CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIG-24-017 ; CERN-EP-2025-280
Search for a boosted Higgs boson decaying to bottom quark pairs in association with a W or Z boson in proton-proton collisions at $ \sqrt{s} = $ 13 TeV
Submitted to Physics Letters B
Abstract: A search is conducted for standard model Higgs bosons with large transverse momentum ($ p_{\mathrm{T}} $) decaying to bottom quark pairs and produced in association with a hadronically decaying W or Z boson at the LHC. The result is based on a dataset of proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector in 2016--2018, corresponding to an integrated luminosity of 138 fb$ ^{-1} $. Boosted Higgs, W, and Z boson decays are reconstructed using large-radius jets with $ p_{\mathrm{T}} > $ 450 GeV and identified with heavy-flavor classifiers based on a graph convolutional neural network. The observed signal strength relative to the standard model expectation is $ \mu= $ 0.72 $ ^{+0.75}_{-0.71} $ including statistical and systematic uncertainties.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
The Higgs boson candidate $ m_\mathrm{SD} $ distribution in the $ \mathcal{D}(\mathrm{b}\overline{\mathrm{b}}\text{ vs. QCD}) $ fail (left) and pass region (right), both in the category with V candidate mass between 68 and 110 GeV. The grey bands in the lower panels represent the systematic uncertainty in the background prediction. The $ \mathrm{V}(\mathrm{q}\mathrm{q})\mathrm{Z}(\mathrm{b}\overline{\mathrm{b}}) $ process is separated from other $ \mathrm{V}(\mathrm{q}\mathrm{q})\mathrm{V}(\mathrm{q}\mathrm{q}) $ processes since it is used to validate the analysis strategy.

png pdf
Figure 1-a:
The Higgs boson candidate $ m_\mathrm{SD} $ distribution in the $ \mathcal{D}(\mathrm{b}\overline{\mathrm{b}}\text{ vs. QCD}) $ fail (left) and pass region (right), both in the category with V candidate mass between 68 and 110 GeV. The grey bands in the lower panels represent the systematic uncertainty in the background prediction. The $ \mathrm{V}(\mathrm{q}\mathrm{q})\mathrm{Z}(\mathrm{b}\overline{\mathrm{b}}) $ process is separated from other $ \mathrm{V}(\mathrm{q}\mathrm{q})\mathrm{V}(\mathrm{q}\mathrm{q}) $ processes since it is used to validate the analysis strategy.

png pdf
Figure 1-b:
The Higgs boson candidate $ m_\mathrm{SD} $ distribution in the $ \mathcal{D}(\mathrm{b}\overline{\mathrm{b}}\text{ vs. QCD}) $ fail (left) and pass region (right), both in the category with V candidate mass between 68 and 110 GeV. The grey bands in the lower panels represent the systematic uncertainty in the background prediction. The $ \mathrm{V}(\mathrm{q}\mathrm{q})\mathrm{Z}(\mathrm{b}\overline{\mathrm{b}}) $ process is separated from other $ \mathrm{V}(\mathrm{q}\mathrm{q})\mathrm{V}(\mathrm{q}\mathrm{q}) $ processes since it is used to validate the analysis strategy.

png pdf
Figure 2:
The Higgs boson candidate $ m_\mathrm{SD} $ distribution in the $ \mathcal{D}(\mathrm{b}\overline{\mathrm{b}}\text{ vs. QCD}) $ fail (left) and pass region (right) regions, in the category where the V candidate $ m_\mathrm{SD} $ is in the range 40--68 GeV (upper) and 110--201 GeV (lower). Other details are as described in the caption of Fig. 1.

png pdf
Figure 2-a:
The Higgs boson candidate $ m_\mathrm{SD} $ distribution in the $ \mathcal{D}(\mathrm{b}\overline{\mathrm{b}}\text{ vs. QCD}) $ fail (left) and pass region (right) regions, in the category where the V candidate $ m_\mathrm{SD} $ is in the range 40--68 GeV (upper) and 110--201 GeV (lower). Other details are as described in the caption of Fig. 1.

png pdf
Figure 2-b:
The Higgs boson candidate $ m_\mathrm{SD} $ distribution in the $ \mathcal{D}(\mathrm{b}\overline{\mathrm{b}}\text{ vs. QCD}) $ fail (left) and pass region (right) regions, in the category where the V candidate $ m_\mathrm{SD} $ is in the range 40--68 GeV (upper) and 110--201 GeV (lower). Other details are as described in the caption of Fig. 1.

