CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIG-15-013 ; CERN-EP-2017-104
A search for Higgs boson pair production in the $\mathrm{ b }\mathrm{ b }\tau\tau$ final state in proton-proton collisions at $\sqrt{s} = $ 8 TeV
Phys. Rev. D 96 (2017) 072004
Abstract: Results are presented from a search for production of Higgs boson pairs (HH) where one boson decays to a pair of b quarks and the other to a $\tau$ lepton pair. This work is based on proton-proton collision data collected by the CMS experiment at $ \sqrt{s} = $ 8 TeV, corresponding to an integrated luminosity of 18.3 fb$^{-1}$. Resonant and non-resonant modes of HH production have been probed and no significant excess relative to the background-only hypotheses has been found in either mode. Upper limits on cross sections of the two HH production modes have been set. The results have been combined with previously published searches at $ \sqrt{s} = $ 8 TeV, in decay modes to two photons and two b quarks, as well as to four b quarks, which also show no evidence for a signal. Limits from the combination have been set on resonant HH production by an unknown particle X in the mass range $m_{\mathrm{X}} = $ 300 GeV to $m_{\mathrm{X}} = $ 1000 GeV. For resonant production of spin 0 (spin 2) particles, the observed 95% CL upper limit is 1.13 pb (1.09 pb) at $m_{\mathrm{X}} = $ 300 GeV and to 21 fb (18 fb) at $m_{\mathrm{X}} = $ 1000 GeV. For non-resonant HH production, a limit of 43 times the rate predicted by the standard model has been set.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
LO Feynman diagrams for HH production within the SM.

png pdf
Figure 1-a:
LO Feynman diagram for HH production within the SM.

png pdf
Figure 1-b:
LO Feynman diagram for HH production within the SM.

png pdf
Figure 2:
LO process for the production of a pair of H 's through the decay of a heavy resonance X.

png pdf
Figure 3:
Distributions in $m_{\mathrm {T2}}$ observed in the event categories with 0 b tag, 1 b tag, and 2 b tags in the data compared to the background expectation. Hypothetical non-resonant HH signals with a cross section $\sigma (\mathrm{ p } \mathrm{ p } \to \mathrm{ H } \mathrm{ H } )$ of 1 pb, corresponding to 100 times the SM cross section are overlaid for comparison. The expectation for signal and background processes is shown for values of nuisance parameters obtained from the likelihood fit.

png pdf
Figure 3-a:
Distributions in $m_{\mathrm {T2}}$ observed in the event category with 0 b tag in the data compared to the background expectation. Hypothetical non-resonant HH signals with a cross section $\sigma (\mathrm{ p } \mathrm{ p } \to \mathrm{ H } \mathrm{ H } )$ of 1 pb, corresponding to 100 times the SM cross section are overlaid for comparison. The expectation for signal and background processes is shown for values of nuisance parameters obtained from the likelihood fit.

png pdf
Figure 3-b:
Distributions in $m_{\mathrm {T2}}$ observed in the event category with 1 b tag in the data compared to the background expectation. Hypothetical non-resonant HH signals with a cross section $\sigma (\mathrm{ p } \mathrm{ p } \to \mathrm{ H } \mathrm{ H } )$ of 1 pb, corresponding to 100 times the SM cross section are overlaid for comparison. The expectation for signal and background processes is shown for values of nuisance parameters obtained from the likelihood fit.

png pdf
Figure 3-c:
Distributions in $m_{\mathrm {T2}}$ observed in the event category with 2 b tags in the data compared to the background expectation. Hypothetical non-resonant HH signals with a cross section $\sigma (\mathrm{ p } \mathrm{ p } \to \mathrm{ H } \mathrm{ H } )$ of 1 pb, corresponding to 100 times the SM cross section are overlaid for comparison. The expectation for signal and background processes is shown for values of nuisance parameters obtained from the likelihood fit.

