CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-B2G-20-004 ; CERN-EP-2024-030
Search for resonant pair production of Higgs bosons in the $ \mathrm{b}\overline{\mathrm{b}}\mathrm{b}\overline{\mathrm{b}} $ final state using large-area jets in proton-proton collisions at $ \sqrt{s}= $ 13 TeV
Submitted to J. High Energy Phys.
Abstract: A search is presented for the resonant production of a pair of standard model-like Higgs bosons using data from proton-proton collisions at a centre-of-mass energy of 13 TeV, collected by the CMS experiment at the CERN LHC in 2016-2018, corresponding to an integrated luminosity of 138 fb$ ^{-1} $. The final state consists of two b quark-antiquark pairs. The search is conducted in the region of phase space where at least one of the pairs is highly Lorentz-boosted and is reconstructed as a single large-area jet. The other pair may be either similarly merged or resolved, the latter reconstructed using two b-tagged jets. The data are found to be consistent with standard model processes and are interpreted as 95% confidence level upper limits on the product of the cross sections and the branching fractions of the spin-0 radion and the spin-2 bulk graviton that arise in warped extradimensional models. The limits set are in the range 9.74-0.29 fb and 4.94-0.19 fb for a narrow radion and a graviton, respectively, with masses between 1 and 3 TeV. For a radion and for a bulk graviton with widths 10% of their masses, the limits are in the range 12.5-0.35 fb and 8.23-0.23 fb, respectively, for the same masses. These limits result in the exclusion of a narrow-width graviton with a mass below 1.2 TeV, and of narrow and 10%-width radions with masses below 2.6, and 2.9 TeV, respectively.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
A diagram showing tight-tight (TT, purple) and loose-loose (LL, blue) pass regions (solid) and their corresponding fail regions (dash-dotted).

png pdf
Figure 2:
Slices of 2D distributions of observed events and the post-fit templates in the LL signal region, projected onto the plane of leading jet mass $ m_{\text{J}_{1}} $ (left) and corrected HH mass $ m_\text{HH} $ (right) axes, together with the signal expected for a radion of mass 1.5 TeV. For this and following figures, the value of $ \sigma $ in the lower panel is $ \sigma = \sqrt{\sigma_\text{bkg}^2 + \sigma_\text{data}^2} $, where $ \sigma_\text{bkg} $ is the total uncertainty in the background and $ \sigma_\text{data} $ is the statistical uncertainty associated with the number of data events in a particular bin.

png pdf
Figure 2-a:
Slices of 2D distributions of observed events and the post-fit templates in the LL signal region, projected onto the plane of leading jet mass $ m_{\text{J}_{1}} $ (left) and corrected HH mass $ m_\text{HH} $ (right) axes, together with the signal expected for a radion of mass 1.5 TeV. For this and following figures, the value of $ \sigma $ in the lower panel is $ \sigma = \sqrt{\sigma_\text{bkg}^2 + \sigma_\text{data}^2} $, where $ \sigma_\text{bkg} $ is the total uncertainty in the background and $ \sigma_\text{data} $ is the statistical uncertainty associated with the number of data events in a particular bin.

png pdf
Figure 2-b:
Slices of 2D distributions of observed events and the post-fit templates in the LL signal region, projected onto the plane of leading jet mass $ m_{\text{J}_{1}} $ (left) and corrected HH mass $ m_\text{HH} $ (right) axes, together with the signal expected for a radion of mass 1.5 TeV. For this and following figures, the value of $ \sigma $ in the lower panel is $ \sigma = \sqrt{\sigma_\text{bkg}^2 + \sigma_\text{data}^2} $, where $ \sigma_\text{bkg} $ is the total uncertainty in the background and $ \sigma_\text{data} $ is the statistical uncertainty associated with the number of data events in a particular bin.

png pdf
Figure 3:
Slices of 2D distributions of observed events and the post-fit templates in the TT signal region, projected onto the $ m_{\text{J}_{1}} $ (left) and $ m_\text{HH} $ (right) axes, together with the signal expected for a radion of mass 1.5 TeV.

png pdf
Figure 3-a:
Slices of 2D distributions of observed events and the post-fit templates in the TT signal region, projected onto the $ m_{\text{J}_{1}} $ (left) and $ m_\text{HH} $ (right) axes, together with the signal expected for a radion of mass 1.5 TeV.

