CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-HIG-18-026
Search for the decay of the Higgs boson to a pair of light pseudoscalar bosons in the $ \mathrm{b\bar{b}b\bar{b}} $ final state in proton-proton collisions at 13 TeV
Abstract: A search is presented for the decay of the 125 GeV Higgs boson (H) to a pair of new light pseudoscalar bosons ($ \mathrm{a} $), followed by the prompt decay of each a boson to a bottom quark-antiquark pair, $ \mathrm{H} \rightarrow \mathrm{a}\mathrm{a} \rightarrow \mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}} $. The analysis is performed using a data sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$ ^{-1} $. To reduce the background from standard model processes, the search requires the Higgs boson to be produced in association with a leptonically decaying W or Z boson. The analysis is sensitive to the production of new light bosons in the 15 $ < \mathrm{m}_{\mathrm{a}} < $ 60 GeV mass range. Assuming the standard model cross sections for $ \mathrm{pp} \rightarrow \mathrm{WH} $ and $ \mathrm{ZH} $, with branching fractions $ \mathcal{B}(\mathrm{H} \rightarrow \mathrm{a}\mathrm{a})= $ 1 and $ \mathcal{B}(\mathrm{a} \rightarrow \mathrm{b}\bar{\mathrm{b}})= $ 1, masses of the a boson between 21 and 60 GeV are excluded.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Post-fit BDT distributions in the WH channel extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The $ m_{\mathrm{a}}= $ 60 GeV and $ m_{\mathrm{a}}= $ 20 GeV signal points are shown scaled by a factor of 100. The horizontal error bars indicate the bin width.

png pdf
Figure 1-a:
Post-fit BDT distributions in the WH channel extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The $ m_{\mathrm{a}}= $ 60 GeV and $ m_{\mathrm{a}}= $ 20 GeV signal points are shown scaled by a factor of 100. The horizontal error bars indicate the bin width.

png pdf
Figure 1-b:
Post-fit BDT distributions in the WH channel extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The $ m_{\mathrm{a}}= $ 60 GeV and $ m_{\mathrm{a}}= $ 20 GeV signal points are shown scaled by a factor of 100. The horizontal error bars indicate the bin width.

png pdf
Figure 1-c:
Post-fit BDT distributions in the WH channel extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The $ m_{\mathrm{a}}= $ 60 GeV and $ m_{\mathrm{a}}= $ 20 GeV signal points are shown scaled by a factor of 100. The horizontal error bars indicate the bin width.

png pdf
Figure 1-d:
Post-fit BDT distributions in the WH channel extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The $ m_{\mathrm{a}}= $ 60 GeV and $ m_{\mathrm{a}}= $ 20 GeV signal points are shown scaled by a factor of 100. The horizontal error bars indicate the bin width.

png pdf
Figure 2:
Post-fit BDT distributions in the ZH channel extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The $ m_{\mathrm{a}}= $ 60 GeV and $ m_{\mathrm{a}}= $ 20 GeV signal points are shown scaled by a factor of 100. The horizontal error bars indicate the bin width.

png pdf
Figure 2-a:
Post-fit BDT distributions in the ZH channel extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The $ m_{\mathrm{a}}= $ 60 GeV and $ m_{\mathrm{a}}= $ 20 GeV signal points are shown scaled by a factor of 100. The horizontal error bars indicate the bin width.

png pdf
Figure 2-b:
Post-fit BDT distributions in the ZH channel extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The $ m_{\mathrm{a}}= $ 60 GeV and $ m_{\mathrm{a}}= $ 20 GeV signal points are shown scaled by a factor of 100. The horizontal error bars indicate the bin width.

png pdf
Figure 2-c:
Post-fit BDT distributions in the ZH channel extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The $ m_{\mathrm{a}}= $ 60 GeV and $ m_{\mathrm{a}}= $ 20 GeV signal points are shown scaled by a factor of 100. The horizontal error bars indicate the bin width.

png pdf
Figure 2-d:
Post-fit BDT distributions in the ZH channel extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The $ m_{\mathrm{a}}= $ 60 GeV and $ m_{\mathrm{a}}= $ 20 GeV signal points are shown scaled by a factor of 100. The horizontal error bars indicate the bin width.

