| CMS-HIG-24-017 ; CERN-EP-2025-280 | ||
| Search for a boosted Higgs boson decaying to bottom quark pairs in association with a W or Z boson in proton-proton collisions at $ \sqrt{s} = $ 13 TeV | ||
| CMS Collaboration | ||
| 8 January 2026 | ||
| Submitted to Physics Letters B | ||
| Abstract: A search is conducted for standard model Higgs bosons with large transverse momentum ($ p_{\mathrm{T}} $) decaying to bottom quark pairs and produced in association with a hadronically decaying W or Z boson at the LHC. The result is based on a dataset of proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector in 2016--2018, corresponding to an integrated luminosity of 138 fb$ ^{-1} $. Boosted Higgs, W, and Z boson decays are reconstructed using large-radius jets with $ p_{\mathrm{T}} > $ 450 GeV and identified with heavy-flavor classifiers based on a graph convolutional neural network. The observed signal strength relative to the standard model expectation is $ \mu= $ 0.72 $ ^{+0.75}_{-0.71} $ including statistical and systematic uncertainties. | ||
| Links: e-print arXiv:2601.05362 [hep-ex] (PDF) ; CDS record ; inSPIRE record ; CADI line (restricted) ; | ||
| Figures | |
|
png pdf |
Figure 1:
The Higgs boson candidate $ m_\mathrm{SD} $ distribution in the $ \mathcal{D}(\mathrm{b}\overline{\mathrm{b}}\text{ vs. QCD}) $ fail (left) and pass region (right), both in the category with V candidate mass between 68 and 110 GeV. The grey bands in the lower panels represent the systematic uncertainty in the background prediction. The $ \mathrm{V}(\mathrm{q}\mathrm{q})\mathrm{Z}(\mathrm{b}\overline{\mathrm{b}}) $ process is separated from other $ \mathrm{V}(\mathrm{q}\mathrm{q})\mathrm{V}(\mathrm{q}\mathrm{q}) $ processes since it is used to validate the analysis strategy. |
|
png pdf |
Figure 1-a:
The Higgs boson candidate $ m_\mathrm{SD} $ distribution in the $ \mathcal{D}(\mathrm{b}\overline{\mathrm{b}}\text{ vs. QCD}) $ fail (left) and pass region (right), both in the category with V candidate mass between 68 and 110 GeV. The grey bands in the lower panels represent the systematic uncertainty in the background prediction. The $ \mathrm{V}(\mathrm{q}\mathrm{q})\mathrm{Z}(\mathrm{b}\overline{\mathrm{b}}) $ process is separated from other $ \mathrm{V}(\mathrm{q}\mathrm{q})\mathrm{V}(\mathrm{q}\mathrm{q}) $ processes since it is used to validate the analysis strategy. |
|
png pdf |
Figure 1-b:
The Higgs boson candidate $ m_\mathrm{SD} $ distribution in the $ \mathcal{D}(\mathrm{b}\overline{\mathrm{b}}\text{ vs. QCD}) $ fail (left) and pass region (right), both in the category with V candidate mass between 68 and 110 GeV. The grey bands in the lower panels represent the systematic uncertainty in the background prediction. The $ \mathrm{V}(\mathrm{q}\mathrm{q})\mathrm{Z}(\mathrm{b}\overline{\mathrm{b}}) $ process is separated from other $ \mathrm{V}(\mathrm{q}\mathrm{q})\mathrm{V}(\mathrm{q}\mathrm{q}) $ processes since it is used to validate the analysis strategy. |
|
png pdf |
Figure 2:
The Higgs boson candidate $ m_\mathrm{SD} $ distribution in the $ \mathcal{D}(\mathrm{b}\overline{\mathrm{b}}\text{ vs. QCD}) $ fail (left) and pass region (right) regions, in the category where the V candidate $ m_\mathrm{SD} $ is in the range 40--68 GeV (upper) and 110--201 GeV (lower). Other details are as described in the caption of Fig. 1. |