png pdf
Figure 3-b:
Slices of 2D distributions of observed events and the post-fit templates in the TT signal region, projected onto the $ m_{\text{J}_{1}} $ (left) and $ m_\text{HH} $ (right) axes, together with the signal expected for a radion of mass 1.5 TeV.

png pdf
Figure 4:
Slices of 2D distributions of observed events and the post-fit templates in the semi-resolved signal region, projected onto the $ m_{\text{J}_{1}} $ (left) and $ m_\text{HH} $ together with the signal expected for a radion of mass 1.5 TeV.

png pdf
Figure 4-a:
Slices of 2D distributions of observed events and the post-fit templates in the semi-resolved signal region, projected onto the $ m_{\text{J}_{1}} $ (left) and $ m_\text{HH} $ together with the signal expected for a radion of mass 1.5 TeV.

png pdf
Figure 4-b:
Slices of 2D distributions of observed events and the post-fit templates in the semi-resolved signal region, projected onto the $ m_{\text{J}_{1}} $ (left) and $ m_\text{HH} $ together with the signal expected for a radion of mass 1.5 TeV.

png pdf
Figure 5:
The observed (solid black line) and expected (dashed black line) upper limits at 95% CL on $ \sigma(\mathrm{p}\mathrm{p}\to\mathrm{X}) \mathcal{B}(\mathrm{X}\to \mathrm{H}\mathrm{H}\to \mathrm{b}\overline{\mathrm{b}}\mathrm{b}\overline{\mathrm{b}}) $ for a narrow spin-0 radion (left, corresponding to $ \Lambda_{\text{R}}= $ 3 TeV) and a narrow width spin-2 bulk graviton (right, corresponding to $ k/\overline{M}_\text{Pl} = $ 0.5) models. The green (yellow) bands represent one (two) standard deviations from the expected limit. The predicted theoretical cross sections for the narrow radion and bulk graviton are also shown.

png pdf
Figure 5-a:
The observed (solid black line) and expected (dashed black line) upper limits at 95% CL on $ \sigma(\mathrm{p}\mathrm{p}\to\mathrm{X}) \mathcal{B}(\mathrm{X}\to \mathrm{H}\mathrm{H}\to \mathrm{b}\overline{\mathrm{b}}\mathrm{b}\overline{\mathrm{b}}) $ for a narrow spin-0 radion (left, corresponding to $ \Lambda_{\text{R}}= $ 3 TeV) and a narrow width spin-2 bulk graviton (right, corresponding to $ k/\overline{M}_\text{Pl} = $ 0.5) models. The green (yellow) bands represent one (two) standard deviations from the expected limit. The predicted theoretical cross sections for the narrow radion and bulk graviton are also shown.

png pdf
Figure 5-b:
The observed (solid black line) and expected (dashed black line) upper limits at 95% CL on $ \sigma(\mathrm{p}\mathrm{p}\to\mathrm{X}) \mathcal{B}(\mathrm{X}\to \mathrm{H}\mathrm{H}\to \mathrm{b}\overline{\mathrm{b}}\mathrm{b}\overline{\mathrm{b}}) $ for a narrow spin-0 radion (left, corresponding to $ \Lambda_{\text{R}}= $ 3 TeV) and a narrow width spin-2 bulk graviton (right, corresponding to $ k/\overline{M}_\text{Pl} = $ 0.5) models. The green (yellow) bands represent one (two) standard deviations from the expected limit. The predicted theoretical cross sections for the narrow radion and bulk graviton are also shown.

png pdf
Figure 6:
The observed (solid black line) and expected (dashed black line) upper limits at 95% CL on $ \sigma(\mathrm{p}\mathrm{p}\to\mathrm{X}) \mathcal{B}(\mathrm{X}\to \mathrm{H}\mathrm{H}\to \mathrm{b}\overline{\mathrm{b}}\mathrm{b}\overline{\mathrm{b}}) $ for the 10%-width spin-0 radion (left) and the 10%-width spin-2 bulk graviton (right) models. The green (yellow) bands represent one (two) standard deviations from the expected limit. The predicted theoretical cross sections for the 10%-width radion and bulk graviton are also shown.

