CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIG-21-007 ; CERN-EP-2023-004
A search for decays of the Higgs boson to invisible particles in events with a top-antitop quark pair or a vector boson in proton-proton collisions at $ \sqrt{s} = $ 13 TeV
Eur. Phys. J. C 83 (2023) 933
Abstract: A search for decays to invisible particles of Higgs bosons produced in association with a top-antitop quark pair or a vector boson, which both decay to a fully hadronic final state, has been performed using proton-proton collision data collected at $ \sqrt{s}= $ 13 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb$ ^{-1} $. The 95% confidence level upper limit set on the branching fraction of the 125 GeV Higgs boson to invisible particles, $ {\mathcal{B}(\mathrm{H} \to \text{inv})} $, is 0.47 (0.40 expected), assuming standard model production cross sections. The results of this analysis are combined with previous $ {\mathcal{B}(\mathrm{H} \to \text{inv})} $ searches carried out at $ \sqrt{s}=$ 7, 8, and 13 TeV in complementary production modes. The combined upper limit at 95% confidence level on $ {\mathcal{B}(\mathrm{H} \to \text{inv})} $ is 0.15 (0.08 expected).
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Representative LO Feynman diagrams for the SM Higgs boson production channels $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ and VH.

png pdf
Figure 1-a:
Representative LO Feynman diagrams for the SM Higgs boson production channels $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ and VH.

png pdf
Figure 1-b:
Representative LO Feynman diagrams for the SM Higgs boson production channels $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ and VH.

png pdf
Figure 2:
Distributions of hadronic recoil in the $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ (upper plot) and VH (lower plot) categories for the $ \mu $+jets CR. The black histogram shows the total background (bkg.) prediction from a CR only, B-only fit, while the red histogram shows the yields from a CR+SR S+B fit.

png pdf
Figure 2-a:
Distributions of hadronic recoil in the $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ (upper plot) and VH (lower plot) categories for the $ \mu $+jets CR. The black histogram shows the total background (bkg.) prediction from a CR only, B-only fit, while the red histogram shows the yields from a CR+SR S+B fit.

png pdf
Figure 2-b:
Distributions of hadronic recoil in the $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ (upper plot) and VH (lower plot) categories for the $ \mu $+jets CR. The black histogram shows the total background (bkg.) prediction from a CR only, B-only fit, while the red histogram shows the yields from a CR+SR S+B fit.

png pdf
Figure 3:
Distributions of hadronic recoil in the $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ (upper plot) and VH (lower plot) categories for the e+jets CR. The black histogram shows the total background (bkg.) prediction from a CR only, B-only fit, while the red histogram shows the yields from a CR+SR S+B fit.

png pdf
Figure 3-a:
Distributions of hadronic recoil in the $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ (upper plot) and VH (lower plot) categories for the e+jets CR. The black histogram shows the total background (bkg.) prediction from a CR only, B-only fit, while the red histogram shows the yields from a CR+SR S+B fit.

png pdf
Figure 3-b:
Distributions of hadronic recoil in the $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ (upper plot) and VH (lower plot) categories for the e+jets CR. The black histogram shows the total background (bkg.) prediction from a CR only, B-only fit, while the red histogram shows the yields from a CR+SR S+B fit.

png pdf
Figure 4:
Distributions of hadronic recoil in the $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ category for the $ \mu\mu $+ jets, ee+jets, and $ \ell\ell $+jets CRs (upper plot), and the VH category for the $ \mu\mu $+jets, ee+jets, and $ \gamma $+jets CRs (lower plot). The black histogram shows the total background (bkg.) prediction from a CR only, B-only fit, while the red histogram shows the yields from a CR+SR S+B fit.

png pdf
Figure 4-a:
Distributions of hadronic recoil in the $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ category for the $ \mu\mu $+ jets, ee+jets, and $ \ell\ell $+jets CRs (upper plot), and the VH category for the $ \mu\mu $+jets, ee+jets, and $ \gamma $+jets CRs (lower plot). The black histogram shows the total background (bkg.) prediction from a CR only, B-only fit, while the red histogram shows the yields from a CR+SR S+B fit.

png pdf
Figure 4-b:
Distributions of hadronic recoil in the $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ category for the $ \mu\mu $+ jets, ee+jets, and $ \ell\ell $+jets CRs (upper plot), and the VH category for the $ \mu\mu $+jets, ee+jets, and $ \gamma $+jets CRs (lower plot). The black histogram shows the total background (bkg.) prediction from a CR only, B-only fit, while the red histogram shows the yields from a CR+SR S+B fit.