|
png pdf |
Figure 2-a:
The Higgs boson candidate $ m_\mathrm{SD} $ distribution in the $ \mathcal{D}(\mathrm{b}\overline{\mathrm{b}}\text{ vs. QCD}) $ fail (left) and pass region (right) regions, in the category where the V candidate $ m_\mathrm{SD} $ is in the range 40--68 GeV (upper) and 110--201 GeV (lower). Other details are as described in the caption of Fig. 1. |
|
png pdf |
Figure 2-b:
The Higgs boson candidate $ m_\mathrm{SD} $ distribution in the $ \mathcal{D}(\mathrm{b}\overline{\mathrm{b}}\text{ vs. QCD}) $ fail (left) and pass region (right) regions, in the category where the V candidate $ m_\mathrm{SD} $ is in the range 40--68 GeV (upper) and 110--201 GeV (lower). Other details are as described in the caption of Fig. 1. |
|
png pdf |
Figure 2-c:
The Higgs boson candidate $ m_\mathrm{SD} $ distribution in the $ \mathcal{D}(\mathrm{b}\overline{\mathrm{b}}\text{ vs. QCD}) $ fail (left) and pass region (right) regions, in the category where the V candidate $ m_\mathrm{SD} $ is in the range 40--68 GeV (upper) and 110--201 GeV (lower). Other details are as described in the caption of Fig. 1. |
|
png pdf |
Figure 2-d:
The Higgs boson candidate $ m_\mathrm{SD} $ distribution in the $ \mathcal{D}(\mathrm{b}\overline{\mathrm{b}}\text{ vs. QCD}) $ fail (left) and pass region (right) regions, in the category where the V candidate $ m_\mathrm{SD} $ is in the range 40--68 GeV (upper) and 110--201 GeV (lower). Other details are as described in the caption of Fig. 1. |
| Tables | |
|
png pdf |
Table 1:
Fitted signal strengths and their total uncertainties for the VH and VZ processes, shown individually for each data-taking period and for the combined dataset. |
| Summary |
| A search for standard model Higgs boson (H) candidates with high transverse momentum ($ p_{\mathrm{T}} $) decaying to bottom quark pairs ($ \mathrm{b}\overline{\mathrm{b}} $) in association with a hadronically decaying W or Z (V) boson at the LHC has been presented. The analysis identifies collision events containing boosted hadronic jets with $ p_{\mathrm{T}} > $ 450 GeV and with substructure and flavor properties characteristic of $ \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}} $ and hadronic V decays. The signal strength for the $ \mathrm{V}(\mathrm{q}\mathrm{q})\mathrm{H}(\mathrm{b}\overline{\mathrm{b}}) $ process extracted from a maximum likelihood fit to the data in the large-radius jet mass distribution is $ \mu_{\mathrm{V}\mathrm{H}}= $ 0.72 $ ^{+0.75}_{-0.71} $ including statistical and systematic uncertainties. This corresponds to a significance of 1.00 standard deviations ($ \sigma $), compared to 1.64 $ \sigma $ expected. The sensitivity of this measurement is primarily limited by the amount of data available. |
| References | ||||
| 1 | ATLAS Collaboration | Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC | PLB 716 (2012) 1 | 1207.7214 |
| 2 | CMS Collaboration | Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC | PLB 716 (2012) 30 | CMS-HIG-12-028 1207.7235 |
| 3 | CMS Collaboration | Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV | JHEP 06 (2013) 081 | CMS-HIG-12-036 1303.4571 |
| 4 | CMS Collaboration | A portrait of the Higgs boson by the CMS experiment ten years after the discovery | [Corrigendum: \DOI10./s41586-023-06164-8], 2022 Nature 607 (2022) 60 |
CMS-HIG-22-001 2207.00043 |