png pdf
Figure 2-c:
The Higgs boson candidate $ m_\mathrm{SD} $ distribution in the $ \mathcal{D}(\mathrm{b}\overline{\mathrm{b}}\text{ vs. QCD}) $ fail (left) and pass region (right) regions, in the category where the V candidate $ m_\mathrm{SD} $ is in the range 40--68 GeV (upper) and 110--201 GeV (lower). Other details are as described in the caption of Fig. 1.

png pdf
Figure 2-d:
The Higgs boson candidate $ m_\mathrm{SD} $ distribution in the $ \mathcal{D}(\mathrm{b}\overline{\mathrm{b}}\text{ vs. QCD}) $ fail (left) and pass region (right) regions, in the category where the V candidate $ m_\mathrm{SD} $ is in the range 40--68 GeV (upper) and 110--201 GeV (lower). Other details are as described in the caption of Fig. 1.
Tables

png pdf
Table 1:
Fitted signal strengths and their total uncertainties for the VH and VZ processes, shown individually for each data-taking period and for the combined dataset.
Summary
A search for standard model Higgs boson (H) candidates with high transverse momentum ($ p_{\mathrm{T}} $) decaying to bottom quark pairs ($ \mathrm{b}\overline{\mathrm{b}} $) in association with a hadronically decaying W or Z (V) boson at the LHC has been presented. The analysis identifies collision events containing boosted hadronic jets with $ p_{\mathrm{T}} > $ 450 GeV and with substructure and flavor properties characteristic of $ \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}} $ and hadronic V decays. The signal strength for the $ \mathrm{V}(\mathrm{q}\mathrm{q})\mathrm{H}(\mathrm{b}\overline{\mathrm{b}}) $ process extracted from a maximum likelihood fit to the data in the large-radius jet mass distribution is $ \mu_{\mathrm{V}\mathrm{H}}= $ 0.72 $ ^{+0.75}_{-0.71} $ including statistical and systematic uncertainties. This corresponds to a significance of 1.00 standard deviations ($ \sigma $), compared to 1.64 $ \sigma $ expected. The sensitivity of this measurement is primarily limited by the amount of data available.
References
1 ATLAS Collaboration Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 CMS Collaboration A portrait of the Higgs boson by the CMS experiment ten years after the discovery [Corrigendum: \DOI10./s41586-023-06164-8], 2022
Nature 607 (2022) 60
CMS-HIG-22-001
2207.00043
5 ATLAS Collaboration A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery Nature 607 (2022) 52 2207.00092
6 A. Salam Weak and electromagnetic interactions in Elementary particle physics: relativistic groups and analyticity, N. Svartholm, ed., Almqvist \& Wiksell, Stockholm, Proceedings of the eighth Nobel symposium, 1968
7 S. L. Glashow Partial-symmetries of weak interactions NP 22 (1961) 579
8 S. Weinberg A model of leptons PRL 19 (1967) 1264
9 F. Englert and R. Brout Broken symmetry and the mass of gauge vector mesons PRL 13 (1964) 321
10 P. W. Higgs Broken symmetries, massless particles and gauge fields PRL 12 (1964) 132
11 P. W. Higgs Broken symmetries and the masses of gauge bosons PRL 13 (1964) 508
12 P. W. Higgs Spontaneous symmetry breakdown without massless bosons PRL 145 (1966) 1156
13 G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble Global conservation laws and massless particles PRL 13 (1964) 585
14 C. Grojean, E. Salvioni, M. Schlaffer, and A. Weiler Very boosted Higgs in gluon fusion JHEP 05 (2014) 022 1312.3317
15 M. Schlaffer et al. Boosted Higgs shapes EPJC 74 (2014) 3120 1405.4295
16 S. Dawson, I. M. Lewis, and M. Zeng Usefulness of effective field theory for boosted Higgs production PRD 91 (2015) 074012 1501.04103
17 M. Grazzini, A. Ilnicka, M. Spira, and M. Wiesemann Modeling BSM effects on the Higgs transverse-momentum spectrum in an EFT approach JHEP 03 (2017) 115 1612.00283
18 F. Maltoni, K. Mawatari, and M. Zaro Higgs characterisation via vector-boson fusion and associated production: NLO and parton-shower effects EPJC 74 (2014) 2710 1311.1829
19 C. Degrande et al. Electroweak Higgs boson production in the standard model effective field theory beyond leading order in QCD EPJC 77 (2017) 262 1609.04833
20 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 3. Higgs properties CERN Report CERN-2013-004, 2013
link
1307.1347
21 K. Becker et al. Precise predictions for boosted Higgs production SciPost Phys. Core 7 (2024) 001 2005.07762
22 J. Brehmer et al. Benchmarking simplified template cross sections in $ WH $ production JHEP 11 (2019) 034 1908.06980
23 A. Biekotter et al. Vices and virtues of Higgs effective field theories at large energy PRD 91 (2015) 055029 1406.7320
