CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-EXO-22-008
Search for narrow trijet resonances in proton-proton collisions at $ \sqrt{s}= $ 13 TeV
Abstract: A search for narrow hadronic resonances decaying to three resolved jets is presented. The search uses 138 fb$^{-1}$ of proton-proton collision data with a collision center of mass energy of 13 TeV, collected by the CMS detector at the CERN LHC. The three-jet invariant mass spectrum is scrutinized for localized excesses compatible with new resonances with masses in the range of 1.75--9.00 TeV. The background from standard model processes is estimated by fitting the three-jet invariant mass spectrum with empirical functions, following techniques commonly used in dijet resonance searches. No significant deviations from the background expectations are observed. The results are interpreted in the context of several models predicting three-jet resonances, including a new right-handed boson $ \mathrm{Z}_{R} $ decaying to three gluons, a Kaluza-Klein gluon decaying via an intermediate radion to three gluons, and an excited quark decaying via a vector boson to three quarks.
Figures Summary Additional Figures References CMS Publications
Figures

png pdf
Figure 1:
The observed trijet invariant mass distribution and the background-only fit to the data using the $ f_A $ fit function. The expected $ m_{\mathrm{jjj}} $ distributions for $ \mathrm{Z}_{R} $ signal masses of 2, 4, 6, and 8 TeV with nominal width are also shown. The normalizations correspond to $ \sigma \times \mathcal{B} $ values of 200 fb, 50 fb, 20 fb, and 20 fb, respectively. Only 2016 data is shown for $ m_{\mathrm{jjj}} < $ 1.76 TeV because of the high trigger thresholds in 2017 and 2018. The bottom panel shows the difference between the observed data and the background prediction divided by the total uncertainty, along with expectations for the example $ \mathrm{Z}_{R} $ signal points.

png pdf
Figure 2:
Limits at 95% CL on $ \sigma \mathcal{B} (\mathrm{Z}_{R} \rightarrow 3\mathrm{g}) $ for the nominal (left) and narrow (right) width scenarios. Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018.

png pdf
Figure 2-a:
Limits at 95% CL on $ \sigma \mathcal{B} (\mathrm{Z}_{R} \rightarrow 3\mathrm{g}) $ for the nominal (left) and narrow (right) width scenarios. Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018.

png pdf
Figure 2-b:
Limits at 95% CL on $ \sigma \mathcal{B} (\mathrm{Z}_{R} \rightarrow 3\mathrm{g}) $ for the nominal (left) and narrow (right) width scenarios. Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018.

png pdf
Figure 3:
Limits at 95% CL as a function of $ m_{\mathrm{X}} $ and $ \rho_{m} $ on $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{g}\mathrm{g})\mathrm{g}) $ (left) and $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{q}\mathrm{q})\mathrm{q}) $ (right). Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018. The mass exclusion ranges for the benchmark models are also shown.

png pdf
Figure 3-a:
Limits at 95% CL as a function of $ m_{\mathrm{X}} $ and $ \rho_{m} $ on $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{g}\mathrm{g})\mathrm{g}) $ (left) and $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{q}\mathrm{q})\mathrm{q}) $ (right). Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018. The mass exclusion ranges for the benchmark models are also shown.

png pdf
Figure 3-b:
Limits at 95% CL as a function of $ m_{\mathrm{X}} $ and $ \rho_{m} $ on $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{g}\mathrm{g})\mathrm{g}) $ (left) and $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{q}\mathrm{q})\mathrm{q}) $ (right). Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018. The mass exclusion ranges for the benchmark models are also shown.
Summary
In summary, the first generic search for new particles decaying to three hadronic jets has been presented. The search uses proton-proton collision data at $ \sqrt{s}= $ 13 TeV recorded by the CMS experiment from 2016--2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. The signal is identified as a peak in the smoothly falling three-jet invariant mass spectrum. No significant excesses above the standard model background expectations are observed. Limits are set on the product of the production cross section and branching ratio to three resolved jets. The results are interpreted in the context of a new right-handed boson $ \mathrm{Z}_{R} $ decaying to three gluons, a Kaluza-Klein gluon G decaying via an intermediate radion to three gluons, and an excited quark decaying via a vector boson to three quarks. This is the first search for the three-body decay of high-mass resonances into three resolved jets at the LHC, and also the first search for high-mass resonances that decay into three resolved jets through an intermediate resonance with mass ratio $ \rho_{m} $ between 0.2 to 0.8, significantly extending the model parameter space explored by a previous search [51].
Additional Figures