png pdf
Figure 3:
Observed and expected limits on the signal strength $ \mu = \sigma(\mathrm{V}\mathrm{H}) \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\overline{\mathrm{b}}\mathrm{b}\overline{\mathrm{b}}) / \sigma(\mathrm{V}\mathrm{H})_{\mathrm{SM}} $ in the WH (left) and ZH channel (right). The solid blue line indicates the SM cross section $ \sigma (\mathrm{p}\mathrm{p}\to\mathrm{V}\mathrm{H}) $ with branching fractions $ \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a})= $ 1 and $ \mathcal{B}(\mathrm{a}\to\mathrm{b}\overline{\mathrm{b}})= $ 1.}

png pdf
Figure 3-a:
Observed and expected limits on the signal strength $ \mu = \sigma(\mathrm{V}\mathrm{H}) \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\overline{\mathrm{b}}\mathrm{b}\overline{\mathrm{b}}) / \sigma(\mathrm{V}\mathrm{H})_{\mathrm{SM}} $ in the WH (left) and ZH channel (right). The solid blue line indicates the SM cross section $ \sigma (\mathrm{p}\mathrm{p}\to\mathrm{V}\mathrm{H}) $ with branching fractions $ \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a})= $ 1 and $ \mathcal{B}(\mathrm{a}\to\mathrm{b}\overline{\mathrm{b}})= $ 1.}

png pdf
Figure 3-b:
Observed and expected limits on the signal strength $ \mu = \sigma(\mathrm{V}\mathrm{H}) \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\overline{\mathrm{b}}\mathrm{b}\overline{\mathrm{b}}) / \sigma(\mathrm{V}\mathrm{H})_{\mathrm{SM}} $ in the WH (left) and ZH channel (right). The solid blue line indicates the SM cross section $ \sigma (\mathrm{p}\mathrm{p}\to\mathrm{V}\mathrm{H}) $ with branching fractions $ \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a})= $ 1 and $ \mathcal{B}(\mathrm{a}\to\mathrm{b}\overline{\mathrm{b}})= $ 1.}

png pdf
Figure 4:
Observed and expected limits on the signal strength $ \mu = \sigma(\mathrm{V}\mathrm{H}) \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\overline{\mathrm{b}}\mathrm{b}\overline{\mathrm{b}}) / \sigma(\mathrm{V}\mathrm{H})_{\mathrm{SM}} $ with the WH and ZH channels combined. The solid blue line indicates the SM cross section $ \sigma (\mathrm{p}\mathrm{p}\to\mathrm{V}\mathrm{H}) $ with branching fractions $ \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a})= $ 1 and $ \mathcal{B}(\mathrm{a}\to\mathrm{b}\overline{\mathrm{b}})= $ 1.
Tables

png pdf
Table 1:
Signal region (SR) and control region (CR) requirements in ($ N_{\mathrm{b}} $, $ N_{\text{j}} $) for the WH and ZH channels, where $ N_{\mathrm{b}} $ is the number of b-tagged jets in an event and $ N_{\text{j}} $ is the total number of jets in an event.

png pdf
Table 2:
Summary of systematic uncertainties for background and signal event yields in the WH channel. Uncertainties that are negligible are indicated with a dash ($ \text{---} $).

png pdf
Table 3:
Summary of systematic uncertainties for background and signal event yields in the ZH channel. Uncertainties that are negligible are indicated with a dash ($ \text{---} $).

png pdf
Table 4:
Signal-plus-background fit results for the 3b WH and ZH signal regions extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. The column header indicates the lepton flavor and the BDT bin range. Signal yields are shown for the $ m_{\mathrm{a}}= $ 20 and 60 GeV hypotheses. The background uncertainties account for both systematic and statistical sources.