24 K. Mimasu, V. Sanz, and C. Williams Higher order QCD predictions for associated Higgs production with anomalous couplings to gauge bosons JHEP 08 (2016) 039 1512.02572
25 CMS Collaboration Observation of Higgs boson decay to bottom quarks PRL 121 (2018) 121801 CMS-HIG-18-016
1808.08242
26 ATLAS Collaboration Measurements of WH and ZH production with Higgs boson decays into bottom quarks and direct constraints on the charm Yukawa coupling in 13 TeV pp collisions with the ATLAS detector JHEP 04 (2025) 075 2410.19611
27 ATLAS Collaboration Study of high-transverse-momentum Higgs boson production in association with a vector boson in the $ \mathrm{q}\overline{\mathrm{q}}\mathrm{b}\overline{\mathrm{b}} $ final state with the ATLAS detector PRL 132 (2024) 131802 2312.07605
28 CMS Collaboration Measurement of simplified template cross sections of the Higgs boson produced in association with W or Z bosons in the $ \mathrm{H} \to \mathrm{b}\overline{\mathrm{b}} $ decay channel in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PRD 109 (2024) 092011 CMS-HIG-20-001
2312.07562
29 ATLAS Collaboration Constraints on Higgs boson production with large transverse momentum using $ \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}} $ decays in the ATLAS detector PRD 105 (2022) 092003 2111.08340
30 CMS Collaboration Inclusive search for highly boosted Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 12 (2020) 085 CMS-HIG-19-003
2006.13251
31 CMS Collaboration Measurement of boosted Higgs bosons produced via vector boson fusion or gluon fusion in the $ \mathrm{H} \to \mathrm{b}\overline{\mathrm{b}} $ decay mode using LHC proton-proton collision data at $ \sqrt{s} = $ 13 TeV JHEP 12 (2024) 035 CMS-HIG-21-020
2407.08012
32 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
33 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2018
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
34 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2019
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
35 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
36 CMS Collaboration Development of the CMS detector for the CERN LHC run 3 JINST 19 (2024) P05064 CMS-PRF-21-001
2309.05466
37 CMS Collaboration Performance of the CMS level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
38 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
39 CMS Collaboration Performance of the CMS high-level trigger during LHC run 2 JINST 19 (2024) P11021 CMS-TRG-19-001
2410.17038
40 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) P05014 CMS-EGM-17-001
2012.06888
41 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
42 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
43 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
44 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
45 S. Frixione and B. R. Webber Matching NLO QCD computations and parton shower simulations JHEP 06 (2002) 029 hep-ph/0204244
46 S. Kallweit et al. NLO electroweak automation and precise predictions for W+multijet production at the LHC JHEP 04 (2015) 012 1412.5157
47 S. Kallweit et al. NLO QCD+EW predictions for V + jets including off-shell vector-boson decays and multijet merging JHEP 04 (2016) 021 1511.08692
48 S. Kallweit et al. NLO QCD+EW automation and precise predictions for V+multijet production in 50th Rencontres de Moriond on QCD and High Energy Interactions, 2015 1505.05704
49 J. M. Lindert et al. Precise predictions for $ \mathrm{V}+ $ jets dark matter backgrounds EPJC 77 (2017) 829 1705.04664
50 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
51 J. M. Campbell and R. K. Ellis MCFM for the Tevatron and the LHC -206 10, 2010
Nucl. Phys. Proc. Suppl. 20 (2010) 5
1007.3492
52 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
53 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
54 S. Frixione, G. Ridolfi, and P. Nason A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction JHEP 09 (2007) 126 0707.3088
55 R. Frederix, E. Re, and P. Torrielli Single-top $ t $-channel hadroproduction in the four-flavour scheme with POWHEG and aMC@NLO JHEP 09 (2012) 130 1207.5391
56 E. Re Single-top $ \mathrm{W}\mathrm{t} $-channel production matched with parton showers using the POWHEG method EPJC 71 (2011) 1547 1009.2450
57 P. F. Monni et al. MiNNLO$ _{\text {PS}} $: a new method to match NNLO QCD to parton showers JHEP 05 (2020) 143 1908.06987