png pdf
Additional Figure 1:
Efficiencies of the selection requirements on the benchmark signal processes: $ \mathrm{Z}_{R}\rightarrow \mathrm{g}\mathrm{g}\mathrm{g} $ with nominal width (top left), $ \mathrm{Z}_{R}\rightarrow \mathrm{g}\mathrm{g}\mathrm{g} $ with narrow width (top right), $ {\mathrm{G}_{\text{KK}}}\rightarrow \mathrm{g}\mathrm{g}\mathrm{g} $ (bottom left), and $ \mathrm{q}^{*}\rightarrow \mathrm{q}\mathrm{q}\mathrm{q} $. The efficiencies for 2016, 2017, and 2018 data-taking conditions are shown separately. The bottom two figures also show efficiencies for different $ \rho_{m} $ scenarios for cascade decays with intermediate resonances.

png pdf
Additional Figure 1-a:
Efficiencies of the selection requirements on the benchmark signal processes: $ \mathrm{Z}_{R}\rightarrow \mathrm{g}\mathrm{g}\mathrm{g} $ with nominal width (top left), $ \mathrm{Z}_{R}\rightarrow \mathrm{g}\mathrm{g}\mathrm{g} $ with narrow width (top right), $ {\mathrm{G}_{\text{KK}}}\rightarrow \mathrm{g}\mathrm{g}\mathrm{g} $ (bottom left), and $ \mathrm{q}^{*}\rightarrow \mathrm{q}\mathrm{q}\mathrm{q} $. The efficiencies for 2016, 2017, and 2018 data-taking conditions are shown separately. The bottom two figures also show efficiencies for different $ \rho_{m} $ scenarios for cascade decays with intermediate resonances.

png pdf
Additional Figure 1-b:
Efficiencies of the selection requirements on the benchmark signal processes: $ \mathrm{Z}_{R}\rightarrow \mathrm{g}\mathrm{g}\mathrm{g} $ with nominal width (top left), $ \mathrm{Z}_{R}\rightarrow \mathrm{g}\mathrm{g}\mathrm{g} $ with narrow width (top right), $ {\mathrm{G}_{\text{KK}}}\rightarrow \mathrm{g}\mathrm{g}\mathrm{g} $ (bottom left), and $ \mathrm{q}^{*}\rightarrow \mathrm{q}\mathrm{q}\mathrm{q} $. The efficiencies for 2016, 2017, and 2018 data-taking conditions are shown separately. The bottom two figures also show efficiencies for different $ \rho_{m} $ scenarios for cascade decays with intermediate resonances.

png pdf
Additional Figure 1-c:
Efficiencies of the selection requirements on the benchmark signal processes: $ \mathrm{Z}_{R}\rightarrow \mathrm{g}\mathrm{g}\mathrm{g} $ with nominal width (top left), $ \mathrm{Z}_{R}\rightarrow \mathrm{g}\mathrm{g}\mathrm{g} $ with narrow width (top right), $ {\mathrm{G}_{\text{KK}}}\rightarrow \mathrm{g}\mathrm{g}\mathrm{g} $ (bottom left), and $ \mathrm{q}^{*}\rightarrow \mathrm{q}\mathrm{q}\mathrm{q} $. The efficiencies for 2016, 2017, and 2018 data-taking conditions are shown separately. The bottom two figures also show efficiencies for different $ \rho_{m} $ scenarios for cascade decays with intermediate resonances.