| 5 | ATLAS Collaboration | A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery | Nature 607 (2022) 52 | 2207.00092 |
| 6 | A. Salam | Weak and electromagnetic interactions | in Elementary particle physics: relativistic groups and analyticity, N. Svartholm, ed., Almqvist \& Wiksell, Stockholm, Proceedings of the eighth Nobel symposium, 1968 | |
| 7 | S. L. Glashow | Partial-symmetries of weak interactions | NP 22 (1961) 579 | |
| 8 | S. Weinberg | A model of leptons | PRL 19 (1967) 1264 | |
| 9 | F. Englert and R. Brout | Broken symmetry and the mass of gauge vector mesons | PRL 13 (1964) 321 | |
| 10 | P. W. Higgs | Broken symmetries, massless particles and gauge fields | PRL 12 (1964) 132 | |
| 11 | P. W. Higgs | Broken symmetries and the masses of gauge bosons | PRL 13 (1964) 508 | |
| 12 | P. W. Higgs | Spontaneous symmetry breakdown without massless bosons | PRL 145 (1966) 1156 | |
| 13 | G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble | Global conservation laws and massless particles | PRL 13 (1964) 585 | |
| 14 | C. Grojean, E. Salvioni, M. Schlaffer, and A. Weiler | Very boosted Higgs in gluon fusion | JHEP 05 (2014) 022 | 1312.3317 |
| 15 | M. Schlaffer et al. | Boosted Higgs shapes | EPJC 74 (2014) 3120 | 1405.4295 |
| 16 | S. Dawson, I. M. Lewis, and M. Zeng | Usefulness of effective field theory for boosted Higgs production | PRD 91 (2015) 074012 | 1501.04103 |
| 17 | M. Grazzini, A. Ilnicka, M. Spira, and M. Wiesemann | Modeling BSM effects on the Higgs transverse-momentum spectrum in an EFT approach | JHEP 03 (2017) 115 | 1612.00283 |
| 18 | F. Maltoni, K. Mawatari, and M. Zaro | Higgs characterisation via vector-boson fusion and associated production: NLO and parton-shower effects | EPJC 74 (2014) 2710 | 1311.1829 |
| 19 | C. Degrande et al. | Electroweak Higgs boson production in the standard model effective field theory beyond leading order in QCD | EPJC 77 (2017) 262 | 1609.04833 |
| 20 | LHC Higgs Cross Section Working Group | Handbook of LHC Higgs cross sections: 3. Higgs properties | CERN Report CERN-2013-004, 2013 link |
1307.1347 |
| 21 | K. Becker et al. | Precise predictions for boosted Higgs production | SciPost Phys. Core 7 (2024) 001 | 2005.07762 |
| 22 | J. Brehmer et al. | Benchmarking simplified template cross sections in $ WH $ production | JHEP 11 (2019) 034 | 1908.06980 |
| 23 | A. Biekotter et al. | Vices and virtues of Higgs effective field theories at large energy | PRD 91 (2015) 055029 | 1406.7320 |
| 24 | K. Mimasu, V. Sanz, and C. Williams | Higher order QCD predictions for associated Higgs production with anomalous couplings to gauge bosons | JHEP 08 (2016) 039 | 1512.02572 |
| 25 | CMS Collaboration | Observation of Higgs boson decay to bottom quarks | PRL 121 (2018) 121801 | CMS-HIG-18-016 1808.08242 |
| 26 | ATLAS Collaboration | Measurements of WH and ZH production with Higgs boson decays into bottom quarks and direct constraints on the charm Yukawa coupling in 13 TeV pp collisions with the ATLAS detector | JHEP 04 (2025) 075 | 2410.19611 |
| 27 | ATLAS Collaboration | Study of high-transverse-momentum Higgs boson production in association with a vector boson in the $ \mathrm{q}\overline{\mathrm{q}}\mathrm{b}\overline{\mathrm{b}} $ final state with the ATLAS detector | PRL 132 (2024) 131802 | 2312.07605 |
