and $ \mathrm{Z}\mathrm{Z} \text{SR}_{\text{3T1L}} $ (upper right) categories, and $ D $ ($\mathrm{Z}\mathrm{H}$-vs-bkg) score in the $ \mathrm{Z}\mathrm{H} \text{SR}_{\text{3T1M}} $ (lower left) and $ \mathrm{Z}\mathrm{H} \text{SR}_{\text{3T1L}} $ (lower right) SR for data (black points) and the predicted background (cyan filled histograms) for the Run 3 dataset. The distributions of the SM ZZ (green line) and ZH (purple line) processes are also overlaid.

png pdf
Figure 18:
The fitted signal+background distribution of the signal probability, $ \mathcal{P_{\mathrm{H}\mathrm{H}}} $, in the $ \mathrm{H}\mathrm{H} \mathrm{SR_{4\mathrm{b}}} $. The black points show the 4b events from data. The yellow and blue regions show the predictions from the QCD multijet model and the $ \mathrm{t} \overline{\mathrm{t}} $ simulation, respectively. The prediction for the SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ signal distribution is given by the red histogram, multiplied by 100. The lower panel shows the data-to-background ratio, with the hatched area representing the background uncertainty.

png pdf
Figure 19:
Left: schematic diagram showing the regions used for the data-driven background estimation strategy used in the merged channel. The purity in QCD multijet events is reported in each of the background-enriched regions ($ \mathrm{CR_{QCD,A}} $, $ \mathrm{CR_{QCD,B}} $, and $ \mathrm{CR_{QCD,C}} $). Right: schematic diagram of the signal (orange area) and control regions (QCD in green, $ \mathrm{t} \overline{\mathrm{t}} $ in azure) in the plane defined by the $ m_\text{reg}({\mathrm{H}_1}) $ and $ m_\text{reg}({\mathrm{H}_2}) $.

png pdf
Figure 19-a:
Left: schematic diagram showing the regions used for the data-driven background estimation strategy used in the merged channel. The purity in QCD multijet events is reported in each of the background-enriched regions ($ \mathrm{CR_{QCD,A}} $, $ \mathrm{CR_{QCD,B}} $, and $ \mathrm{CR_{QCD,C}} $). Right: schematic diagram of the signal (orange area) and control regions (QCD in green, $ \mathrm{t} \overline{\mathrm{t}} $ in azure) in the plane defined by the $ m_\text{reg}({\mathrm{H}_1}) $ and $ m_\text{reg}({\mathrm{H}_2}) $.

png pdf
Figure 19-b:
Left: schematic diagram showing the regions used for the data-driven background estimation strategy used in the merged channel. The purity in QCD multijet events is reported in each of the background-enriched regions ($ \mathrm{CR_{QCD,A}} $, $ \mathrm{CR_{QCD,B}} $, and $ \mathrm{CR_{QCD,C}} $). Right: schematic diagram of the signal (orange area) and control regions (QCD in green, $ \mathrm{t} \overline{\mathrm{t}} $ in azure) in the plane defined by the $ m_\text{reg}({\mathrm{H}_1}) $ and $ m_\text{reg}({\mathrm{H}_2}) $.

png pdf
Figure 20:
Pre-fit and post-fit distributions of the fitted observables for the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $-inclusive HPSR (left) and LPSR (right) categories of the merged analysis following the mass-fit method. Distributions are shown for data (black points) and the different background contributions from QCD multijet, $ \mathrm{t} \overline{\mathrm{t}} $, $ \mathrm{V}+\text{jets} $, dibosons, and ZH productions. The expected distributions for SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ (orange) and $ \text{qq}\mathrm{H}\mathrm{H} $ (red) signals are overlaid and scaled by a multiplicative factor to improve their visibility.

png pdf
Figure 20-a:
Pre-fit and post-fit distributions of the fitted observables for the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $-inclusive HPSR (left) and LPSR (right) categories of the merged analysis following the mass-fit method. Distributions are shown for data (black points) and the different background contributions from QCD multijet, $ \mathrm{t} \overline{\mathrm{t}} $, $ \mathrm{V}+\text{jets} $, dibosons, and ZH productions. The expected distributions for SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ (orange) and $ \text{qq}\mathrm{H}\mathrm{H} $ (red) signals are overlaid and scaled by a multiplicative factor to improve their visibility.

png pdf
Figure 20-b:
Pre-fit and post-fit distributions of the fitted observables for the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $-inclusive HPSR (left) and LPSR (right) categories of the merged analysis following the mass-fit method. Distributions are shown for data (black points) and the different background contributions from QCD multijet, $ \mathrm{t} \overline{\mathrm{t}} $, $ \mathrm{V}+\text{jets} $, dibosons, and ZH productions. The expected distributions for SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ (orange) and $ \text{qq}\mathrm{H}\mathrm{H} $ (red) signals are overlaid and scaled by a multiplicative factor to improve their visibility.