png pdf
Figure 4:
Distributions in $m_{\mathrm{ H } \mathrm{ H } }$ observed in the event categories with 0 b tag, 1 b tag, and 2 b tags in the data compared to the background expectation. Hypothetical signal distributions corresponding to the decays of a spin 2 resonance $ {\mathrm {X}} $ of mass $m_{ {\mathrm {X}} } = $ 500 GeV that is produced with a $\sigma (\mathrm{ p } \mathrm{ p } \to {\mathrm {X}} ) \mathcal {B}( {\mathrm {X}} \to \mathrm{ H } \mathrm{ H } ))$ of 1 pb are overlaid for comparison. The corresponding WED model parameters are $kl = $ 35 and $k/{{\overline {M}}_{\mathrm {Pl}}}= $ 0.2. The expectation for signal and background processes is shown for values of nuisance parameters obtained from the likelihood fit.

png pdf
Figure 4-a:
Distributions in $m_{\mathrm{ H } \mathrm{ H } }$ observed in the event categories with 0 b tag in the data compared to the background expectation. Hypothetical signal distributions corresponding to the decays of a spin 2 resonance $ {\mathrm {X}} $ of mass $m_{ {\mathrm {X}} } = $ 500 GeV that is produced with a $\sigma (\mathrm{ p } \mathrm{ p } \to {\mathrm {X}} ) \mathcal {B}( {\mathrm {X}} \to \mathrm{ H } \mathrm{ H } ))$ of 1 pb are overlaid for comparison. The corresponding WED model parameters are $kl = $ 35 and $k/{{\overline {M}}_{\mathrm {Pl}}}= $ 0.2. The expectation for signal and background processes is shown for values of nuisance parameters obtained from the likelihood fit.

png pdf
Figure 4-b:
Distributions in $m_{\mathrm{ H } \mathrm{ H } }$ observed in the event categories with 1 b tag in the data compared to the background expectation. Hypothetical signal distributions corresponding to the decays of a spin 2 resonance $ {\mathrm {X}} $ of mass $m_{ {\mathrm {X}} } = $ 500 GeV that is produced with a $\sigma (\mathrm{ p } \mathrm{ p } \to {\mathrm {X}} ) \mathcal {B}( {\mathrm {X}} \to \mathrm{ H } \mathrm{ H } ))$ of 1 pb are overlaid for comparison. The corresponding WED model parameters are $kl = $ 35 and $k/{{\overline {M}}_{\mathrm {Pl}}}= $ 0.2. The expectation for signal and background processes is shown for values of nuisance parameters obtained from the likelihood fit.

png pdf
Figure 4-c:
Distributions in $m_{\mathrm{ H } \mathrm{ H } }$ observed in the event categories with 2 b tags in the data compared to the background expectation. Hypothetical signal distributions corresponding to the decays of a spin 2 resonance $ {\mathrm {X}} $ of mass $m_{ {\mathrm {X}} } = $ 500 GeV that is produced with a $\sigma (\mathrm{ p } \mathrm{ p } \to {\mathrm {X}} ) \mathcal {B}( {\mathrm {X}} \to \mathrm{ H } \mathrm{ H } ))$ of 1 pb are overlaid for comparison. The corresponding WED model parameters are $kl = $ 35 and $k/{{\overline {M}}_{\mathrm {Pl}}}= $ 0.2. The expectation for signal and background processes is shown for values of nuisance parameters obtained from the likelihood fit.

png pdf
Figure 5:
The 95% CL observed and expected upper limits on the $\sigma (\mathrm{ p } \mathrm{ p } \to {\mathrm {X}} ) \mathcal {B}( {\mathrm {X}} \to \mathrm{ H } \mathrm{ H } $) for a spin 0 (left) and for a spin 2 (right) resonance $ {\mathrm {X}} $ as functions of the resonance mass $m_{ {\mathrm {X}} }$, obtained from the search in the decay channel $\mathrm{ b } \mathrm{ b } \tau \tau $. The green and yellow bands represent, respectively, the 1 and 2 standard deviation extensions beyond the expected limit. Also shown are theoretical predictions corresponding to WED models for radions for values of ${\Lambda }_{\mathrm {R}} = $ 1, 3 TeV and for RS1 and bulk KK gravitons [18,19]. The other WED model parameters are $kl = $ 35 and $k/{{\overline {M}}_{\mathrm {Pl}}} = $ 0.2, assuming an elementary top hypothesis and no radion-Higgs ($r/\mathrm{ H } $) mixing.