png pdf
Figure 6-a:
The observed (solid black line) and expected (dashed black line) upper limits at 95% CL on $ \sigma(\mathrm{p}\mathrm{p}\to\mathrm{X}) \mathcal{B}(\mathrm{X}\to \mathrm{H}\mathrm{H}\to \mathrm{b}\overline{\mathrm{b}}\mathrm{b}\overline{\mathrm{b}}) $ for the 10%-width spin-0 radion (left) and the 10%-width spin-2 bulk graviton (right) models. The green (yellow) bands represent one (two) standard deviations from the expected limit. The predicted theoretical cross sections for the 10%-width radion and bulk graviton are also shown.

png pdf
Figure 6-b:
The observed (solid black line) and expected (dashed black line) upper limits at 95% CL on $ \sigma(\mathrm{p}\mathrm{p}\to\mathrm{X}) \mathcal{B}(\mathrm{X}\to \mathrm{H}\mathrm{H}\to \mathrm{b}\overline{\mathrm{b}}\mathrm{b}\overline{\mathrm{b}}) $ for the 10%-width spin-0 radion (left) and the 10%-width spin-2 bulk graviton (right) models. The green (yellow) bands represent one (two) standard deviations from the expected limit. The predicted theoretical cross sections for the 10%-width radion and bulk graviton are also shown.
Tables

png pdf
Table 1:
Event selection criteria for the fully-merged topology.

png pdf
Table 2:
Event selection criteria for the semi-resolved topology.