png pdf
Additional Figure 1-d:
Efficiencies of the selection requirements on the benchmark signal processes: $ \mathrm{Z}_{R}\rightarrow \mathrm{g}\mathrm{g}\mathrm{g} $ with nominal width (top left), $ \mathrm{Z}_{R}\rightarrow \mathrm{g}\mathrm{g}\mathrm{g} $ with narrow width (top right), $ {\mathrm{G}_{\text{KK}}}\rightarrow \mathrm{g}\mathrm{g}\mathrm{g} $ (bottom left), and $ \mathrm{q}^{*}\rightarrow \mathrm{q}\mathrm{q}\mathrm{q} $. The efficiencies for 2016, 2017, and 2018 data-taking conditions are shown separately. The bottom two figures also show efficiencies for different $ \rho_{m} $ scenarios for cascade decays with intermediate resonances.

png pdf
Additional Figure 2:
The observed local significance for a $ \mathrm{g}\mathrm{g}\mathrm{g} $ resonance versus $ \mathrm{Z}_{R} $ mass, shown for resonances with nominal width (blue) and narrow width (red). The most significant excesses correspond to 2.1 (2.2) standard deviations.

png pdf
Additional Figure 3:
The observed local significance versus $ m_{\mathrm{X}} $ and $ \rho_{m} $ for resonances decaying via a cascade. The largest deviations are observed at $ \rho_{m} = $ 0.3, $ m_{\mathrm{X}} = $ 4.1 TeV for $ \mathrm{X} \rightarrow \mathrm{Y}(\mathrm{g}\mathrm{g})\mathrm{g} $ and $ \rho_{m} = $ 0.7, $m_{\mathrm{X}} = $ 3.9 TeV for $ \mathrm{X} \rightarrow \mathrm{Y}(\mathrm{q}\mathrm{q})\mathrm{q} $. The corresponding local (global) significance values are 2.2 (0.36) and 2.1 (0.27) standard deviations, respectively.

png pdf
Additional Figure 3-a:
The observed local significance versus $ m_{\mathrm{X}} $ and $ \rho_{m} $ for resonances decaying via a cascade. The largest deviations are observed at $ \rho_{m} = $ 0.3, $ m_{\mathrm{X}} = $ 4.1 TeV for $ \mathrm{X} \rightarrow \mathrm{Y}(\mathrm{g}\mathrm{g})\mathrm{g} $ and $ \rho_{m} = $ 0.7, $m_{\mathrm{X}} = $ 3.9 TeV for $ \mathrm{X} \rightarrow \mathrm{Y}(\mathrm{q}\mathrm{q})\mathrm{q} $. The corresponding local (global) significance values are 2.2 (0.36) and 2.1 (0.27) standard deviations, respectively.

png pdf
Additional Figure 3-b:
The observed local significance versus $ m_{\mathrm{X}} $ and $ \rho_{m} $ for resonances decaying via a cascade. The largest deviations are observed at $ \rho_{m} = $ 0.3, $ m_{\mathrm{X}} = $ 4.1 TeV for $ \mathrm{X} \rightarrow \mathrm{Y}(\mathrm{g}\mathrm{g})\mathrm{g} $ and $ \rho_{m} = $ 0.7, $m_{\mathrm{X}} = $ 3.9 TeV for $ \mathrm{X} \rightarrow \mathrm{Y}(\mathrm{q}\mathrm{q})\mathrm{q} $. The corresponding local (global) significance values are 2.2 (0.36) and 2.1 (0.27) standard deviations, respectively.

png pdf
Additional Figure 4:
Limits at 95% CL on $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{g}\mathrm{g})\mathrm{g}) $ for different $ \rho_{m} $ scenarios. Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018. Theoretical predictions are also shown for the benchmark $ {\mathrm{G}_{\text{KK}}} $ model.