png pdf
Figure 5-a:
The 95% CL observed and expected upper limits on the $\sigma (\mathrm{ p } \mathrm{ p } \to {\mathrm {X}} ) \mathcal {B}( {\mathrm {X}} \to \mathrm{ H } \mathrm{ H } $) for a spin 0 resonance $ {\mathrm {X}} $ as functions of the resonance mass $m_{ {\mathrm {X}} }$, obtained from the search in the decay channel $\mathrm{ b } \mathrm{ b } \tau \tau $. The green and yellow bands represent, respectively, the 1 and 2 standard deviation extensions beyond the expected limit. Also shown are theoretical predictions corresponding to WED models for radions for values of ${\Lambda }_{\mathrm {R}} = $ 1, 3 TeV [18]. The other WED model parameters are $kl = $ 35 and $k/{{\overline {M}}_{\mathrm {Pl}}} = $ 0.2, assuming an elementary top hypothesis and no radion-Higgs ($r/\mathrm{ H } $) mixing.

png pdf
Figure 5-b:
The 95% CL observed and expected upper limits on the $\sigma (\mathrm{ p } \mathrm{ p } \to {\mathrm {X}} ) \mathcal {B}( {\mathrm {X}} \to \mathrm{ H } \mathrm{ H } $) for a spin 2 resonance $ {\mathrm {X}} $ as functions of the resonance mass $m_{ {\mathrm {X}} }$, obtained from the search in the decay channel $\mathrm{ b } \mathrm{ b } \tau \tau $. The green and yellow bands represent, respectively, the 1 and 2 standard deviation extensions beyond the expected limit. Also shown are theoretical predictions corresponding to WED models for RS1 and bulk KK gravitons [18,19]. The other WED model parameters are $kl = $ 35 and $k/{{\overline {M}}_{\mathrm {Pl}}} = $ 0.2, assuming an elementary top hypothesis and no radion-Higgs ($r/\mathrm{ H } $) mixing.

png pdf
Figure 6:
95% CL observed and expected upper limits on the cross section times branching fraction ($\sigma (\mathrm{ p } \mathrm{ p } \to {\mathrm {X}} ) \mathcal {B}( {\mathrm {X}} \to \mathrm{ H } \mathrm{ H } )$) for a spin 2 resonance $ {\mathrm {X}} $ as functions of the resonance mass $m_{ {\mathrm {X}} }$, obtained from the combination of searches performed in the $\mathrm{ b } \mathrm{ b } \tau \tau $, $\gamma \gamma {\mathrm{ b } }{\mathrm{ b } }$ and $\mathrm{ b } \mathrm{ b } \mathrm{ b } \mathrm{ b } $ decay channels. The green and yellow bands represent, respectively, the 1 and 2 standard deviation extensions beyond the expected limit. Also shown are theoretical predictions corresponding to WED models for RS1 and Bulk KK gravitons [18,19]. The other WED model parameters are $kl = $ 35 and $k/{{\overline {M}}_{\mathrm {Pl}}} = $ 0.2, assuming an elementary top hypothesis and no radion-Higgs ($r/\mathrm{ H } $) mixing.

png pdf
Figure 6-a:
95% CL observed and expected upper limits on the cross section times branching fraction ($\sigma (\mathrm{ p } \mathrm{ p } \to {\mathrm {X}} ) \mathcal {B}( {\mathrm {X}} \to \mathrm{ H } \mathrm{ H } )$) for a spin 0 resonance $ {\mathrm {X}} $ as functions of the resonance mass $m_{ {\mathrm {X}} }$, obtained from the combination of searches performed in the $\mathrm{ b } \mathrm{ b } \tau \tau $, $\gamma \gamma {\mathrm{ b } }{\mathrm{ b } }$ and $\mathrm{ b } \mathrm{ b } \mathrm{ b } \mathrm{ b } $ decay channels. The green and yellow bands represent, respectively, the 1 and 2 standard deviation extensions beyond the expected limit. Also shown are theoretical predictions corresponding to WED models for radions for values of ${\Lambda }_{\mathrm {R}} = $ 1, 3 [18,19]. The other WED model parameters are $kl = $ 35 and $k/{{\overline {M}}_{\mathrm {Pl}}} = $ 0.2, assuming an elementary top hypothesis and no radion-Higgs ($r/\mathrm{ H } $) mixing.