png pdf
Table 3:
Summary of the ranges within which the systematic uncertainties in the signal and background yields are varied in the combined fit of all ten regions for a radion resonance at 1500 GeV.
Summary
A search has been presented for the pair production of standard model Higgs bosons (HH) from the decay of a spin-0 radion or a spin-2 bulk graviton as predicted in warped extradimensional models, using data from proton-proton collisions at a centre-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb$^{-1}$. The search is restricted to the case where each Higgs boson decays to a bottom quark-antiquark pair. It is conducted in the region of phase space where at least one of the Higgs bosons has a large Lorentz boost, so that the $ \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}} $ decay products are collimated to form a single H jet. The search combines events with one H jet and two b jets with events having two H jets, thus adding sensitivity compared with previous analyses [36,38]. The results are interpreted in terms of upper limits on the product of the production cross section for the respective resonance particles and the branching fraction to $ \mathrm{H}\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}}\mathrm{b}\overline{\mathrm{b}} $, at 95% confidence level. The upper limits range from 9.74 to 0.29 fb for a narrow radion and from 4.94 to 0.19 fb for a narrow bulk graviton, each having a mass of 1-3 TeV. Assuming a with of 10% for the radion and the graviton, the limits for the same masses are in the range 12.48-0.35 fb and 8.23-0.23 fb, respectively. As a result, the narrow-width graviton with $ m_{\mathrm{X}} $ below 1.2 TeV, and narrow and 10%-width radion with masses below 2.6 TeV, and 2.9 TeV, respectively, are excluded.
References
0 ATLAS Collaboration Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 01 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 LHC Higgs Cross Section Working Group Handbook of LHC Higgs Cross Sections: 4. Deciphering the nature of the Higgs sector CERN Yellow Rep. Monogr. 2 (2017) 1610.07922
5 D. de Florian and J. Mazzitelli Higgs boson pair production at next-to-next-to-leading order in QCD PRL 111 (2013) 201801 1309.6594
6 J. Baglio et al. The measurement of the Higgs self-coupling at the LHC: theoretical status JHEP 04 (2013) 151 1212.5581
7 R. Grober and M. Muhlleitner Composite Higgs boson pair production at the LHC JHEP 06 (2011) 020 1012.1562
8 L. Randall and R. Sundrum A large mass hierarchy from a small extra dimension PRL 83 (1999) 3370 hep-ph/9905221
9 L. Randall and R. Sundrum An Alternative to compactification PRL 83 (1999) 4690 hep-th/9906064
10 W. D. Goldberger and M. B. Wise Modulus stabilization with bulk fields PRL 83 (1999) 4922 hep-ph/9907447
11 O. DeWolfe, D. Z. Freedman, S. S. Gubser, and A. Karch Modeling the fifth dimension with scalars and gravity PRD 62 (2000) 046008 hep-th/9909134
12 C. Csaki, M. Graesser, L. Randall, and J. Terning Cosmology of brane models with radion stabilization PRD 62 (2000) 045015 hep-ph/9911406
13 H. Davoudiasl, J. L. Hewett, and T. G. Rizzo Phenomenology of the Randall-Sundrum gauge hierarchy model PRL 84 (2000) 2080 hep-ph/9909255
14 C. Csaki, M. L. Graesser, and G. D. Kribs Radion dynamics and electroweak physics PRD 63 (2001) 065002 hep-th/0008151
15 K. Agashe, H. Davoudiasl, G. Perez, and A. Soni Warped gravitons at the LHC and beyond PRD 76 (2007) 036006 hep-ph/0701186
16 G. F. Giudice, R. Rattazzi, and J. D. Wells Graviscalars from higher dimensional metrics and curvature Higgs mixing NPB 595 (2001) 250 hep-ph/0002178
17 ATLAS Collaboration Search for Higgs boson pair production in the $ \gamma\gamma \mathrm{b}\overline{\mathrm{b}} $ final state using pp collision data at $ \sqrt{s}= $ 8 TeV from the ATLAS detector PRL 114 (2015) 081802 1406.5053
18 ATLAS Collaboration Search for Higgs boson pair production in the $ \mathrm{b}\overline{\mathrm{b}}\mathrm{b}\overline{\mathrm{b}} $ final state from pp collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS detector EPJC 75 (2015) 412 1506.00285
19 ATLAS Collaboration Searches for Higgs boson pair production in the $ \mathrm{H}\mathrm{H}\to \mathrm{b}\overline{\mathrm{b}}\tau\tau $, $ \gamma\gamma \mathrm{W}\mathrm{W}^* $, $ \gamma\gamma\mathrm{b}\overline{\mathrm{b}} $, $ \mathrm{b}\overline{\mathrm{b}}\mathrm{b}\overline{\mathrm{b}} $ channels with the ATLAS detector PRD 92 (2015) 092004 1509.04670
20 ATLAS Collaboration Search for pair production of Higgs bosons in the $ \mathrm{b}\overline{\mathrm{b}}\mathrm{b}\overline{\mathrm{b}} $ final state using proton--proton collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector PRD 94 (2016) 052002 1606.04782
21 ATLAS Collaboration Search for pair production of Higgs bosons in the $ b\bar{b}b\bar{b} $ final state using proton-proton collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector JHEP 01 (2019) 030 1804.06174