| 28 | CMS Collaboration | Measurement of simplified template cross sections of the Higgs boson produced in association with W or Z bosons in the $ \mathrm{H} \to \mathrm{b}\overline{\mathrm{b}} $ decay channel in proton-proton collisions at $ \sqrt{s}= $ 13 TeV | PRD 109 (2024) 092011 | CMS-HIG-20-001 2312.07562 |
| 29 | ATLAS Collaboration | Constraints on Higgs boson production with large transverse momentum using $ \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}} $ decays in the ATLAS detector | PRD 105 (2022) 092003 | 2111.08340 |
| 30 | CMS Collaboration | Inclusive search for highly boosted Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at $ \sqrt{s} = $ 13 TeV | JHEP 12 (2020) 085 | CMS-HIG-19-003 2006.13251 |
| 31 | CMS Collaboration | Measurement of boosted Higgs bosons produced via vector boson fusion or gluon fusion in the $ \mathrm{H} \to \mathrm{b}\overline{\mathrm{b}} $ decay mode using LHC proton-proton collision data at $ \sqrt{s} = $ 13 TeV | JHEP 12 (2024) 035 | CMS-HIG-21-020 2407.08012 |
| 32 | CMS Collaboration | Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS | EPJC 81 (2021) 800 | CMS-LUM-17-003 2104.01927 |
| 33 | CMS Collaboration | CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV | CMS Physics Analysis Summary, 2018 CMS-PAS-LUM-17-004 |
CMS-PAS-LUM-17-004 |
| 34 | CMS Collaboration | CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV | CMS Physics Analysis Summary, 2019 CMS-PAS-LUM-18-002 |
CMS-PAS-LUM-18-002 |
| 35 | CMS Collaboration | The CMS experiment at the CERN LHC | JINST 3 (2008) S08004 | |
| 36 | CMS Collaboration | Development of the CMS detector for the CERN LHC run 3 | JINST 19 (2024) P05064 | CMS-PRF-21-001 2309.05466 |
| 37 | CMS Collaboration | Performance of the CMS level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV | JINST 15 (2020) P10017 | CMS-TRG-17-001 2006.10165 |
| 38 | CMS Collaboration | The CMS trigger system | JINST 12 (2017) P01020 | CMS-TRG-12-001 1609.02366 |
| 39 | CMS Collaboration | Performance of the CMS high-level trigger during LHC run 2 | JINST 19 (2024) P11021 | CMS-TRG-19-001 2410.17038 |
| 40 | CMS Collaboration | Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC | JINST 16 (2021) P05014 | CMS-EGM-17-001 2012.06888 |
| 41 | CMS Collaboration | Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV | JINST 13 (2018) P06015 | CMS-MUO-16-001 1804.04528 |
| 42 | CMS Collaboration | Description and performance of track and primary-vertex reconstruction with the CMS tracker | JINST 9 (2014) P10009 | CMS-TRK-11-001 1405.6569 |
| 43 | GEANT4 Collaboration | GEANT 4---a simulation toolkit | NIM A 506 (2003) 250 | |
| 44 | J. Alwall et al. | The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations | JHEP 07 (2014) 079 | 1405.0301 |
| 45 | S. Frixione and B. R. Webber | Matching NLO QCD computations and parton shower simulations | JHEP 06 (2002) 029 | hep-ph/0204244 |
| 46 | S. Kallweit et al. | NLO electroweak automation and precise predictions for W+multijet production at the LHC | JHEP 04 (2015) 012 | 1412.5157 |
| 47 | S. Kallweit et al. | NLO QCD+EW predictions for V + jets including off-shell vector-boson decays and multijet merging | JHEP 04 (2016) 021 | 1511.08692 |
| 48 | S. Kallweit et al. | NLO QCD+EW automation and precise predictions for V+multijet production | in 50th Rencontres de Moriond on QCD and High Energy Interactions, 2015 | 1505.05704 |