png pdf
Additional Figure 4-a:
Limits at 95% CL on $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{g}\mathrm{g})\mathrm{g}) $ for different $ \rho_{m} $ scenarios. Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018. Theoretical predictions are also shown for the benchmark $ {\mathrm{G}_{\text{KK}}} $ model.

png pdf
Additional Figure 4-b:
Limits at 95% CL on $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{g}\mathrm{g})\mathrm{g}) $ for different $ \rho_{m} $ scenarios. Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018. Theoretical predictions are also shown for the benchmark $ {\mathrm{G}_{\text{KK}}} $ model.

png pdf
Additional Figure 4-c:
Limits at 95% CL on $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{g}\mathrm{g})\mathrm{g}) $ for different $ \rho_{m} $ scenarios. Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018. Theoretical predictions are also shown for the benchmark $ {\mathrm{G}_{\text{KK}}} $ model.

png pdf
Additional Figure 4-d:
Limits at 95% CL on $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{g}\mathrm{g})\mathrm{g}) $ for different $ \rho_{m} $ scenarios. Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018. Theoretical predictions are also shown for the benchmark $ {\mathrm{G}_{\text{KK}}} $ model.

png pdf
Additional Figure 4-e:
Limits at 95% CL on $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{g}\mathrm{g})\mathrm{g}) $ for different $ \rho_{m} $ scenarios. Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018. Theoretical predictions are also shown for the benchmark $ {\mathrm{G}_{\text{KK}}} $ model.

png pdf
Additional Figure 4-f:
Limits at 95% CL on $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{g}\mathrm{g})\mathrm{g}) $ for different $ \rho_{m} $ scenarios. Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018. Theoretical predictions are also shown for the benchmark $ {\mathrm{G}_{\text{KK}}} $ model.

png pdf
Additional Figure 4-g:
Limits at 95% CL on $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{g}\mathrm{g})\mathrm{g}) $ for different $ \rho_{m} $ scenarios. Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018. Theoretical predictions are also shown for the benchmark $ {\mathrm{G}_{\text{KK}}} $ model.

png pdf
Additional Figure 5:
Limits at 95% CL on $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{q}\mathrm{q})\mathrm{q}) $ for resonances $ \mathrm{X} $ in different $ \rho_{m} $ scenarios. Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018. Theoretical predictions are also shown for the benchmark $ \mathrm{q}^{*} $ model.

png pdf
Additional Figure 5-a:
Limits at 95% CL on $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{q}\mathrm{q})\mathrm{q}) $ for resonances $ \mathrm{X} $ in different $ \rho_{m} $ scenarios. Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018. Theoretical predictions are also shown for the benchmark $ \mathrm{q}^{*} $ model.

png pdf
Additional Figure 5-b:
Limits at 95% CL on $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{q}\mathrm{q})\mathrm{q}) $ for resonances $ \mathrm{X} $ in different $ \rho_{m} $ scenarios. Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018. Theoretical predictions are also shown for the benchmark $ \mathrm{q}^{*} $ model.

png pdf
Additional Figure 5-c:
Limits at 95% CL on $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{q}\mathrm{q})\mathrm{q}) $ for resonances $ \mathrm{X} $ in different $ \rho_{m} $ scenarios. Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018. Theoretical predictions are also shown for the benchmark $ \mathrm{q}^{*} $ model.

png pdf
Additional Figure 5-d:
Limits at 95% CL on $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{q}\mathrm{q})\mathrm{q}) $ for resonances $ \mathrm{X} $ in different $ \rho_{m} $ scenarios. Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018. Theoretical predictions are also shown for the benchmark $ \mathrm{q}^{*} $ model.

png pdf
Additional Figure 5-e:
Limits at 95% CL on $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{q}\mathrm{q})\mathrm{q}) $ for resonances $ \mathrm{X} $ in different $ \rho_{m} $ scenarios. Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018. Theoretical predictions are also shown for the benchmark $ \mathrm{q}^{*} $ model.