png pdf
Figure 5:
Distributions of hadronic recoil in the $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ (upper plot) and VH (lower plot) categories for the SR, showing the signal contributions from $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $, VH, $ \mathrm{g}\mathrm{g}\mathrm{H} $, and VBF weighted by $ {\mathcal{B}(\mathrm{H} \to \text{inv})} = $0.10. The black histogram shows the total background (bkg.) prediction from a CR only, B-only fit, while the red histogram shows the yields from a CR+SR S+B fit.

png pdf
Figure 5-a:
Distributions of hadronic recoil in the $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ (upper plot) and VH (lower plot) categories for the SR, showing the signal contributions from $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $, VH, $ \mathrm{g}\mathrm{g}\mathrm{H} $, and VBF weighted by $ {\mathcal{B}(\mathrm{H} \to \text{inv})} = $0.10. The black histogram shows the total background (bkg.) prediction from a CR only, B-only fit, while the red histogram shows the yields from a CR+SR S+B fit.

png pdf
Figure 5-b:
Distributions of hadronic recoil in the $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ (upper plot) and VH (lower plot) categories for the SR, showing the signal contributions from $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $, VH, $ \mathrm{g}\mathrm{g}\mathrm{H} $, and VBF weighted by $ {\mathcal{B}(\mathrm{H} \to \text{inv})} = $0.10. The black histogram shows the total background (bkg.) prediction from a CR only, B-only fit, while the red histogram shows the yields from a CR+SR S+B fit.

png pdf
Figure 6:
Left: Observed and expected limits at 95% CL for the $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ and VH categories using 2016--2018 data. Right: The profile likelihood scan corresponding to observed and expected (where $ {\mathcal{B}(\mathrm{H} \to \text{inv})}= $ 0) limits in the fit to the $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ and VH categories.

png pdf
Figure 6-a:
Left: Observed and expected limits at 95% CL for the $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ and VH categories using 2016--2018 data. Right: The profile likelihood scan corresponding to observed and expected (where $ {\mathcal{B}(\mathrm{H} \to \text{inv})}= $ 0) limits in the fit to the $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ and VH categories.

png pdf
Figure 6-b:
Left: Observed and expected limits at 95% CL for the $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ and VH categories using 2016--2018 data. Right: The profile likelihood scan corresponding to observed and expected (where $ {\mathcal{B}(\mathrm{H} \to \text{inv})}= $ 0) limits in the fit to the $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ and VH categories.

png pdf
Figure 7:
Left: Exclusion limits at 95% CL on $ {\mathcal{B}(\mathrm{H} \to \text{inv})} $. The results are shown separately for each Higgs boson production mode as tagged by the input analyses for Run 1 and Run 2, as well as combined across modes. Right: Scan of the profile negative log-likelihood as a function of $ {\mathcal{B}(\mathrm{H} \to \text{inv})} $ broken down by the Higgs boson production mode as tagged by the input analyses for Run 1 and Run 2.

png pdf
Figure 7-a:
Left: Exclusion limits at 95% CL on $ {\mathcal{B}(\mathrm{H} \to \text{inv})} $. The results are shown separately for each Higgs boson production mode as tagged by the input analyses for Run 1 and Run 2, as well as combined across modes. Right: Scan of the profile negative log-likelihood as a function of $ {\mathcal{B}(\mathrm{H} \to \text{inv})} $ broken down by the Higgs boson production mode as tagged by the input analyses for Run 1 and Run 2.

png pdf
Figure 7-b:
Left: Exclusion limits at 95% CL on $ {\mathcal{B}(\mathrm{H} \to \text{inv})} $. The results are shown separately for each Higgs boson production mode as tagged by the input analyses for Run 1 and Run 2, as well as combined across modes. Right: Scan of the profile negative log-likelihood as a function of $ {\mathcal{B}(\mathrm{H} \to \text{inv})} $ broken down by the Higgs boson production mode as tagged by the input analyses for Run 1 and Run 2.