png pdf
Figure 21:
Pre-fit and post-fit distributions of the fitted observables for the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $-inclusive HPSR (left) and LPSR (right) categories of the merged analysis following the DNN-fit method. Distributions are shown for data (black points) and the different background contributions from QCD multijet, $ \mathrm{t} \overline{\mathrm{t}} $, $ \mathrm{V}+\text{jets} $, dibosons, and ZH productions. The expected distributions for SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ (orange) and $ \text{qq}\mathrm{H}\mathrm{H} $ (red) signals are overlaid and scaled by a multiplicative factor to improve their visibility.

png pdf
Figure 21-a:
Pre-fit and post-fit distributions of the fitted observables for the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $-inclusive HPSR (left) and LPSR (right) categories of the merged analysis following the DNN-fit method. Distributions are shown for data (black points) and the different background contributions from QCD multijet, $ \mathrm{t} \overline{\mathrm{t}} $, $ \mathrm{V}+\text{jets} $, dibosons, and ZH productions. The expected distributions for SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ (orange) and $ \text{qq}\mathrm{H}\mathrm{H} $ (red) signals are overlaid and scaled by a multiplicative factor to improve their visibility.

png pdf
Figure 21-b:
Pre-fit and post-fit distributions of the fitted observables for the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $-inclusive HPSR (left) and LPSR (right) categories of the merged analysis following the DNN-fit method. Distributions are shown for data (black points) and the different background contributions from QCD multijet, $ \mathrm{t} \overline{\mathrm{t}} $, $ \mathrm{V}+\text{jets} $, dibosons, and ZH productions. The expected distributions for SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ (orange) and $ \text{qq}\mathrm{H}\mathrm{H} $ (red) signals are overlaid and scaled by a multiplicative factor to improve their visibility.

png pdf
Figure 22:
Pre-fit and post-fit distributions of the fitted observables for the $ \text{qq}\mathrm{H}\mathrm{H} $ HPSR (left) and LPSR (right) categories of the merged analysis. Distributions are shown for data (black points) and the different background contributions from QCD multijet, $ \mathrm{t} \overline{\mathrm{t}} $, $ \mathrm{V}+\text{jets} $, dibosons, and ZH productions. The expected distributions for SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ (orange) and $ \text{qq}\mathrm{H}\mathrm{H} $ (red) signals are overlaid and scaled by a multiplicative factor to improve their visibility.

png pdf
Figure 22-a:
Pre-fit and post-fit distributions of the fitted observables for the $ \text{qq}\mathrm{H}\mathrm{H} $ HPSR (left) and LPSR (right) categories of the merged analysis. Distributions are shown for data (black points) and the different background contributions from QCD multijet, $ \mathrm{t} \overline{\mathrm{t}} $, $ \mathrm{V}+\text{jets} $, dibosons, and ZH productions. The expected distributions for SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ (orange) and $ \text{qq}\mathrm{H}\mathrm{H} $ (red) signals are overlaid and scaled by a multiplicative factor to improve their visibility.

png pdf
Figure 22-b:
Pre-fit and post-fit distributions of the fitted observables for the $ \text{qq}\mathrm{H}\mathrm{H} $ HPSR (left) and LPSR (right) categories of the merged analysis. Distributions are shown for data (black points) and the different background contributions from QCD multijet, $ \mathrm{t} \overline{\mathrm{t}} $, $ \mathrm{V}+\text{jets} $, dibosons, and ZH productions. The expected distributions for SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ (orange) and $ \text{qq}\mathrm{H}\mathrm{H} $ (red) signals are overlaid and scaled by a multiplicative factor to improve their visibility.

png pdf
Figure 23:
Schematic diagrams showing the SRs and QCD CR (gray) used in the merged analysis described in Section 6.3. Left: the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ SR 1 (red), 2 (blue), and 3 (orange) are defined based on successively lower selections on the $ T_\text{Xbb} $ score of the \HepParticleHu candidate and the D(\text$ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $-vs-bkg) score. Right: the $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ SR (purple) is defined based on a Tight selection on D(\text$ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $-vs-bkg) and a Loose selection on $ T_\text{Xbb} $ of the \HepParticleHu candidate.

png pdf
Figure 24:
The fitted signal+background distributions in the regressed mass of the secondary Higgs boson candidate $ m_\text{reg}(\mathrm{H_u}) $ in $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ SR 1 (upper left), the $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ SR (upper right), $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ SR 2 (lower left), and $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ SR 3 (lower right). The SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ and $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ signal are overlaid in the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ SRs scaled by different factors. The targeted $ \kappa_{2\mathrm{V}}= $ 0 $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ signal is also overlaid in the $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ SR.

png pdf
Figure 24-a:
The fitted signal+background distributions in the regressed mass of the secondary Higgs boson candidate $ m_\text{reg}(\mathrm{H_u}) $ in $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ SR 1 (upper left), the $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ SR (upper right), $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ SR 2 (lower left), and $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ SR 3 (lower right). The SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ and $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ signal are overlaid in the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ SRs scaled by different factors. The targeted $ \kappa_{2\mathrm{V}}= $ 0 $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ signal is also overlaid in the $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ SR.