| 49 | J. M. Lindert et al. | Precise predictions for $ \mathrm{V}+ $ jets dark matter backgrounds | EPJC 77 (2017) 829 | 1705.04664 |
| 50 | T. Sjöstrand et al. | An introduction to PYTHIA 8.2 | Comput. Phys. Commun. 191 (2015) 159 | 1410.3012 |
| 51 | J. M. Campbell and R. K. Ellis | MCFM for the Tevatron and the LHC | -206 10, 2010 Nucl. Phys. Proc. Suppl. 20 (2010) 5 |
1007.3492 |
| 52 | S. Frixione, P. Nason, and C. Oleari | Matching NLO QCD computations with parton shower simulations: the POWHEG method | JHEP 11 (2007) 070 | 0709.2092 |
| 53 | S. Alioli, P. Nason, C. Oleari, and E. Re | A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX | JHEP 06 (2010) 043 | 1002.2581 |
| 54 | S. Frixione, G. Ridolfi, and P. Nason | A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction | JHEP 09 (2007) 126 | 0707.3088 |
| 55 | R. Frederix, E. Re, and P. Torrielli | Single-top $ t $-channel hadroproduction in the four-flavour scheme with POWHEG and aMC@NLO | JHEP 09 (2012) 130 | 1207.5391 |
| 56 | E. Re | Single-top $ \mathrm{W}\mathrm{t} $-channel production matched with parton showers using the POWHEG method | EPJC 71 (2011) 1547 | 1009.2450 |
| 57 | P. F. Monni et al. | MiNNLO$ _{\text {PS}} $: a new method to match NNLO QCD to parton showers | JHEP 05 (2020) 143 | 1908.06987 |
| 58 | P. F. Monni, E. Re, and M. Wiesemann | MiNNLO$ _{\text {PS}} $: optimizing 2 $ \to $ 1 hadronic processes | EPJC 80 (2020) 1075 | 2006.04133 |
| 59 | T. Neumann | NLO Higgs+jet production at large transverse momenta including top quark mass effects | J. Phys. Comm. 2 (2018) 095017 | 1802.02981 |
| 60 | P. Nason and C. Oleari | NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG | JHEP 02 (2010) 037 | 0911.5299 |
| 61 | G. Luisoni, P. Nason, C. Oleari, and F. Tramontano | $ \mathrm{H}\mathrm{W}^{\pm} $/HZ+0 and 1 jet at NLO with the POWHEG box interfaced to GoSam and their merging within MiNLO | JHEP 10 (2013) 083 | 1306.2542 |
| 62 | H. B. Hartanto, B. Jager, L. Reina, and D. Wackeroth | Higgs boson production in association with top quarks in the POWHEG BOX | PRD 91 (2015) 094003 | 1501.04498 |
| 63 | M. Cacciari et al. | Fully differential vector-boson-fusion Higgs production at next-to-next-to-leading order | [Erratum: \DOI10.1103/PhysRevLett.120.139901 ], 2015 PRL 115 (2015) 082002 |
1506.02660 |
| 64 | F. A. Dreyer and A. Karlberg | Vector-boson fusion Higgs production at three loops in QCD | PRL 117 (2016) 072001 | 1606.00840 |
| 65 | CMS Collaboration | Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements | EPJC 80 (2020) 4 | CMS-GEN-17-001 1903.12179 |
| 66 | J. Alwall et al. | Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions | EPJC 53 (2008) 473 | 0706.2569 |
| 67 | R. Frederix and S. Frixione | Merging meets matching in MC@NLO | JHEP 12 (2012) 061 | 1209.6215 |
| 68 | NNPDF Collaboration | Parton distributions from high-precision collider data | EPJC 77 (2017) 663 | 1706.00428 |
| 69 | CMS Collaboration | Particle-flow reconstruction and global event description with the CMS detector | JINST 12 (2017) P10003 | CMS-PRF-14-001 1706.04965 |
| 70 | CMS Collaboration | Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid | CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015 CDS |
|
| 71 | M. Cacciari, G. P. Salam, and G. Soyez | The anti-$ k_{\mathrm{T}} $ jet clustering algorithm | JHEP 04 (2008) 063 | 0802.1189 |