png pdf
Figure 8:
Upper limits on $ \sigma^{\text{SI}}_{\text{{DM\mbox{-}nucleon}}} $ as a function of DM candidate mass $ m_{\text{DM}} $. Results are presented for a fermion (red) and scalar (yellow) DM candidate. In addition, a vector DM candidate is studied using two UV-comp approaches, the first denoted Vector DM$ ^{\text{UV-comp}} $ [20] (burgundy), and the second a radiative portal version denoted Vector DM$ ^{\text{radiative}}_{m_{2}} $ [23] (orange) with a dark Higgs boson mass of $ m_2 = $ 65 and 100 GeV. Uncertainties are derived from Refs. [99,100,19]. Results are compared to direct-detection searches from CRESST-III [95] (truncated at $ m_{\text{DM}} > $ 1 GeV), DarkSide-50 [96], PandaX-4T [97] and LUX-ZEPLIN [98].

png pdf
Figure 9:
Observed 95% CL upper limit on $ {\mathcal{B}(\mathrm{H} \to \text{inv})} $ as a function of coupling strength modifiers, $ \kappa_{\text{V}} $ and $ \kappa_{\text{F}} $, for a Higgs boson of mass 125 GeV. Best estimates for $ \kappa_{\text{V}} $ and $ \kappa_{\text{F}} $ from Ref. [11] are shown as a black cross, together with 68 and 95% CL contours.
Tables

png pdf
Table 1:
Offline selection applied to all categories and regions in this analysis to improve signal purity and reduce overlap with the phase space of other $ \mathrm{H} \to \text{inv} $ searches.

png pdf
Table 2:
Categorisation of the $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ and VH production modes in the analysis. No additional selections are applied to the boosted $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ subcategories.

png pdf
Table 3:
Summary of all CR requirements, excluding selections suppressing the QCD multijet background, and excluding the requirement of $ \Delta\phi ($recoil, $\vec{p}_{\mathrm{T},\text{track}}^{\text{miss}}) > \pi$ /2 applied to the $ {\mathrm{t}\bar{\mathrm{t}}} \mathrm{H} $ category in the dilepton CRs. No mass requirements are imposed in the $ \gamma $+jets.

png pdf
Table 4:
Meaning of the symbols used in Eqs. 4 and 5 that define the likelihood function.

png pdf
Table 5:
The ranges corresponding to the maximum and minimum deviations of the event yields from their nominal values, provided where applicable across each region, year of data-taking, category, recoil bin, and all SM background processes, when the respective systematic uncertainty is changed within $ \pm $1 standard deviation.

png pdf
Table 6:
Total post-fit yields in the SRs in each recoil bin and analysis category obtained by summing the contributions from the individual data-taking periods. B-only fits are performed for either CR+SR or CR only cases. The extracted signal yields from an S+B fit are also reported, where the signal strength is weighted by $ {\mathcal{B}(\mathrm{H} \to \text{inv})}=$ 0.10.

png pdf
Table 7:
The observed and expected impacts on $ {\mathcal{B}(\mathrm{H} \to \text{inv})} $ for different groups of uncertainties, where the expected results are produced with $ {\mathcal{B}(\mathrm{H} \to \text{inv})} = $ 0.

png pdf
Table 8:
Data sets and their respective integrated luminosities used for each production mode across Run 1 and Run 2. For some data-taking periods, no $ \mathrm{H} \to \text{inv} $ search have been performed for the given production mode, and are not included in the combination.