png pdf
Figure 6-b:
95% CL observed and expected upper limits on the cross section times branching fraction ($\sigma (\mathrm{ p } \mathrm{ p } \to {\mathrm {X}} ) \mathcal {B}( {\mathrm {X}} \to \mathrm{ H } \mathrm{ H } )$) for a spin 2 resonance $ {\mathrm {X}} $ as functions of the resonance mass $m_{ {\mathrm {X}} }$, obtained from the combination of searches performed in the $\mathrm{ b } \mathrm{ b } \tau \tau $, $\gamma \gamma {\mathrm{ b } }{\mathrm{ b } }$ and $\mathrm{ b } \mathrm{ b } \mathrm{ b } \mathrm{ b } $ decay channels. The green and yellow bands represent, respectively, the 1 and 2 standard deviation extensions beyond the expected limit. Also shown are theoretical predictions corresponding to WED models for RS1 and Bulk KK gravitons [18,19]. The other WED model parameters are $kl = $ 35 and $k/{{\overline {M}}_{\mathrm {Pl}}} = $ 0.2, assuming an elementary top hypothesis and no radion-Higgs ($r/\mathrm{ H } $) mixing.
Tables

png pdf
Table 1:
Observed and expected event yields in different event categories, in the search for non-resonant (top) and resonant (bottom) HH production (($\mathrm{ p } \mathrm{ p } \to {\mathrm {X}} ) \mathcal {B}( {\mathrm {X}} \to \mathrm{ H } \mathrm{ H } )$). Expected event yields are computed using values of nuisance parameters obtained by the maximum likelihood fit to the data as described in Section {sec:signalExtraction}. Quoted uncertainties represent the combination of statistical and systematic uncertainties. The WED model parameters are $kl = 35$, $k/{{\overline {M}}_{\mathrm {Pl}}}= $ 0.2 (assuming an elementary top hypothesis and no radion-Higgs mixing).

png pdf
Table 2:
The 95% CL upper limits on resonant HH production ($\sigma (\mathrm{ p } \mathrm{ p } \to {\mathrm {X}} ) \mathcal {B}( {\mathrm {X}} \to \mathrm{ H } \mathrm{ H } )$) in units of pb for spin 0 (radion) and spin 2 (graviton) resonances X, at different masses $m_{ {\mathrm {X}} }$, obtained from the HH search in the decay channel $\mathrm{ b } \mathrm{ b } \tau \tau $.

png pdf
Table 3:
The 95% CL upper limits on resonant HH production ($\sigma (\mathrm{ p } \mathrm{ p } \to {\mathrm {X}} ) \mathcal {B}( {\mathrm {X}} \to \mathrm{ H } \mathrm{ H } )$) in units of fb for spin 0 (radion) and spin 2 (graviton) resonances X, at different masses $m_{ {\mathrm {X}} }$, obtained from the combination of HH searches performed in the $\mathrm{ b } \mathrm{ b } \tau \tau $, $\gamma \gamma {\mathrm{ b } }{\mathrm{ b } }$, and $\mathrm{ b } \mathrm{ b } \mathrm{ b } \mathrm{ b } $ decay channels.
Summary
A search has been performed for events containing a pair of SM-like H's in resonant and non-resonant production of the pair in the channel where one boson decays to a pair of b quarks and the other to a $\tau$ lepton pair, in pp collisions collected by the CMS experiment at 8 TeV center-of-mass energy, corresponding to an integrated luminosity of 18.3 fb$^{-1}$. Results are expressed as 95% CL upper limits on the production of a signal. The limit on non-resonant HH production corresponds to a factor of 59 times the rate expected in the SM. For resonant $\mathrm{X \to HH}$ production, the limit on $\sigma(\mathrm{ p }\mathrm{ p } \to X) \, {\mathcal{B}}(\mathrm{X} \to \mathrm{ H }\mathrm{ H })$ for a resonance of spin 0 and spin 2 ranges, respectively, from 5.42 and 3.97 pb at a mass $m_{\mathrm{X}} = $ 300 GeV to 0.14 pb and 0.14 pb at $m_{\mathrm{X}} = $ 1000 GeV.