png pdf
Additional Figure 5-f:
Limits at 95% CL on $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{q}\mathrm{q})\mathrm{q}) $ for resonances $ \mathrm{X} $ in different $ \rho_{m} $ scenarios. Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018. Theoretical predictions are also shown for the benchmark $ \mathrm{q}^{*} $ model.

png pdf
Additional Figure 5-g:
Limits at 95% CL on $ \sigma \mathcal{B} (\mathrm{X} \rightarrow \mathrm{Y}(\mathrm{q}\mathrm{q})\mathrm{q}) $ for resonances $ \mathrm{X} $ in different $ \rho_{m} $ scenarios. Only 2016 data is used to derive limits below 2.0 TeV because of the higher trigger thresholds in 2017 and 2018. Theoretical predictions are also shown for the benchmark $ \mathrm{q}^{*} $ model.

png pdf jpg
Additional Figure 6:
Three dimensional display of the event with the highest $ m_{\mathrm{jjj}} $ of 7.20 TeV. Energy deposited in the electromagnetic (green) and hadronic (blue) calorimeters and the reconstructed tracks of charged particles (yellow) are shown. Reconstructed three most energetic jets are represented by the yellow cones.
References
1 UA1 Collaboration Two-jet mass distributions at the CERN proton-antiproton collider PLB 209 (1988) 127
2 UA2 Collaboration A measurement of two-jet decays of the $ W $ and $ Z $ bosons at the CERN $ {\bar{p} p} $ collider Z. Phys. C 49 (1991) 17
3 UA2 Collaboration A search for new intermediate vector mesons and excited quarks decaying to two jets at the CERN $ {\rm \bar{p} p} $ collider NPB 400 (1993) 3
4 CDF Collaboration The two-jet invariant mass-distribution at $ \sqrt{s} = $ 1.8 TeV PRD 41 (1990) 1722
5 CDF Collaboration Search for quark compositeness, axigluons and heavy particles using the dijet invariant mass spectrum observed in $ {\rm \bar{p} p} $ collisions PRL 71 (1993) 2542
6 CDF Collaboration Search for new particles decaying to dijets in $ {\rm \bar{p} p} $ collisions at $ \sqrt{s} = $ 1.8 TeV PRL 74 (1995) 3538 hep-ex/9501001
7 CDF Collaboration Measurement of dijet angular distributions by the Collider Detector at Fermilab PRL 77 (1996) 5336 hep-ex/9609011
8 CDF Collaboration Search for new particles decaying to dijets at CDF PRD 55 (1997) 5263 hep-ex/9702004
9 CDF Collaboration Search for new particles decaying into dijets in proton-antiproton collisions at $ \sqrt{s} = $ 1.96 TeV PRD 79 (2009) 112002 0812.4036
10 D0 Collaboration Measurement of dijet angular distributions and search for quark compositeness PRL 80 (1998) 666 hep-ex/9707016
11 D0 Collaboration The dijet mass spectrum and a search for quark compositeness in $ {\rm \bar{p} p} $ collisions at $ \sqrt{s} = $ 1.8 TeV PRL 82 (1999) 2457 hep-ex/9807014
12 D0 Collaboration Search for new particles in the two-jet decay channel with the D0 detector PRD 69 (2004) 111101 hep-ex/0308033
13 ATLAS Collaboration Search for new particles in two-jet final states in 7 TeV proton-proton collisions with the ATLAS detector at the LHC PRL 105 (2010) 161801 1008.2461
14 ATLAS Collaboration Search for quark contact interactions in dijet angular distributions in pp collisions at $ \sqrt{s}= $ 7 TeV measured with the ATLAS detector PLB 694 (2011) 327 1009.5069
15 ATLAS Collaboration A search for new physics in dijet mass and angular distributions in pp collisions at $ \sqrt{s} = $ 7 TeV measured with the ATLAS detector New J. Phys. 13 (2011) 053044 1103.3864