png pdf
Figure 24-b:
The fitted signal+background distributions in the regressed mass of the secondary Higgs boson candidate $ m_\text{reg}(\mathrm{H_u}) $ in $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ SR 1 (upper left), the $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ SR (upper right), $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ SR 2 (lower left), and $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ SR 3 (lower right). The SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ and $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ signal are overlaid in the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ SRs scaled by different factors. The targeted $ \kappa_{2\mathrm{V}}= $ 0 $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ signal is also overlaid in the $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ SR.

png pdf
Figure 24-c:
The fitted signal+background distributions in the regressed mass of the secondary Higgs boson candidate $ m_\text{reg}(\mathrm{H_u}) $ in $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ SR 1 (upper left), the $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ SR (upper right), $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ SR 2 (lower left), and $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ SR 3 (lower right). The SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ and $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ signal are overlaid in the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ SRs scaled by different factors. The targeted $ \kappa_{2\mathrm{V}}= $ 0 $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ signal is also overlaid in the $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ SR.

png pdf
Figure 24-d:
The fitted signal+background distributions in the regressed mass of the secondary Higgs boson candidate $ m_\text{reg}(\mathrm{H_u}) $ in $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ SR 1 (upper left), the $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ SR (upper right), $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ SR 2 (lower left), and $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ SR 3 (lower right). The SM $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ and $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ signal are overlaid in the $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $ SRs scaled by different factors. The targeted $ \kappa_{2\mathrm{V}}= $ 0 $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ signal is also overlaid in the $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ SR.

png pdf
Figure 25:
Left: the observed (solid) and expected (dashed) 95% CL upper limits on the signal strength of HH production from the resolved analysis with overlap removed, the merged HPSR mass-fit category, and their combination. The cyan and blue bands represent, respectively, the 68 and 95% CL intervals around the expected limit. Right: the same breakdown of 95% CL upper limits on the signal strength of $ \text{qq}\mathrm{H}\mathrm{H} $ production.

png pdf
Figure 25-a:
Left: the observed (solid) and expected (dashed) 95% CL upper limits on the signal strength of HH production from the resolved analysis with overlap removed, the merged HPSR mass-fit category, and their combination. The cyan and blue bands represent, respectively, the 68 and 95% CL intervals around the expected limit. Right: the same breakdown of 95% CL upper limits on the signal strength of $ \text{qq}\mathrm{H}\mathrm{H} $ production.

png pdf
Figure 25-b:
Left: the observed (solid) and expected (dashed) 95% CL upper limits on the signal strength of HH production from the resolved analysis with overlap removed, the merged HPSR mass-fit category, and their combination. The cyan and blue bands represent, respectively, the 68 and 95% CL intervals around the expected limit. Right: the same breakdown of 95% CL upper limits on the signal strength of $ \text{qq}\mathrm{H}\mathrm{H} $ production.

png pdf
Figure 26:
The observed (solid) and expected (dashed) 95% CL upper limits on the signal strength of the HH production ($ \mu_{\mathrm{H}\mathrm{H}} $) obtained as a function of $ \kappa_{\lambda} $ (left) and $ \kappa_{\text{2V}} $ (right) for the combined fit of resolved and merged $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ analyses. The cyan and blue bands represent, respectively, the 68 and 95% CL intervals around the expected limit. The horizontal red lines indicate the SM prediction.

png pdf
Figure 26-a:
The observed (solid) and expected (dashed) 95% CL upper limits on the signal strength of the HH production ($ \mu_{\mathrm{H}\mathrm{H}} $) obtained as a function of $ \kappa_{\lambda} $ (left) and $ \kappa_{\text{2V}} $ (right) for the combined fit of resolved and merged $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ analyses. The cyan and blue bands represent, respectively, the 68 and 95% CL intervals around the expected limit. The horizontal red lines indicate the SM prediction.

png pdf
Figure 26-b:
The observed (solid) and expected (dashed) 95% CL upper limits on the signal strength of the HH production ($ \mu_{\mathrm{H}\mathrm{H}} $) obtained as a function of $ \kappa_{\lambda} $ (left) and $ \kappa_{\text{2V}} $ (right) for the combined fit of resolved and merged $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ analyses. The cyan and blue bands represent, respectively, the 68 and 95% CL intervals around the expected limit. The horizontal red lines indicate the SM prediction.

png pdf
Figure 27:
The observed (solid) and expected (dashed) profile likelihood ratios as a function of $ \kappa_{\lambda} $ (left) and $ \kappa_{\text{2V}} $ (right) for the combined fit of resolved and merged $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ analyses, where the expected is obtained from an Asimov dataset [100] defined by fixing the nuisances parameters to their maximum likelihood estimate obtained from data in which $ \mu_{\mathrm{H}\mathrm{H}}= $ 1. The 68 and 95% CL levels are indicated with the dashed red lines.

png pdf
Figure 27-a:
The observed (solid) and expected (dashed) profile likelihood ratios as a function of $ \kappa_{\lambda} $ (left) and $ \kappa_{\text{2V}} $ (right) for the combined fit of resolved and merged $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ analyses, where the expected is obtained from an Asimov dataset [100] defined by fixing the nuisances parameters to their maximum likelihood estimate obtained from data in which $ \mu_{\mathrm{H}\mathrm{H}}= $ 1. The 68 and 95% CL levels are indicated with the dashed red lines.