58 P. F. Monni, E. Re, and M. Wiesemann MiNNLO$ _{\text {PS}} $: optimizing 2 $ \to $ 1 hadronic processes EPJC 80 (2020) 1075 2006.04133
59 T. Neumann NLO Higgs+jet production at large transverse momenta including top quark mass effects J. Phys. Comm. 2 (2018) 095017 1802.02981
60 P. Nason and C. Oleari NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG JHEP 02 (2010) 037 0911.5299
61 G. Luisoni, P. Nason, C. Oleari, and F. Tramontano $ \mathrm{H}\mathrm{W}^{\pm} $/HZ+0 and 1 jet at NLO with the POWHEG box interfaced to GoSam and their merging within MiNLO JHEP 10 (2013) 083 1306.2542
62 H. B. Hartanto, B. Jager, L. Reina, and D. Wackeroth Higgs boson production in association with top quarks in the POWHEG BOX PRD 91 (2015) 094003 1501.04498
63 M. Cacciari et al. Fully differential vector-boson-fusion Higgs production at next-to-next-to-leading order [Erratum: \DOI10.1103/PhysRevLett.120.139901 ], 2015
PRL 115 (2015) 082002
1506.02660
64 F. A. Dreyer and A. Karlberg Vector-boson fusion Higgs production at three loops in QCD PRL 117 (2016) 072001 1606.00840
65 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
66 J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions EPJC 53 (2008) 473 0706.2569
67 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
68 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
69 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
70 CMS Collaboration Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015
CDS
71 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
72 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
73 CMS Collaboration Jet algorithms performance in 13 TeV data CMS Physics Analysis Summary, 2017
CMS-PAS-JME-16-003
CMS-PAS-JME-16-003
74 CMS Collaboration Pileup mitigation at CMS in 13 TeV data JINST 15 (2020) P09018 CMS-JME-18-001
2003.00503
75 D. Bertolini, P. Harris, M. Low, and N. Tran Pileup per particle identification JHEP 10 (2014) 059 1407.6013
76 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
77 A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler Soft drop JHEP 05 (2014) 146 1402.2657
78 CMS Collaboration Identification of hadronic tau lepton decays using a deep neural network JINST 17 (2022) P07023 CMS-TAU-20-001
2201.08458
79 CMS Collaboration Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s} = $ 13 TeV using the CMS detector JINST 14 (2019) P07004 CMS-JME-17-001
1903.06078
80 CMS Collaboration Performance of heavy-flavour jet identification in Lorentz-boosted topologies in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 20 (2025) P11006 CMS-BTV-22-001
2510.10228
81 H. Qu and L. Gouskos Particlenet: Jet tagging via particle clouds PRD 101 (2020) 056019 1902.08570
82 R. A. Fisher On the interpretation of $ \chi^{2} $ from contingency tables, and the calculation of P J. R. Stat. Soc. 85 (1922) 87
83 E. Bols et al. Jet flavour classification using DeepJet JINST 15 (2020) P12012 2008.10519
84 CMS Collaboration Performance of the DeepJet b tagging algorithm using 41.9/fb of data from proton-proton collisions at 13 TeV with Phase 1 CMS detector CMS Detector Performance Note CMS-DP-2018-058, 2018
CDS
85 M. Baak, S. Gadatsch, R. Harrington, and W. Verkerke Interpolation between multi-dimensional histograms using a new non-linear moment morphing method NIM A 771 (2015) 39 1410.7388
86 ATLAS and CMS Collaborations, and LHC Higgs Combination Group Procedure for the LHC Higgs boson search combination in Summer 2011 Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011
87 S. Mrenna and P. Skands Automated parton-shower variations in Pythia 8 PRD 94 (2016) 074005 1605.08352
88 J. Butterworth et al. PDF4LHC recommendations for LHC run II JPG 43 (2016) 023001 1510.03865
89 CMS Collaboration The CMS statistical analysis and combination tool: Combine Comput. Softw. Big Sci. 8 (2024) 19 CMS-CAT-23-001
2404.06614
90 W. Verkerke and D. P. Kirkby The RooFit toolkit for data modeling in th International Conference for Computing in High-Energy and Nuclear Physics (CHEP03)... [eConf C0303241, MOLT007], 2003
Proceedings of the 1 (2003) 3
physics/0306116
91 L. Moneta et al. The RooStats project in th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT), 2010
Proceedings of the 1 (2010) 3
1009.1003
92 CMS Collaboration Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 $ \text {TeV} $ EPJC 75 (2015) 212 CMS-HIG-14-009
1412.8662
93 CMS Collaboration HEPData record for this analysis link
Compact Muon Solenoid
LHC, CERN