The results of the search in the $\mathrm{ b }\mathrm{ b }\tau\tau$ decay channel are combined with those in the $\gamma\gamma{\mathrm{ b }}{\mathrm{ b }}$ and $\mathrm{ b }\mathrm{ b }\mathrm{ b }\mathrm{ b }$ decay channels. For non-resonant HH production, the combination of $\mathrm{ b }\mathrm{ b }\tau\tau$ and $\gamma\gamma{\mathrm{ b }}{\mathrm{ b }}$ decay channels yields a limit that is a factor of 43 times the SM rate. The limit on resonant HH production obtained from the combination ranges from 1.13 and 1.09 pb at $m_{\mathrm{X}} = $ 300 GeV, to 21 and 18 fb at $m_{\mathrm{X}} = $ 1000 GeV for resonances of spin 0 and spin 2 respectively.
References
1 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
2 ATLAS Collaboration Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
3 D. de Florian et al. Handbook of LHC Higgs cross sections: 4. deciphering the nature of the Higgs sector technical report 1610.07922
4 R. Grober and M. Muhlleitner Composite Higgs Boson Pair Production at the LHC JHEP 06 (2011) 020 1012.1562
5 R. Contino et al. Anomalous couplings in double Higgs production JHEP 08 (2012) 154 1205.5444
6 N. Craig, J. Galloway, and S. Thomas Searching for Signs of the Second Higgs Doublet 1305.2424
7 D. T. Nhung, M. Muhlleitner, J. Streicher, and K. Walz Higher order corrections to the trilinear Higgs self-couplings in the real NMSSM JHEP 11 (2013) 181 1306.3926
8 R. Contino et al. Strong double Higgs production at the LHC JHEP 05 (2010) 089 1002.1011
9 C. Englert, T. Plehn, D. Zerwas, and P. M. Zerwas Exploring the Higgs portal PLB 703 (2011) 298 1106.3097
10 J. M. No and M. Ramsey-Musolf Probing the Higgs portal at the LHC through resonant di-Higgs production PRD 89 (2014) 095031 1310.6035
11 L. Randall and R. Sundrum A large mass hierarchy from a small extra dimension PRL 83 (1999) 3370 hep-ph/9905221
12 K. Cheung Phenomenology of radion in Randall-Sundrum scenario PRD 63 (2001) 056007 hep-ph/0009232
13 W. D. Goldberger and M. B. Wise Modulus stabilization with bulk fields PRL 83 (1999) 4922 hep-ph/9907447
14 O. DeWolfe, D. Z. Freedman, S. S. Gubser, and A. Karch Modeling the fifth-dimension with scalars and gravity PRD 62 (2000) 046008 hep-ph/9909134
15 C. Csaki, M. Graesser, L. Randall, and J. Terning Cosmology of brane models with radion stabilization PRD 62 (2000) 045015 hep-ph/9911406
16 H. Davoudiasl, J. L. Hewett, and T. G. Rizzo Phenomenology of the Randall-Sundrum gauge hierarchy model PRL 84 (2000) 2080 hep-ph/9909255
17 C. Csaki, M. L. Graesser, and G. D. Kribs Radion dynamics and electroweak physics PRD 63 (2001) 065002 hep-ph/0008151
18 K. Agashe et al. Warped extra dimensional benchmarks for Snowmass 2013 in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013) 1309.7847
19 P. de Aquino, K. Hagiwara, Q. Li, and F. Maltoni Simulating graviton production at hadron colliders JHEP 06 (2011) 132 1101.5499
20 A. L. Fitzpatrick, J. Kaplan, L. Randall, and L. T. Wang Searching for the Kaluza-Klein graviton in bulk RS models JHEP 09 (2007) 013 hep-ph/0701150
21 I. Antoniadis and R. Sturani Higgs graviscalar mixing in type I string theory Nucl. Phys. B 631 (2002) 66 hep-th/0201166
22 N. Desai, U. Maitra, and B. Mukhopadhyaya An updated analysis of radion-Higgs mixing in the light of LHC data JHEP 10 (2013) 093 1307.3765
23 CMS Collaboration Searches for heavy Higgs bosons in two-Higgs-doublet models and for t$ \rightarrow $ ch decay using multilepton and diphoton final states in pp collisions at 8 TeV PRD 90 (2014) 112013 CMS-HIG-13-025
1410.2751