png pdf
Figure 27-b:
The observed (solid) and expected (dashed) profile likelihood ratios as a function of $ \kappa_{\lambda} $ (left) and $ \kappa_{\text{2V}} $ (right) for the combined fit of resolved and merged $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ analyses, where the expected is obtained from an Asimov dataset [100] defined by fixing the nuisances parameters to their maximum likelihood estimate obtained from data in which $ \mu_{\mathrm{H}\mathrm{H}}= $ 1. The 68 and 95% CL levels are indicated with the dashed red lines.

png pdf
Figure 28:
The observed (blue) and expected (orange) 2D exclusion range for ($ \mu_{\mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H}} $, $ \mu_{\text{qq}\mathrm{H}\mathrm{H}} $) (left) and ($ \kappa_{\lambda} $,$ \kappa_{\text{2V}} $) (right) for the combination of resolved and merged $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ analyses. The solid and dashed lines represent the 68 and 95% CL exclusion contours, respectively. The red circle indicates the SM prediction, while the black cross shows the best-fit result.

png pdf
Figure 28-a:
The observed (blue) and expected (orange) 2D exclusion range for ($ \mu_{\mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H}} $, $ \mu_{\text{qq}\mathrm{H}\mathrm{H}} $) (left) and ($ \kappa_{\lambda} $,$ \kappa_{\text{2V}} $) (right) for the combination of resolved and merged $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ analyses. The solid and dashed lines represent the 68 and 95% CL exclusion contours, respectively. The red circle indicates the SM prediction, while the black cross shows the best-fit result.

png pdf
Figure 28-b:
The observed (blue) and expected (orange) 2D exclusion range for ($ \mu_{\mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H}} $, $ \mu_{\text{qq}\mathrm{H}\mathrm{H}} $) (left) and ($ \kappa_{\lambda} $,$ \kappa_{\text{2V}} $) (right) for the combination of resolved and merged $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ analyses. The solid and dashed lines represent the 68 and 95% CL exclusion contours, respectively. The red circle indicates the SM prediction, while the black cross shows the best-fit result.
Tables

png pdf
Table 1:
The observed (expected) upper limits at 95% CL on the $ \mu_{\mathrm{Z}\mathrm{Z}} $ and $ \mu_{\mathrm{Z}\mathrm{H}} $, observed signal strength and significance. The upper limits are obtained from a fit on the $ D $ ($\mathrm{Z}\mathrm{Z}$-vs-bkg) and $ D $ ($\mathrm{Z}\mathrm{H}$-vs-bkg) scores under the hypothesis of no $ \mathrm{Z}\mathrm{Z} \rightarrow4\mathrm{b} $ or $ \mathrm{Z}\mathrm{H} \rightarrow4\mathrm{b} $ signal.

png pdf
Table 2:
Expected best-fit values and 95% CL upper limits (``U.L.'') for $ \mu_{\mathrm{HH}} $, $ \mu_{\mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H}} $, and $ \mu_{\text{qq}\mathrm{H}\mathrm{H}} $ in the $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ resolved analysis following the two approaches described in Secs. 5.2 and 5.3, respectively. The uncertainties given for the best-fit signal strengths correspond to the 68% CL intervals. The best-fit signal strengths are calculated with a SM $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ signal injected, while the upper limits are calculated in the absence of signal.

png pdf
Table 3:
Observed best-fit values and 95% CL upper limits (``U.L.'') for $ \mu_{\mathrm{HH}} $, $ \mu_{\mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H}} $, and $ \mu_{\text{qq}\mathrm{H}\mathrm{H}} $ in the $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ resolved analysis following the two approaches described in Secs. 5.2 and 5.3, respectively. The uncertainties given for the best-fit signal strengths correspond to the 68% CL intervals.

png pdf
Table 4:
Observed and expected, in absence of signal, 95% CL intervals for $ \kappa_{\lambda} $ and $ \kappa_{\text{2V}} $ in the $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ resolved analysis, following the two approaches described in Secs. 5.2 and 5.3, respectively.

png pdf
Table 5:
Expected and observed $ \mu_{\mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H}} $ and their corresponding upper limits at 95% CL in the $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ resolved channel with Run 2 data (described in Section 5.4). The observed and expected 95% CL intervals for $ \kappa_{\lambda} $ are also reported.

png pdf
Table 6:
The expected best-fit signal strengths and 95% CL upper limits on the inclusive, $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $, and $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ signal strengths for the SM scenario for the two approaches described in Sections 6.2 and 6.3, respectively. The expected best-fit signal strength and 95% CL upper limit on the HH signal strength for the non-SM $ \kappa_{2\mathrm{V}}= $ 0.5 scenario are also reported. The uncertainties given for the best-fit signal strengths correspond to the 68% CL intervals. The best-fit signal strengths are calculated with a SM $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ signal injected, while the upper limits are calculated in the absence of signal.