| 72 | M. Cacciari, G. P. Salam, and G. Soyez | FastJet user manual | EPJC 72 (2012) 1896 | 1111.6097 |
| 73 | CMS Collaboration | Jet algorithms performance in 13 TeV data | CMS Physics Analysis Summary, 2017 CMS-PAS-JME-16-003 |
CMS-PAS-JME-16-003 |
| 74 | CMS Collaboration | Pileup mitigation at CMS in 13 TeV data | JINST 15 (2020) P09018 | CMS-JME-18-001 2003.00503 |
| 75 | D. Bertolini, P. Harris, M. Low, and N. Tran | Pileup per particle identification | JHEP 10 (2014) 059 | 1407.6013 |
| 76 | CMS Collaboration | Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV | JINST 12 (2017) P02014 | CMS-JME-13-004 1607.03663 |
| 77 | A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler | Soft drop | JHEP 05 (2014) 146 | 1402.2657 |
| 78 | CMS Collaboration | Identification of hadronic tau lepton decays using a deep neural network | JINST 17 (2022) P07023 | CMS-TAU-20-001 2201.08458 |
| 79 | CMS Collaboration | Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s} = $ 13 TeV using the CMS detector | JINST 14 (2019) P07004 | CMS-JME-17-001 1903.06078 |
| 80 | CMS Collaboration | Performance of heavy-flavour jet identification in Lorentz-boosted topologies in proton-proton collisions at $ \sqrt{s} = $ 13 TeV | JINST 20 (2025) P11006 | CMS-BTV-22-001 2510.10228 |
| 81 | H. Qu and L. Gouskos | Particlenet: Jet tagging via particle clouds | PRD 101 (2020) 056019 | 1902.08570 |
| 82 | R. A. Fisher | On the interpretation of $ \chi^{2} $ from contingency tables, and the calculation of P | J. R. Stat. Soc. 85 (1922) 87 | |
| 83 | E. Bols et al. | Jet flavour classification using DeepJet | JINST 15 (2020) P12012 | 2008.10519 |
| 84 | CMS Collaboration | Performance of the DeepJet b tagging algorithm using 41.9/fb of data from proton-proton collisions at 13 TeV with Phase 1 CMS detector | CMS Detector Performance Note CMS-DP-2018-058, 2018 CDS |
|
| 85 | M. Baak, S. Gadatsch, R. Harrington, and W. Verkerke | Interpolation between multi-dimensional histograms using a new non-linear moment morphing method | NIM A 771 (2015) 39 | 1410.7388 |
| 86 | ATLAS and CMS Collaborations, and LHC Higgs Combination Group | Procedure for the LHC Higgs boson search combination in Summer 2011 | Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011 | |
| 87 | S. Mrenna and P. Skands | Automated parton-shower variations in Pythia 8 | PRD 94 (2016) 074005 | 1605.08352 |
| 88 | J. Butterworth et al. | PDF4LHC recommendations for LHC run II | JPG 43 (2016) 023001 | 1510.03865 |
| 89 | CMS Collaboration | The CMS statistical analysis and combination tool: Combine | Comput. Softw. Big Sci. 8 (2024) 19 | CMS-CAT-23-001 2404.06614 |
| 90 | W. Verkerke and D. P. Kirkby | The RooFit toolkit for data modeling | in th International Conference for Computing in High-Energy and Nuclear Physics (CHEP03)... [eConf C0303241, MOLT007], 2003 Proceedings of the 1 (2003) 3 |
physics/0306116 |
| 91 | L. Moneta et al. | The RooStats project | in th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT), 2010 Proceedings of the 1 (2010) 3 |
1009.1003 |
| 92 | CMS Collaboration | Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 $ \text {TeV} $ | EPJC 75 (2015) 212 | CMS-HIG-14-009 1412.8662 |
| 93 | CMS Collaboration | HEPData record for this analysis | link | |
|
Compact Muon Solenoid LHC, CERN |
|
|
|
|
|
|