24 CMS Collaboration Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A decaying to Zh, in the final states with $ \mathrm{h} \rightarrow \tau\tau $ PLB 755 (2016) 217 arXiv:1510.01181
25 CMS Collaboration Search for two Higgs bosons in final states containing two photons and two bottom quarks in proton-proton collisions at 8 TeV PRD 94 (2016) 052012 CMS-HIG-13-032
1603.06896
26 CMS Collaboration Search for resonant pair production of Higgs bosons decaying to two bottom quark--antiquark pairs in proton--proton collisions at 8 TeV PLB 749 (2015) 560 CMS-HIG-14-013
1503.04114
27 CMS Collaboration Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks EPJC 76 (2016) 371 CMS-EXO-12-053
1602.08762
28 ATLAS Collaboration Search for Higgs boson pair production in the $ \gamma\gamma{b}\overline{b} $ final state using pp collision data at $ \sqrt{s} = $ 8 TeV from the ATLAS detector PRL 114 (2015) 081802 1406.5053
29 ATLAS Collaboration Search for Higgs boson pair production in the $ {b}\overline{b}{b}\overline{b} $ final state from pp collisions at $ \sqrt{s} = $ 8 TeV from the ATLAS detector EPJC 75 (2015) 412 1506.00285
30 ATLAS Collaboration Searches for Higgs boson pair production in the $ hh \rightarrow bb \tau\tau $, $ \gamma \gamma W {W}^{*} $, $ \gamma \gamma bb $, $ bbbb $ channels with the ATLAS detector PRD 92 (2015) 092004 1509.04670
31 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
32 CMS Collaboration Collaboration The CMS trigger system JINST 12 (2017) P01020 1609.02366
33 CMS Collaboration Performance of the CMS missing transverse momentum reconstruction in pp data at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P02006 CMS-JME-13-003
1411.0511
34 J. Alwall et al. MadGraph 5: Going Beyond JHEP 06 (2011) 128 1106.0522
35 A. L. Read Linear interpolation of histograms Nucl. Inst. Meth. A 425 (1999) 357
36 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
37 K. Melnikov and F. Petriello Electroweak gauge boson production at hadron colliders through $ \mathcal{O}(\alpha_s^2) $ PRD 74 (2006) 114017 hep-ph/0609070
38 CMS Collaboration Measurement of the $ \mathrm{t\overline{t}} $ production cross section in the e$ \mu $ channel in proton-proton collisions at $ \sqrt{s} = $ 7 and 8 TeV JHEP 08 (2016) 029 CMS-TOP-13-004
1603.02303
39 CMS Collaboration Measurement of differential top-quark pair production cross sections in pp colisions at $ \sqrt{s}=7 $ TeV EPJC 73 (2013) 2339 CMS-TOP-11-013
1211.2220
40 CMS Collaboration Measurement of the differential cross section for top quark pair production in pp collisions at $ \sqrt{s} = $ 8 TeV EPJC 75 (2015) 1
41 J. M. Campbell, R. K. Ellis, and C. Williams Vector boson pair production at the LHC JHEP 07 (2011) 018 1105.0020
42 LHC Higgs Cross Section Working Group, S. Dittmaier et al. Handbook of LHC Higgs cross sections: 1. inclusive observables CERN Report CERN-2011-002 1101.0593
43 Z. W\cas TAUOLA the library for $ \tau $ lepton decay, and KKMC/KORALB/KORALZ/... status report NPPS 98 (2001) 96 hep-ph/0011305
44 T. Sjostrand, S. Mrenna, and P. Skands Pythia 6.4 physics and manual JHEP 05 (2006) 026 hep-ph/0603175
45 GEANT4 Collaboration GEANT4---a simulation toolkit NIMA 506 (2003) 250
46 CMS Collaboration Evidence for the 125 GeV Higgs boson decaying to a pair of $ \tau $ leptons JHEP 05 (2014) 104 CMS-HIG-13-004
1401.5041
47 Z. Czyczula, T. Przedzinski, and Z. Was TauSpinner program for studies on spin effect in tau production at the LHC EPJC 72 (2012) 1988 1201.0117
48 CMS Collaboration Particle-flow reconstruction and global event description with the cms detector CMS-PRF-14-001
1706.04965