png pdf
Table 7:
The observed best-fit signal strengths and 95% CL upper limits on the inclusive, $ \mathrm{g}\mathrm{g}\mathrm{H}\mathrm{H} $, and $ \mathrm{q}\mathrm{q}\mathrm{H}\mathrm{H} $ signal strengths for the SM scenario for the two approaches described in Sections 6.2 and 6.3, respectively. The best-fit and observed 95% CL upper limits on the HH signal strength for the non-SM $ \kappa_{2\mathrm{V}}= $ 0.5 are also reported. The uncertainties given for the best-fit signal strengths correspond to the 68% CL intervals.

png pdf
Table 8:
The observed and expected 95% CL intervals for $ \kappa_\lambda $ and $ \kappa_{2\mathrm{V}} $ in the merged channel for the two approaches described in Sections 6.2 and 6.3, respectively.

png pdf
Table 9:
Expected and observed best-fit values for the signal strengths, $ \kappa_{\lambda} $, and $ \kappa_{\text{2V}} $ from the combined fit of the $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ resolved and merged analyses. The uncertainties given correspond to the 68% CL intervals. The expected results are calculated with a SM $ \mathrm{H}\mathrm{H} \to 4\mathrm{b} $ signal injected.
Summary
Measurements of Higgs boson pair (HH) production in the four bottom quark final state are presented using a data set of proton-proton (pp) collisions at $ \sqrt{s}= $ 13.6 TeV collected by the CMS experiment during 2022-2023 and corresponding to an integrated luminosity of 62 fb$ ^{-1} $. Events in which each Higgs boson decay is separately reconstructed as a pair of small-radius jets (resolved), as well as events in which each $ \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}} $ decay is reconstructed as a single large-radius jet (merged) are analyzed exclusively. Benefiting from novel analysis techniques, the combination of resolved and merged channels gives an observed (expected) upper limit at 95% confidence level (CL) on the HH signal strength $ \mu_{\mathrm{H}\mathrm{H}} $, defined as the observed HH production cross section divided by the standard model (SM) prediction, of 4.4 (4.4). Compared to previous LHC results, the expected limit with an equivalent integrated luminosity is improved by more than a factor two in the resolved topology and significantly improved in the merged topology as well. The allowed ranges at 95% CL for the Higgs trilinear self-coupling and quartic coupling between two Higgs bosons and two vector bosons, relative to the standard model expectation, are observed (expected, in absence of signal) to be $ [-3.3,9.7] $ ($ [-3.4,10.0] $) and $ [0.63,1.43] $ ($ [0.54,1.51] $), respectively. An updated analysis of the resolved topology using a 13 TeV pp collision data set corresponding to 138 fb$ ^{-1} $ and collected in 2016-2018, reports an observed (expected) 95% CL upper limit on $ \mu_{\mathrm{H}\mathrm{H}} $ of 10.0 (5.9), an improvement of about 25% in the expected limit compared to the published results using the same data.
References
1 F. Englert and R. Brout Broken symmetry and the mass of gauge vector mesons PRL 13 (1964) 321
2 P. W. Higgs Broken symmetries, massless particles and gauge fields PL 12 (1964) 132
3 P. W. Higgs Broken symmetries and the masses of gauge bosons PRL 13 (1964) 508
4 G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble Global conservation laws and massless particles PRL 13 (1964) 585
5 P. W. Higgs Spontaneous symmetry breakdown without massless bosons PR 145 (1966) 1156
6 T. W. B. Kibble Symmetry breaking in non-abelian gauge theories PR 155 (1967) 1554
7 ATLAS Collaboration Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
8 CMS Collaboration Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
9 CMS Collaboration A portrait of the Higgs boson by the CMS experiment ten years after the discovery. Nature 607 (2022) 60 CMS-HIG-22-001
2207.00043
10 ATLAS Collaboration A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery Nature 607 (2022) 52 2207.00092
11 J. Alison et al. Higgs boson potential at colliders: Status and perspectives Rev. Phys. 5 (2020) 100045 1910.00012
12 F. Bishara, R. Contino, and J. Rojo Higgs pair production in vector-boson fusion at the LHC and beyond EPJC 77 (2017) 481 1611.03860
13 ATLAS Collaboration Combination of Searches for Higgs Boson Pair Production in $ pp $ Collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS Detector PRL 133 (2024) 101801 2406.09971
14 CMS Collaboration Combination of searches for nonresonant Higgs boson pair production in proton-proton collisions at $ \sqrt{s} = $ 13 TeV technical report, 2025
link
CMS-HIG-20-011
2510.07527
15 ATLAS Collaboration Studies of new Higgs boson interactions through nonresonant HH production in the $ b\overline{b}\gamma \gamma $ final state in pp collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector JHEP 01 (2024) 066 2310.12301
16 ATLAS Collaboration Search for nonresonant pair production of higgs bosons in the $ b\overline{b}b\overline{b} $ final state in $ pp $ collisions at $ \sqrt{s}= $ 13 TeV with the atlas detector PRD 108 (2023) 052003 2301.03212