png pdf
Table 9:
The observed best fit estimates of $ {\mathcal{B}(\mathrm{H} \to \text{inv})} $, for each analysis channel in the combination, and the 95% CL observed and expected (exp) upper limits on $ {\mathcal{B}(\mathrm{H} \to \text{inv})} $.
Summary
The results of a search for invisible decays of the Higgs boson produced in association with a top-antitop quark pair ($ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $) or a vector boson (VH, where V stands for either a W or Z boson), which decays to a fully hadronic final state, are presented. The analysis is based on proton-proton collision data collected at $ \sqrt{s}= $ 13 TeV during the 2016-2018 data-taking period by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb$ ^{-1} $. The $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{H} $ production mechanism is investigated using final states containing b jets, or boosted t quarks or W bosons. The VH production channel focuses on resolving a dijet pair with an invariant mass that is compatible with that of a W or Z boson. No significant excess of events is observed above the predicted SM background. A 95% confidence level upper limit of 0.47 (0.40 expected) is set on the branching fraction of the decay of the Higgs boson to an invisible final state, $ {\mathcal{B}(\mathrm{H} \to \text{inv})} $, assuming SM production cross sections. The results are combined with previous $ {\mathcal{B}(\mathrm{H} \to \text{inv})} $ searches carried out at $ \sqrt{s}= $ 7, 8, and 13 TeV in complementary production modes. The combined 95% confidence level upper limit on $ {\mathcal{B}(\mathrm{H} \to \text{inv})} $ of 0.15 (0.08 expected) is obtained using Run 1 (2011-2012) and Run 2 (2015--2018) data. The combination represents an improvement in sensitivity of 20% relative to the most sensitive single channel. The results are interpreted in the context of a set of Higgs portal models of dark matter interactions to produce model-dependent exclusion limits that complement direct-detection experiments for light mass dark matter candidates.
References
1 F. Englert and R. Brout Broken symmetry and the mass of gauge vector mesons PRL 13 (1964) 321
2 P. W. Higgs Broken symmetries, massless particles and gauge fields PL 12 (1964) 132
3 P. W. Higgs Broken symmetries and the masses of gauge bosons PRL 13 (1964) 508
4 G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble Global conservation laws and massless particles PRL 13 (1964) 585
5 P. W. Higgs Spontaneous symmetry breakdown without massless bosons PR 145 (1966) 1156
6 T. W. B. Kibble Symmetry breaking in non-abelian gauge theories PR 155 (1967) 1554
7 ATLAS Collaboration Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
8 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
9 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
10 ATLAS Collaboration A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery Nature 607 (2022) 52 2207.00092
11 CMS Collaboration A portrait of the Higgs boson by the CMS experiment ten years after the discovery Nature 607 (2022) 60 CMS-HIG-22-001
2207.00043
12 Particle Data Group Review of particle physics PTEP 2022 (2022) 083C01
13 R. E. Shrock and M. Suzuki Invisible decays of Higgs bosons PLB 110 (1982) 250
14 G. Bélanger et al. The MSSM invisible Higgs in the light of dark matter and g$-$2 PLB 519 (2001) 93 hep-ph/0106275
15 A. Datta, K. Huitu, J. Laamanen, and B. Mukhopadhyaya Linear collider signals of an invisible Higgs boson in theories of large extra dimensions PRD 70 (2004) 075003 hep-ph/0404056
16 D. Dominici and J. F. Gunion Invisible Higgs decays from Higgs-graviscalar mixing PRD 80 (2009) 115006 0902.1512
17 S. Argyropoulos, O. Brandt, and U. Haisch Collider searches for dark matter through the Higgs lens Symmetry 13 (2021) 2406 2109.13597
18 S. Kanemura, S. Matsumoto, T. Nabeshima, and N. Okada Can WIMP dark matter overcome the nightmare scenario? PRD 82 (2010) 055026 1005.5651
19 A. Djouadi, O. Lebedev, Y. Mambrini, and J. Quevillon Implications of LHC searches for Higgs--portal dark matter PLB 709 (2012) 65 1112.3299
20 S. Baek, P. Ko, W.-I. Park, and E. Senaha Higgs portal vector dark matter: revisited JHEP 05 (2013) 036 1212.2131
21 A. Djouadi, A. Falkowski, Y. Mambrini, and J. Quevillon Direct detection of Higgs--portal dark matter at the LHC EPJC 73 (2013) 2455 1205.3169
22 A. Beniwal et al. Combined analysis of effective Higgs--portal dark matter models PRD 93 (2016) 115016 1512.06458
23 A. DiFranzo, P. J. Fox, and T. M. P. Tait Vector dark matter through a radiative Higgs portal JHEP 04 (2016) 135 1512.06853
24 ATLAS Collaboration Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a $ Z $ boson in $ pp $ collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector PLB 776 (2018) 318 1708.09624