22 ATLAS Collaboration Search for Resonant and Nonresonant Higgs Boson Pair Production in the $ {\mathrm{b}\overline{\mathrm{b}}\tau^+\tau^-} $ Decay Channel in pp Collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS Detector PRL 121 (2018) 191801 1808.00336
23 ATLAS Collaboration Search for Higgs boson pair production in the $ \gamma\gamma \mathrm{b}\overline{\mathrm{b}} $ final state with 13 TeV pp collision data collected by the ATLAS experiment JHEP 11 (2018) 040 1807.04873
24 ATLAS Collaboration Search for Higgs boson pair production in the two bottom quarks plus two photons final state in pp collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector PRD 106 (2022) 052001 2112.11876
25 ATLAS Collaboration Search for resonant and non-resonant Higgs boson pair production in the $ \mathrm{b}\overline{\mathrm{b}}{\tau}^{+}{\tau}^{-} $ decay channel using 13 TeV pp collision data from the ATLAS detector JHEP 07 (2023) 040 2209.10910
26 ATLAS Collaboration Search for resonant pair production of Higgs bosons in the $ \mathrm{b}\overline{\mathrm{b}}\mathrm{b}\overline{\mathrm{b}} $ final state using pp collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector PRD 105 (2022) 092002 2202.07288
27 CMS Collaboration Searches for heavy Higgs bosons in two-Higgs-doublet models and for t $ \rightarrow $ ch decay using multilepton and diphoton final states in pp collisions at 8 TeV PRD 90 (2014) 112013 CMS-HIG-13-025
1410.2751
28 CMS Collaboration Search for Higgs boson pair production in the $ \mathrm{b}\overline{\mathrm{b}}\tau\tau $ final state in proton-proton collisions at $ \sqrt{s}= $ 8 TeV PRD 96 (2017) 072004 CMS-HIG-15-013
1707.00350
29 CMS Collaboration Search for resonant pair production of Higgs bosons decaying to two bottom quark-antiquark pairs in proton-proton collisions at 8 TeV PLB 749 (2015) 560 CMS-HIG-14-013
1503.04114
30 CMS Collaboration Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A decaying to Zh, in the final states with $ \text{h} \to \tau \tau $ PLB 755 (2016) 217 CMS-HIG-14-034
1510.01181
31 CMS Collaboration Search for two Higgs bosons in final states containing two photons and two bottom quarks in proton-proton collisions at 8 TeV PRD 94 (2016) 052012 CMS-HIG-13-032
1603.06896
32 CMS Collaboration Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks EPJC 76 (2016) 371 CMS-EXO-12-053
1602.08762
33 CMS Collaboration Search for Higgs boson pair production in events with two bottom quarks and two tau leptons in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PLB 778 (2018) 101 CMS-HIG-17-002
1707.02909
34 CMS Collaboration Search for resonant and nonresonant Higgs boson pair production in the $ \mathrm{b}\overline{\mathrm{b}}\mathit{\ell}\nu\mathit{\ell}\nu $ final state in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 01 (2018) 054 CMS-HIG-17-006
1708.04188
35 CMS Collaboration Search for Higgs boson pair production in the $ \gamma\gamma\mathrm{b}\overline{\mathrm{b}} $ final state in pp collisions at $ \sqrt{s} = $ 13 TeV PLB 788 (2019) 7 CMS-HIG-17-008
1806.00408
36 CMS Collaboration Search for a massive resonance decaying to a pair of Higgs bosons in the four b quark final state in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PLB 781 (2018) 244 1710.04960
37 CMS Collaboration Search for resonant pair production of Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at 13 TeV JHEP 08 (2018) 152 CMS-HIG-17-009
1806.03548
38 CMS Collaboration Search for production of Higgs boson pairs in the four b quark final state using large-area jets in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 01 (2019) 040 1808.01473
39 M. Gouzevitch et al. Scale-invariant resonance tagging in multijet events and new physics in Higgs pair production JHEP 07 (2013) 148 1303.6636
40 A. L. Fitzpatrick, J. Kaplan, L. Randall, and L.-T. Wang Searching for the Kaluza-Klein graviton in bulk RS models JHEP 09 (2007) 013 hep-ph/0701150
41 A. Oliveira Gravity particles from warped extra dimensions, predictions for LHC 1404.0102
42 CMS Collaboration HEPData record for this analysis link
43 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
44 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
45 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
46 CMS Collaboration Particle-flow reconstruction and global event description with the cms detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
47 CMS Collaboration Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015
CDS
48 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
49 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
50 CMS Collaboration Pileup mitigation at CMS in 13 TeV data JINST 15 (2020) P09018 CMS-JME-18-001
2003.00503
51 D. Bertolini, P. Harris, M. Low, and N. Tran Pileup per particle identification JHEP 10 (2014) 59 1407.6013