17 ATLAS Collaboration Search for the nonresonant production of higgs boson pairs via gluon fusion and vector-boson fusion in the $ b\overline{b}{\tau}^{+}{\tau}^{-} $ final state in proton-proton collisions at $ \sqrt{s}= $ 13 TeV with the atlas detector PRD 110 (2024) 032012 2404.12660
18 ATLAS Collaboration Search for non-resonant Higgs boson pair production in final states with leptons, taus, and photons in pp collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector JHEP 08 (2024) 164 2405.20040
19 ATLAS Collaboration Search for non-resonant Higgs boson pair production in the 2 $ b+2\ell +{E}_{\textrm{T}}^{\textrm{miss}} $ final state in pp collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector JHEP 02 (2024) 037 2310.11286
20 CMS Collaboration Search for nonresonant Higgs boson pair production in final state with two bottom quarks and two tau leptons in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PLB 842 (2023) 137531 CMS-HIG-20-010
2206.09401
21 CMS Collaboration Search for Higgs boson pair production with one associated vector boson in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 10 (2024) 061 CMS-HIG-22-006
2404.08462
22 CMS Collaboration Search for Higgs boson pairs decaying to WW*WW*, WW*$ \tau\tau $, and $ \tau\tau\tau\tau $ in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 07 (2023) 095 CMS-HIG-21-002
2206.10268
23 CMS Collaboration Search for Higgs boson pair production in the $ \textrm{b}\overline{\textrm{b}}{\textrm{W}}^{+}{\textrm{W}}^{-} $ decay mode in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 07 (2024) 293 CMS-HIG-21-005
2403.09430
24 ATLAS Collaboration Study of Higgs boson pair production in the $ HH \rightarrow b \overline{b} \gamma\gamma $ final state with 308 fb$ ^{-1} $ of data collected at $ \sqrt{s} = $ 13 TeV and 13.6 TeV by the ATLAS experiment technical report, 2025
link
2507.03495
25 CMS Collaboration Search for Higgs Boson Pair Production in the Four b Quark Final State in Proton-Proton Collisions at $ \sqrt{s} = $ 13 TeV PRL 129 (2022) 081802 CMS-HIG-20-005
2202.09617
26 ATLAS Collaboration Search for pair production of boosted Higgs bosons via vector-boson fusion in the bbbb final state using pp collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector PLB 858 (2024) 139007 2404.17193
27 CMS Collaboration Search for Nonresonant Pair Production of Highly Energetic Higgs Bosons Decaying to Bottom Quarks PRL 131 (2023) 041803 2205.06667
28 CMS Collaboration Search for ZZ and ZH Production in the $ \mathrm{b\overline{b}b\overline{b}} $ Final State using Proton-Proton Collisions at $ \sqrt{s} = $ 13 TeV EPJC 84 (2024) 712 CMS-HIG-22-011
2403.20241
29 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
30 CMS Collaboration Development of the CMS detector for the CERN LHC Run 3 JINST 19 (2024) P05064 CMS-PRF-21-001
2309.05466
31 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
32 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
33 CMS Collaboration Performance of the CMS high-level trigger during LHC run 2 JINST 19 (2024) P11021 CMS-TRG-19-001
2410.17038
34 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) P05014 CMS-EGM-17-001
2012.06888
35 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
36 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
37 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
38 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
39 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
40 E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM JHEP 02 (2012) 088 1111.2854
41 G. Heinrich et al. NLO predictions for Higgs boson pair production with full top quark mass dependence matched to parton showers JHEP 08 (2017) 088 1703.09252
42 S. Jones and S. Kuttimalai Parton shower and NLO-matching uncertainties in Higgs boson pair production JHEP 02 (2018) 176 1711.03319
43 G. Buchalla et al. Higgs boson pair production in non-linear effective field theory with full $ m_\mathrm{t} $-dependence at NLO QCD JHEP 09 (2018) 057 1806.05162
44 G. Heinrich et al. Probing the trilinear Higgs boson coupling in di-Higgs production at NLO QCD including parton shower effects JHEP 06 (2019) 066 1903.08137
45 G. Heinrich, S. P. Jones, M. Kerner, and L. Scyboz A non-linear EFT description of $ \mathrm{g}\mathrm{g}\to\mathrm{H}\mathrm{H} $ at NLO interfaced to POWHEG JHEP 10 (2020) 021 2006.16877
46 J. Davies et al. Double Higgs boson production at NLO: Combining the exact numerical result and high-energy expansion JHEP 11 (2019) 024 1907.06408
47 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
48 S. Dawson, S. Dittmaier, and M. Spira Neutral Higgs boson pair production at hadron colliders: QCD corrections PRD 58 (1998) 115012 hep-ph/9805244
49 D. Y. Shao, C. S. Li, H. T. Li, and J. Wang Threshold resummation effects in Higgs boson pair production at the LHC JHEP 07 (2013) 169 1301.1245