25 ATLAS Collaboration Combination of searches for invisible Higgs boson decays with the ATLAS experiment PRL 122 (2019) 231801 1904.05105
26 ATLAS Collaboration Search for new phenomena in events with an energetic jet and missing transverse momentum in pp collisions at $ \sqrt {s} = $ 13 TeV with the ATLAS detector PRD 103 (2021) 112006 2102.10874
27 ATLAS Collaboration Search for associated production of a z boson with an invisibly decaying Higgs boson or dark matter candidates at $ \sqrt {s} = $ 13 TeV with the ATLAS detector PLB 829 (2022) 137066 2111.08372
28 ATLAS Collaboration Search for invisible Higgs-boson decays in events with vector-boson fusion signatures using 139 fb$ ^{-1} $ of proton-proton data recorded by the ATLAS experiment JHEP 08 (2022) 104 2202.07953
29 CMS Collaboration Search for direct top squark pair production in events with one lepton, jets, and missing transverse momentum at 13 TeV with the CMS experiment JHEP 05 (2020) 032 CMS-SUS-19-009
1912.08887
30 CMS Collaboration Search for top squark pair production using dilepton final states in pp collision data collected at $ \sqrt{s} = $ 13 TeV EPJC 81 (2021) 3 CMS-SUS-19-011
2008.05936
31 CMS Collaboration Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at $ \sqrt{s} = $ 13 TeV EPJC 81 (2021) 970 CMS-SUS-20-002
2107.10892
32 CMS Collaboration Search for dark matter produced in association with a leptonically decaying z boson in proton-proton collisions at $ \sqrt{s} = $ 13 TeV EPJC 81 (2021) 13 CMS-EXO-19-003
2008.04735
33 CMS Collaboration Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 11 (2021) 153 CMS-EXO-20-004
2107.13021
34 CMS Collaboration Search for invisible decays of the Higgs boson produced via vector boson fusion in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PRD 105 (2022) 092007 CMS-HIG-20-003
2201.11585
35 CMS Collaboration Performance of the CMS level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
36 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
37 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) P05014 CMS-EGM-17-001
2012.06888
38 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
39 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
40 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
41 CMS Collaboration Performance of reconstruction and identification of $ \tau $ leptons decaying to hadrons and $ \nu_\tau $ in pp collisions at $ \sqrt{s} = $ 13 TeV JINST 13 (2018) P10005 CMS-TAU-16-003
1809.02816
42 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
43 CMS Collaboration Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s} = $ 13 TeV using the CMS detector JINST 14 (2019) P07004 CMS-JME-17-001
1903.06078
44 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
45 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2018
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
46 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2019
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
47 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
48 C. Oleari The POWHEG-BOX Nucl. Phys. B Proc. Suppl. 205 (2010) 36 1007.3893
49 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
50 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
51 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
52 GEANT4 Collaboration GEANT4 --- a simulation toolkit NIM A 506 (2003) 250
53 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
54 H. B. Hartanto, B. Jager, L. Reina, and D. Wackeroth Higgs boson production in association with top quarks in the POWHEG BOX PRD 91 (2015) 094003 1501.04498
55 P. Nason and C. Oleari NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG JHEP 02 (2010) 037 0911.5299
56 G. Luisoni, P. Nason, C. Oleari, and F. Tramontano HW$ ^{\pm} $/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO JHEP 10 (2013) 083 1306.2542
57 E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM JHEP 02 (2012) 088 1111.2854
58 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 4. deciphering the nature of the Higgs sector CERN Report CERN-2017-002-M, 2016
link
1610.07922
59 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
60 S. Zanoli et al. Next-to-next-to-leading order event generation for VH production with H $ {\rightarrow b\overline{b}} $ decay JHEP 07 (2022) 008 2112.04168
61 M. L. Mangano, M. Moretti, F. Piccinini, and M. Treccani Matching matrix elements and shower evolution for top-quark production in hadronic collisions JHEP 01 (2007) 013 hep-ph/0611129
62 J. M. Campbell, R. K. Ellis, P. Nason, and E. Re Top-pair production and decay at NLO matched with parton showers JHEP 04 (2015) 114 1412.1828
63 S. Alioli, P. Nason, C. Oleari, and E. Re NLO single-top production matched with shower in POWHEG: $ s $- and $ t $-channel contributions JHEP 09 (2009) 111 0907.4076