52 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
53 CMS Collaboration Jet algorithms performance in 13 TeV data CMS Physics Analysis Summary, 2016
CMS-PAS-JME-16-003
CMS-PAS-JME-16-003
54 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
55 NNPDF Collaboration Parton distributions for the LHC Run II JHEP 04 (2015) 040 1410.8849
56 L. A. Harland-Lang, A. D. Martin, P. Motylinski, and R. S. Thorne Parton distributions in the LHC era: MMHT 2014 PDFs EPJC 75 (2015) 204 1412.3989
57 A. Buckley et al. LHAPDF6: parton density access in the LHC precision era EPJC 75 (2015) 132 1412.7420
58 S. Carrazza, J. I. Latorre, J. Rojo, and G. Watt A compression algorithm for the combination of PDF sets EPJC 75 (2015) 474 1504.06469
59 J. Butterworth et al. PDF4LHC recommendations for LHC Run II JPG 43 (2016) 023001 1510.03865
60 T. Sj รถ strand et al. An Introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
61 S. Frixione, G. Ridolfi, and P. Nason A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction JHEP 09 (2007) 126 0707.3088
62 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
63 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
64 S. Dulat et al. New parton distribution functions from a global analysis of quantum chromodynamics PRD 93 (2016) 033006 1506.07443
65 J. Gao and P. Nadolsky A meta-analysis of parton distribution functions JHEP 07 (2014) 035 1401.0013
66 S. Carrazza et al. An unbiased Hessian representation for Monte Carlo PDFs EPJC 75 (2015) 369 1505.06736
67 P. Skands, S. Carrazza, and J. Rojo Tuning Pythia 8.1: the Monash 2013 tune EPJC 74 (2014) 3024 1404.5630
68 CMS Collaboration Measurement of the top quark mass with lepton+jets final states using pp collisions at $ \sqrt{s} = $ 13 TeV EPJC 78 (2018) 891 CMS-TOP-17-007
1805.01428
69 M. Czakon and A. Mitov Top++: A program for the calculation of the top-pair cross-section at hadron colliders Comput. Phys. Commun. 185 (2014) 2930 1112.5675
70 GEANT4 Collaboration GEANT4---a simulation toolkit NIM A 506 (2003) 250
71 J. Allison et al. Geant4 developments and applications IEEE Trans. Nucl. Sci. 53 (2006) 270
72 CMS Collaboration Measurement of the inelastic proton-proton cross section at $ \sqrt{s} = $ 13 TeV JHEP 07 (2018) 161 CMS-FSQ-15-005
1802.02613
73 D. Krohn, J. Thaler, and L.-T. Wang Jet trimming JHEP 02 (2010) 084 0912.1342
74 M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam Towards an understanding of jet substructure JHEP 09 (2013) 029 1307.0007
75 A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler Soft drop JHEP 05 (2014) 146 1402.2657
76 ATLAS and CMS Collaborations Combined measurement of the Higgs boson mass in $ pp $ collisions at $ \sqrt{s}= $ 7 and 8 tev with the ATLAS and CMS experiments PRL 114 (2015) 191803 1503.07589
77 CMS Collaboration Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at $ \sqrt{s}= $ 13 TeV JHEP 11 (2017) 047 CMS-HIG-16-041
1706.09936
78 CMS Collaboration Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques JINST 15 (2020) P06005 CMS-JME-18-002
2004.08262
79 E. Bols et al. Jet Flavour Classification Using DeepJet JINST 15 (2020) P12012 2008.10519
80 CMS Collaboration Performance of the DeepJet b tagging algorithm using 41.9 fb$ ^{-1} $ of data from proton-proton collisions at 13 TeV with Phase 1 CMS detector CMS Detector Performance Note CMS-DP-2018-058, CERN, 2018
CDS
81 R. G. Lomax and D. L. Hahs Statistical concepts: a second course -Vaughn, . Taylor and Francis, Hoboken, NJ, 2012
82 K. S. Cranmer Kernel estimation in high-energy physics Comput. Phys. Commun. 136 (2001) 198 hep-ex/0011057
83 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2017) P05011 CMS-BTV-16-002
1712.07158
84 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s}= $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
85 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s}= $ 13 TeV CMS Physics Analysis Summary, 2019
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
86 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s}= $ 13 TeV CMS Physics Analysis Summary, 2018
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
87 R. Barlow and C. Beeston Fitting using finite Monte Carlo samples Comput. Phys. Commun. 77 (1993) 219
88 J. S. Conway Incorporating nuisance parameters in likelihoods for multisource spectra in Proceedings, PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, CERN, 2011
link
1103.0354
89 ATLAS and CMS Collaborations, The LHC Higgs Combination Group Procedure for the LHC Higgs boson search combination in Summer 2011 Technical Report CMS-NOTE-2011-005. ATL-PHYS-PUB-2011-11, CERN, 2011
90 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
91 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435 hep-ex/9902006
92 A. L. Read Presentation of search results: The CL$ _\text{s} $ technique JPG 28 (2002) 2693
Compact Muon Solenoid
LHC, CERN