50 D. de Florian and J. Mazzitelli Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD PRL 111 (2013) 201801 1309.6594
51 D. de Florian and J. Mazzitelli Higgs pair production at next-to-next-to-leading logarithmic accuracy at the LHC JHEP 09 (2015) 053 1505.07122
52 S. Borowka et al. Higgs boson pair production in gluon fusion at next-to-leading order with full top-quark mass dependence PRL 117 (2016) 012001 1604.06447
53 M. Grazzini et al. Higgs boson pair production at NNLO with top quark mass effects JHEP 05 (2018) 059 1803.02463
54 J. Baglio et al. Gluon fusion into Higgs pairs at NLO QCD and the top mass scheme EPJC 79 (2019) 459 1811.05692
55 J. Baglio et al. $ gg \rightarrow HH $: Combined uncertainties PRD 103 (2021) 056002 2008.11626
56 F. A. Dreyer and A. Karlberg Vector-boson fusion Higgs pair production at N$ ^3 $LO PRD 98 (2018) 114016 1811.07906
57 S. Frixione, P. Nason, and G. Ridolfi A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction JHEP 09 (2007) 126 0707.3088
58 T. Ježo et al. An NLO+PS generator for $ {\mathrm{t}\overline{\mathrm{t}}} $ and $ \mathrm{W}\mathrm{t} $ production and decay including non-resonant and interference effects EPJC 76 (2016) 691 1607.04538
58 M. Czakon and A. Mitov Top++: A program for the calculation of the top-pair cross-section at hadron colliders Comput. Phys. Commun. 185 (2014) 2930 1112.5675
60 M. Czakon et al. Top-pair production at the LHC through NNLO QCD and NLO EW JHEP 10 (2017) 186 1705.04105
61 T. Sjostrand et al. An introduction to PYTHIA8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
62 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
63 NNPDF Collaboration Parton distributions for the LHC Run II JHEP 04 (2015) 040 1410.8849
64 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
65 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
66 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
67 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
68 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
69 D. Bertolini, P. Harris, M. Low, and N. Tran Pileup per particle identification JHEP 10 (2014) 059 1407.6013
70 CMS Collaboration Pileup mitigation at CMS in 13 TeV data JINST 15 (2020) P09018 CMS-JME-18-001
2003.00503
71 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
72 CMS Collaboration Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s} = $ 13 TeV using the CMS detector JINST 14 (2019) P07004 CMS-JME-17-001
1903.06078
73 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
74 H. Qu and L. Gouskos ParticleNet: Jet Tagging via Particle Clouds PRD 101 (2020) 056019 1902.08570
75 CMS Collaboration Performance of the ParticleNet tagger on small and large-radius jets at High Level Trigger in Run 3 CMS Detector Performance Note CMS-DP-2023-021, CERN, 2023
CDS
76 CMS Collaboration Novel strategy targeting HH and HHH production at High Level Trigger in Run 3 CMS Detector Performance Note CMS-DP-23-050, CERN, 2023
CDS
77 CMS Collaboration Enriching the physics program of the CMS experiment via data scouting and data parking Phys. Rept. 1115 (2025) 678 CMS-EXO-23-007
2403.16134
78 CMS Collaboration Measurement of the Inclusive $ W $ and $ Z $ Production Cross Sections in $ pp $ Collisions at $ \sqrt{s}= $ 7 TeV JHEP 10 (2011) 132 CMS-EWK-10-005
1107.4789
79 CMS Collaboration Efficiency of the ParticleNet b-tagging algorithm used in the CMS High-Level Trigger in 2022 and 2023 CMS Detector Performance Note CMS-DP-2023-089, CERN, 2023
CDS
80 CMS Collaboration Search for Higgs Boson Decay to a Charm Quark-Antiquark Pair in Proton-Proton Collisions at $ \sqrt{s}= $ 13 TeV PRL 131 (2023) 061801 CMS-HIG-21-008
2205.05550
81 CMS Collaboration Performance of heavy-flavour jet identification in boosted topologies in proton-proton collisions at sqrt(s) = 13 TeV CMS Physics Analysis Summary, CERN, 2023
CMS-PAS-BTV-22-001
CMS-PAS-BTV-22-001
82 A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler Soft drop JHEP 05 (2014) 146 1402.2657
83 CMS Collaboration Run 3 commissioning results of heavy-flavor jet tagging at $ \sqrt{s}= $13.6 TeV with CMS data using a modern framework for data processing CMS Detector Performance Note CMS-DP-2024-024, CERN, 2024
CDS
84 E. Bols et al. Jet Flavour Classification Using DeepJet JINST 15 (2020) P12012 2008.10519
85 CMS Collaboration Performance summary of AK4 jet b tagging with data from proton-proton collisions at 13 TeV with the CMS detector CMS Detector Performance Note CMS-DP-2023-005, CERN, 2023
CDS
86 CMS Collaboration Performance summary of AK4 jet b tagging with data from 2022 proton-proton collisions at 13.6 TeV with the CMS detector CMS Detector Performance Note CMS-DP-2024-025, CERN, 2024
CDS
87 CMS Collaboration A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution Comput. Softw. Big Sci. 4 (2020) 10 CMS-HIG-18-027
1912.06046
88 H. Qu, C. Li, and S. Qian Particle Transformer for Jet Tagging 2202.03772