png pdf
Table 5:
Signal-plus-background fit results for the 4b WH and ZH signal regions extracted with the $ m_{\mathrm{a}}=60\,\text{Ge\hspace{-.08em}V} $ signal hypothesis. The column header indicates the lepton flavor and the BDT bin range. Signal yields are shown for the $ m_{\mathrm{a}}= $ 20 and 60 GeV hypotheses. The background uncertainties account for both systematic and statistical sources.
Summary
A search for exotic decays of the 125 GeV Higgs boson (H) to a pair of new light pseudoscalar bosons $ \mathrm{a} $, followed by decay to four b quark jets, $ \mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\overline{\mathrm{b}}\mathrm{b}\overline{\mathrm{b}} $, is presented, using data recorded with the CMS detector. The analysis is based on an integrated luminosity of 138 fb$^{-1}$ collected at a center-of-mass energy of 13 TeV in 2016--2018. The search is performed in the context of the associated WH and ZH production in which the W or Z boson decays leptonically, $ \mathrm{W}\to\ell\nu $ or $ \mathrm{Z}\to\ell^+\ell^- $, with $ \ell $ an electron or muon. No evidence for the targeted decay mode is observed. Upper limits at 95% confidence level on the signal strength of 0.360 (1.103) are obtained for a pseudoscalar boson mass of 60 (20) GeV, assuming the standard model cross sections $ \sigma (\mathrm{p}\mathrm{p}\to\mathrm{W}\mathrm{H}) = $ 1.37 pb and $ \sigma (\mathrm{p}\mathrm{p}\to\mathrm{Z}\mathrm{H}) = $ 0.86 pb, with branching fractions $ \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a})= $ 1 and $ \mathcal{B}(\mathrm{a}\to\mathrm{b}\overline{\mathrm{b}})= $ 1. Masses of the $ \mathrm{a} $ boson between 21 and 60 GeV are excluded under the presumptions of the analysis.
References
1 ATLAS Collaboration Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} $ = 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 ATLAS and CMS Collaborations Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $ \sqrt{s}= $ 7 and 8 TeV JHEP 08 (2016) 045 1606.02266
5 ATLAS Collaboration Combination of searches for invisible Higgs boson decays with the ATLAS experiment PRL 122 (2019) 231801 1904.05105
6 CMS Collaboration Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PLB 793 (2019) 520 CMS-HIG-17-023
1809.05937
7 CMS Collaboration Combined measurements of Higgs boson couplings in proton-proton collisions at $ \sqrt{s}= $ 13 TeV EPJC 79 (2019) 421 CMS-HIG-17-031
1809.10733
8 G. C. Branco et al. Theory and phenomenology of two-Higgs-doublet models Phys. Rept. 516 (2012) 1 1106.0034
9 D. Curtin et al. Exotic decays of the 125 GeV Higgs boson PRD 90 (2014) 075004 1312.4992
10 U. Ellwanger, C. Hugonie, and A. M. Teixeira The next-to-minimal supersymmetric standard model Phys. Rept. 496 (2010) 1 0910.1785
11 ATLAS Collaboration Search for the Higgs boson produced in association with a $ W $ boson and decaying to four $ b $-quarks via two spin-zero particles in $ pp $ collisions at 13 TeV with the ATLAS detector EPJC 76 (2016) 605 1606.08391
12 ATLAS Collaboration Search for the Higgs boson produced in association with a vector boson and decaying into two spin-zero particles in the $ H \rightarrow aa \rightarrow 4b $ channel in $ pp $ collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector JHEP 10 (2018) 031 1806.07355
13 ATLAS Collaboration Search for Higgs boson decays into two new low-mass spin-0 particles in the 4$ b $ channel with the ATLAS detector using $ pp $ collisions at $ \sqrt{s}= $ 13 TeV PRD 102 (2020) 112006 2005.12236
14 ATLAS Collaboration Search for new light gauge bosons in Higgs boson decays to four-lepton final states in $ pp $ collisions at $ \sqrt{s}= $ 8 TeV with the ATLAS detector at the LHC PRD 92 (2015) 092001 1505.07645
15 CMS Collaboration Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states PLB 726 (2013) 564 CMS-EXO-12-012
1210.7619
16 CMS Collaboration A search for pair production of new light bosons decaying into muons PLB 752 (2016) 146 CMS-HIG-13-010
1506.00424
17 CMS Collaboration Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at $ \sqrt{s}= $ 8 TeV JHEP 10 (2017) 076 CMS-HIG-16-015
1701.02032
18 CMS Collaboration Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into $ \tau $ leptons in pp collisions at $ \sqrt{s}= $ 8 TeV JHEP 01 (2016) 079 CMS-HIG-14-019
1510.06534
19 ATLAS Collaboration Search for new phenomena in events with at least three photons collected in $ pp $ collisions at $ \sqrt{s} $ = 8 TeV with the ATLAS detector EPJC 76 (2016) 210 1509.05051
20 ATLAS Collaboration Search for Higgs boson decays to beyond-the-standard-model light bosons in four-lepton events with the ATLAS detector at $ \sqrt{s}= $ 13 TeV JHEP 06 (2018) 166 1802.03388
21 CMS Collaboration A search for pair production of new light bosons decaying into muons in proton-proton collisions at 13 TeV PLB 796 (2019) 131 CMS-HIG-18-003
1812.00380