64 E. Re Single-top Wt-channel production matched with parton showers using the POWHEG method EPJC 71 (2011) 1547 1009.2450
65 M. Czakon et al. Top-pair production at the LHC through NNLO QCD and NLO EW JHEP 10 (2017) 186 1705.04105
66 P. Artoisenet, R. Frederix, O. Mattelaer, and R. Rietkerk Automatic spin-entangled decays of heavy resonances in monte carlo simulations JHEP 03 (2013) 015 1212.3460
67 T. Melia, P. Nason, R. Rontsch, and G. Zanderighi W$ ^+ $W$ ^- $, WZ and ZZ production in the POWHEG BOX JHEP 11 (2011) 078 1107.5051
68 M. Cacciari and G. P. Salam Pileup subtraction using jet areas PLB 659 (2008) 119 0707.1378
69 CMS Collaboration Technical proposal for the phase-II upgrade of the compact muon solenoid CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015
CDS
70 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ \mathrm{k_{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
71 M. Cacciari, G. P. Salam, and G. Soyez Fastjet user manual EPJC 72 (2012) 1896 1111.6097
72 CMS Collaboration Study of pileup removal algorithms for jets CMS Physics Analysis Summary, 2014
CMS-PAS-JME-14-001
CMS-PAS-JME-14-001
73 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
74 CMS Collaboration Pileup mitigation at CMS in 13 TeV data JINST 15 (2020) P09018 CMS-JME-18-001
2003.00503
75 D. Bertolini, P. Harris, M. Low, and N. Tran Pileup per particle identification JHEP 10 (2014) 059 1407.6013
76 A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler Soft drop JHEP 05 (2014) 146 1402.2657
77 M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam Towards an understanding of jet substructure JHEP 09 (2013) 029 1307.0007
78 J. M. Butterworth, A. R. Davison, M. Rubin, and G. P. Salam Jet substructure as a new Higgs search channel at the LHC PRL 100 (2008) 242001 0802.2470
79 J. Thaler and K. Van Tilburg Identifying boosted objects with $ N $-subjettiness JHEP 03 (2011) 015 1011.2268
80 CMS Collaboration Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques JINST 15 (2020) P06005 CMS-JME-18-002
2004.08262
81 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
82 T. Sakuma, H. Flächer, and D. Smith Alternative angular variables for suppression of QCD multijet events in new physics searches with missing transverse momentum at the LHC 1803.07942
83 CMS Collaboration Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P06005 CMS-EGM-13-001
1502.02701
84 J. M. Lindert, S. Pozzorini, R. Boughezal et al. Precise predictions for V+jets dark matter backgrounds EPJC 77 (2017) 829 1705.04664
85 CMS Collaboration Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV EPJC 75 (2015) 212 CMS-HIG-14-009
1412.8662
86 ATLAS and CMS Collaborations, and LHC Higgs Combination Group Procedure for the LHC Higgs boson search combination in summer 2011 Technical report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011
87 A. L. Read Presentation of search results: The CL$ _{\text{s}} $ technique JPG 28 (2002) 2693
88 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435 hep-ex/9902006
89 CMS Collaboration Searches for invisible decays of the Higgs boson in pp collisions at $ \sqrt{s} = $ 7, 8, and 13 TeV JHEP 02 (2017) 135 CMS-HIG-16-016
1610.09218
90 CMS Collaboration Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes EPJC 74 (2014) 2980 CMS-HIG-13-030
1404.1344
91 CMS Collaboration Search for dark matter in proton-proton collisions at 8 TeV with missing transverse momentum and vector boson tagged jets JHEP 12 (2016) 083 CMS-EXO-12-055
1607.05764
92 S. Baker and R. D. Cousins Clarification of the use of chi square and likelihood functions in fits to histograms NIM 221 (1984) 437
93 CMS Collaboration HEPData record for this analysis link
94 M. Zaazoua, L. Truong, K. A. Assamagan, and F. Fassi Higgs portal vector dark matter interpretation: Review of effective field theory approach and ultraviolet complete models LHEP 2022 (2022) 270 2107.01252
95 CRESST Collaboration First results from the CRESST-III low-mass dark matter program PRD 100 (2019) 102002 1904.00498
96 DarkSide-50 Collaboration Search for low-mass dark matter WIMPs with 12 ton-day exposure of DarkSide-50 2207.11966
97 PandaX Collaboration A first search for solar $ ^8 $B neutrino in the PandaX-4T experiment using neutrino-nucleus coherent scattering 2207.04883
98 LZ Collaboration First dark matter search results from the LUX-ZEPLIN (LZ) experiment 2207.03764
99 R. D. Young and A. W. Thomas Octet baryon masses and sigma terms from an SU(3) chiral extrapolation PRD 81 (2010) 014503 0901.3310
100 MILC Collaboration The strange quark condensate in the nucleon in 2+1 flavor QCD PRL 103 (2009) 122002 0905.2432
101 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 3. Higgs properties Technical report, 2013
link
1307.1347
Compact Muon Solenoid
LHC, CERN