89 CMS Collaboration Search for highly energetic double Higgs boson production in the two bottom quark and two vector boson all-hadronic final state CMS Physics Analysis Summary, CERN, 2024
CMS-PAS-HIG-23-012
CMS-PAS-HIG-23-012
90 CMS Collaboration Particle transformers for identifying Lorentz-boosted Higgs bosons decaying to a pair of W bosons CMS Physics Analysis Summary, CERN, 2025
CMS-PAS-JME-25-001
CMS-PAS-JME-25-001
91 CMS Collaboration Identification of highly Lorentz-boosted heavy particles using graph neural networks and new mass decorrelation techniques CMS Detector Performance Note CMS-DP-2020-002, CERN, 2020
CDS
92 CMS Collaboration Mass regression of highly-boosted jets using graph neural networks CMS Detector Performance Note CMS-DP-2021-017, CERN, 2021
CDS
93 J. M. Lindert et al. Precise predictions for $ V+ $ jets dark matter backgrounds EPJC 77 (2017) 829 1705.04664
94 ATLAS Collaboration Efficiency corrections for a tagger for boosted $ H\rightarrow b\bar{b} $ decays in $ pp $ collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector technical report, CERN, Geneva, All figures including auxiliary figures are available at this
link
95 R. A. Fisher On the interpretation of $ \chi^2 $ from contingency tables, and the calculation of p Journal of the Royal Statistical Society 85 (2018) 87
96 D0 Collaboration Search for high mass top quark production in $ p\bar{p} $ collisions at $ \sqrt{s} = $ 1.8 TeV PRL 74 (1995) 2422 hep-ex/9411001
97 R. Kohavi A study of cross-validation and bootstrap for accuracy estimation and model selection in Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI'95. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1995
98 A. Vaswani et al Attention is all you need link
99 H. A. Panofsky and G. W. G. W. Brier Some applications of statistics to meteorology Mineral Industries Extension Services, College of Mineral Industries, Pennsylvania State University, 1st ed. edition, 1958
100 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
101 LHC Higgs Cross Section Working Group Handbook of LHC Higgs Cross Sections: 4. Deciphering the nature of the Higgs sector CERN Yellow Rep. Monogr. 2 (2017) 1610.07922
102 L.-S. Ling et al. NNLO QCD corrections to Higgs pair production via vector boson fusion at hadron colliders PRD 89 (2014) 073001 1401.7754
103 F. A. Dreyer and A. Karlberg Fully differential vector-boson fusion Higgs pair production at next-to-next-to-leading order PRD 99 (2019) 074028 1811.07918
104 J. Butterworth et al. PDF4LHC recommendations for LHC Run II JPG 43 (2016) 023001 1510.03865
105 J. S. Conway Incorporating Nuisance Parameters in Likelihoods for Multisource Spectra in PHYSTAT 2011, p. 115. 2011
link
1103.0354
106 R. Barlow and C. Beeston Fitting using finite monte carlo samples Computer Physics Communications 77 (1993) 219
107 ATLAS, CMS, LHC Higgs Combination Group Collaboration Procedure for the LHC Higgs boson search combination in Summer 2011 Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011
108 A. L. Read Presentation of search results: The $ CL_s $ technique JPG 28 (2002) 2693
109 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435 hep-ex/9902006
110 CMS Collaboration The CMS Statistical Analysis and Combination Tool: Combine Comput. Softw. Big Sci. 8 (2024) 19 CMS-CAT-23-001
2404.06614
111 W. Verkerke and D. P. Kirkby The RooFit toolkit for data modeling technical report, 2003
link
physics/0306116
112 L. Moneta et al. The RooStats Project PoS ACAT 057, 2010
link
1009.1003
113 CMS Collaboration Search for Higgs Boson and Observation of Z Boson through their Decay into a Charm Quark-Antiquark Pair in Boosted Topologies in Proton-Proton Collisions at $ \sqrt{s} = $ 13 TeV PRL 131 (2023) 041801 CMS-HIG-21-012
2211.14181
114 M. J. Dolan, C. Englert, N. Greiner, and M. Spannowsky Production of $ \mathrm{H}\mathrm{H} jj $ at the LHC PRL 112 (2014) 101802 1310.1084
115 M. J. Dolan et al. $ \mathrm{H}\mathrm{H} jj $ production at the LHC EPJC 75 (2015) 387 1506.08008
116 E. Arganda, C. Garcia-Garcia, and M. J. Herrero Probing the Higgs self-coupling through double Higgs production in vector boson scattering at the LHC NPB 945 (2019) 114687 1807.09736
117 J. Thaler and K. Van Tilburg Identifying Boosted Objects with N-subjettiness JHEP 03 (2011) 015 1011.2268
118 CMS Collaboration Inclusive search for highly boosted Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 12 (2020) 085 CMS-HIG-19-003
2006.13251
119 CMS Collaboration Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair PRL 120 (2018) 071802 CMS-HIG-17-010
1709.05543
120 CMS Collaboration Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 01 (2018) 097 CMS-EXO-17-001
1710.00159
121 CMS Collaboration Search for Low Mass Vector Resonances Decaying to Quark-Antiquark Pairs in Proton-Proton Collisions at $ \sqrt{s}= $ 13 TeV PRL 119 (2017) 111802 CMS-EXO-16-030
1705.10532
Compact Muon Solenoid
LHC, CERN