49 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_t $ jet clustering algorithm JHEP 04 (2008) 063, ,%%CITATION = ARXIV:0802.1189 0802.1189
50 CMS Collaboration Jet performance in pp collisions at $ \sqrt{s} = $ 7 TeV CDS
51 CMS Collaboration Pileup jet identification CMS-PAS-JME-13-005 CMS-PAS-JME-13-005
52 M. Cacciari, G. P. Salam, and G. Soyez The catchment area of jets JHEP 04 (2008) 005 0802.1188
53 M. Cacciari and G. P. Salam Pileup subtraction using jet areas PLB 659 (2008) 119 0707.1378
54 CMS Collaboration Determination of jet energy calibration and transverse momentum resolution in CMS JINST 6 (2011) P11002 CMS-JME-10-011
1107.4277
55 CMS Collaboration Identification of b-quark jets with the CMS experiment JINST 8 (2013) P04013 CMS-BTV-12-001
1211.4462
56 CMS Collaboration Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P06005 CMS-EGM-13-001
1502.02701
57 CMS Collaboration Performance of CMS muon reconstruction in pp collision events at $ \sqrt{s} = $ 7 TeV JINST 7 (2012) P10002 CMS-MUO-10-004
1206.4071
58 CMS Collaboration Performance of $ \tau $-lepton reconstruction and identification in CMS JINST 7 (2012) P01001 CMS-TAU-11-001
1109.6034
59 CMS Collaboration Reconstruction and identification of $ \tau $ lepton decays to hadrons and $ \nu_\tau $ at CMS JINST 11 (2016) P01019 CMS-TAU-14-001
1510.07488
60 L. Bianchini, J. Conway, E. K. Friis, and C. Veelken Reconstruction of the Higgs mass in $ H \to \tau\tau $ events by dynamical likelihood techniques J. Phys. Conf. Ser. 513 (2014) 022035
61 C. G. Lester and D. J. Summers Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders PLB 463 (1999) 99 hep-ph/9906349
62 A. J. Barr, M. J. Dolan, C. Englert, and M. Spannowsky Di-Higgs final states augMT2ed -- selecting $ hh $ events at the high luminosity LHC PLB 728 (2014) 308 1309.6318
63 CMS Collaboration Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions JHEP 10 (2014) 160 CMS-HIG-13-021
1408.3316
64 CMS Collaboration CMS luminosity based on pixel cluster counting - summer 2013 update CMS-PAS-LUM-13-001 CMS-PAS-LUM-13-001
65 LHC Higgs Cross Section Working Group Collaboration Handbook of LHC Higgs cross sections: 3. Higgs properties 1307.1347
66 J. S. Conway Incorporating nuisance parameters in likelihoods for multisource spectra in Proceedings, PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, CERN 1103.0354}}.\newblock\href{http://dx.doi.org/10.5170/CERN-2011-006.115}{\doi{10.5170/CERN-2011-006.115
67 R. Barlow and C. Beeston Fitting using finite Monte Carlo samples Comp. Phys. Commun. 77 (1993) 219
68 A. C. A. Oliveira and R. Rosenfeld Graviscalars from higher-dimensional metrics and curvature-Higgs mixing PLB 702 (2011) 201 1009.4497
69 V. Barger and M. Ishida Randall-Sundrum reality at the LHC PLB 709 (2012) 185 1110.6452
70 T. Junk Confidence level computation for combining searches with small statistics Nucl. Inst. Meth. A 434 (1999) 435 hep-ex/9902226
71 A. L. Read Presentation of search results: the $ CL_s $ technique JPG 28 (2002) 2693
72 ATLAS and CMS Collaborations, and LHC Higgs Combination Group Procedure for the LHC Higgs boson search combination in summer 2011 CMS-NOTE-2011-005
73 G. F. Giudice, R. Rattazzi, and J. D. Wells Graviscalars from higher-dimensional metrics and curvature-Higgs mixing Nucl. Phys. B 595 (2001) 250 hep-ph/0002178
74 U. Mahanta and A. Datta Search prospects of light stabilized radions at Tevatron and LHC PLB 483 (2000) 196 hep-ph/0002183
75 H. Davoudiasl, J. L. Hewett, and T. G. Rizzo Experimental probes of localized gravity: On and off the wall PRD 63 (2001) 075004 hep-ph/0006041
Compact Muon Solenoid
LHC, CERN