22 ATLAS Collaboration Search for Higgs bosons decaying to aa in the $ \mu\mu\tau\tau $ final state in pp collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS experiment PRD 92 (2015) 052002 1505.01609
23 CMS Collaboration Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state of two muons and two $ \tau $ leptons in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 11 (2018) 018 CMS-HIG-17-029
1805.04865
24 ATLAS Collaboration Search for Higgs boson decays into a pair of light bosons in the $ bb\mu\mu $ final state in $ pp $ collision at $ \sqrt{s} = $13 TeV with the ATLAS detector PLB 790 (2019) 1 1807.00539
25 CMS Collaboration Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two b quarks and two $ \tau $ leptons in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PLB 785 (2018) 462 CMS-HIG-17-024
1805.10191
26 ATLAS Collaboration Search for Higgs boson decays into pairs of light (pseudo)scalar particles in the $ \gamma\gamma jj $ final state in pp collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector PLB 782 (2018) 750 1803.11145
27 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
28 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
29 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
30 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
31 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
32 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
33 J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions --500, 2008
EPJC 53 (2008) 473
0706.2569
34 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
35 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 1. Inclusive observables CERN, 2011
link
1101.0593
36 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 2. Differential distributions CERN, 2012
link
1201.3084
37 LHC Higgs Cross Section Working Group Collaboration Handbook of LHC Higgs cross sections: 3. Higgs properties CERN, 2013
link
1307.1347
38 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 4. deciphering the nature of the Higgs sector link 1610.07922
39 NNPDF Collaboration Parton distributions for the LHC run II JHEP 04 (2015) 040 1410.8849
40 P. Skands, S. Carrazza, and J. Rojo Tuning PYTHIA 8.1: the Monash 2013 Tune EPJC 74 (2014) 3024 1404.5630
41 CMS Collaboration Event generator tunes obtained from underlying event and multiparton scattering measurements EPJC 76 (2016) 155 CMS-GEN-14-001
1512.00815
42 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
43 CMS Collaboration Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015
CDS
44 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
45 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
46 CMS Collaboration Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P06005 CMS-EGM-13-001
1502.02701
47 M. Cacciari and G. P. Salam Pileup subtraction using jet areas PLB 659 (2008) 119 0707.1378
48 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
49 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
50 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
51 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
52 CMS Collaboration Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s} = $ 13 TeV using the CMS detector JINST 14 (2019) P07004 CMS-JME-17-001
1903.06078
53 UA1 Collaboration Experimental observation of isolated large transverse energy electrons with associated missing energy at $ \sqrt{s} = $ 540 GeV PLB 122 (1983) 103
54 H. Voss, A. Höcker, J. Stelzer, and F. Tegenfeldt TMVA, the toolkit for multivariate data analysis with ROOT in XIth International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT), 2007
[PoS(ACAT)040]
physics/0703039
55 ATLAS Collaboration Measurement of differential production cross-sections for a $ Z $ boson in association with $ b $-jets in 7 TeV proton-proton collisions with the ATLAS detector JHEP 10 (2014) 141 1407.3643
56 CMS Collaboration Measurement of the associated production of a $ Z $ boson with charm or bottom quark jets in proton-proton collisions at $ \sqrt {s} $=13 TeV no.~3, 03, 2020
PRD 102 (2020)
CMS-SMP-19-004
2001.06899
57 CMS Collaboration CMS luminosity measurements for the 2016 data taking period CMS Physics Analysis Summary, 2017
CMS-PAS-LUM-17-001
CMS-PAS-LUM-17-001
58 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2018
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
59 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s}= $ 13 TeV CMS Physics Analysis Summary, 2019
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
60 J. Butterworth et al. PDF4LHC recommendations for LHC Run II JPG 43 (2016) 023001 1510.03865
61 CMS Collaboration Measurement of the inelastic proton-proton cross section at $ \sqrt{s}= $ 13 TeV JHEP 07 (2018) 161 CMS-FSQ-15-005
1802.02613
62 CMS Collaboration Measurement of the associated production of a Z boson with charm or bottom quark jets in proton-proton collisions at $ \sqrt{s}= $ 13 TeV Submitted to PRD, 2020 CMS-SMP-19-004
2001.06899
Compact Muon Solenoid
LHC, CERN