16 ATLAS Collaboration Search for new physics in the dijet mass distribution using 1 fb$ ^{-1} $ of pp collision data at $ \sqrt{s}= $ 7 TeV collected by the ATLAS detector PLB 708 (2012) 37 1108.6311
17 ATLAS Collaboration ATLAS search for new phenomena in dijet mass and angular distributions using pp collisions at $ \sqrt{s}= $ 7 TeV JHEP 01 (2013) 029 1210.1718
18 ATLAS Collaboration Search for new phenomena in the dijet mass distribution using pp collision data at $ \sqrt{s}= $ 8 TeV with the ATLAS detector PRD 91 (2015) 052007 1407.1376
19 ATLAS Collaboration Search for new phenomena in dijet angular distributions in proton-proton collisions at $ \sqrt{s} = $ 8 TeV measured with the ATLAS detector PRL 114 (2015) 221802 1504.00357
20 ATLAS Collaboration Search for new phenomena in dijet mass and angular distributions from $ pp $ collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector PLB 754 (2016) 302 1512.01530
21 ATLAS Collaboration Search for resonances in the mass distribution of jet pairs with one or two jets identified as $ b $-jets in proton--proton collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector PLB 759 (2016) 229 1603.08791
22 ATLAS Collaboration Search for new phenomena in dijet events using 37 fb$ ^{-1} $ of $ pp $ collision data collected at $ \sqrt{s}= $ 13 TeV with the ATLAS detector PRD 96 (2017) 052004 1703.09127
23 CMS Collaboration Search for dijet resonances in 7 TeV pp collisions at CMS PRL 105 (2010) 211801 CMS-EXO-10-010
1010.0203
24 CMS Collaboration Search for quark compositeness with the dijet centrality ratio in pp collisions at $ \sqrt{s}= $ 7 TeV PRL 105 (2010) 262001 CMS-EXO-10-002
1010.4439
25 CMS Collaboration Measurement of dijet angular distributions and search for quark compositeness in pp collisions at $ \sqrt{s} = $ 7 TeV PRL 106 (2011) 201804 CMS-EXO-10-009
1102.2020
26 CMS Collaboration Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS PLB 704 (2011) 123 CMS-EXO-11-015
1107.4771
27 CMS Collaboration Search for quark compositeness in dijet angular distributions from pp collisions at $ \sqrt{s}= $ 7 TeV JHEP 05 (2012) 055 CMS-EXO-11-017
1202.5535
28 CMS Collaboration Search for narrow resonances and quantum black holes in inclusive and b-tagged dijet mass spectra from pp collisions at $ \sqrt{s}= $ 7 TeV JHEP 01 (2013) 013 CMS-EXO-11-094
1210.2387
29 CMS Collaboration Search for narrow resonances using the dijet mass spectrum in pp collisions at $ \sqrt{s} = $ 8 TeV PRD 87 (2013) 114015 CMS-EXO-12-016
1302.4794
30 CMS Collaboration Search for quark contact interactions and extra spatial dimensions using dijet angular distributions in proton-proton collisions at $ \sqrt{s} = $ 8 TeV PLB 746 (2015) 79 CMS-EXO-12-050
1411.2646
31 CMS Collaboration Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at $ \sqrt{s} = $ 8 TeV PRD 91 (2015) 052009 CMS-EXO-12-059
1501.04198
32 CMS Collaboration Search for narrow resonances decaying to dijets in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PRL 116 (2016) 071801 CMS-EXO-15-001
1512.01224
33 CMS Collaboration Search for narrow resonances in dijet final states at $ \sqrt{s}= $ 8 TeV with the novel CMS technique of data scouting PRL 117 (2016) 031802 CMS-EXO-14-005
1604.08907
34 CMS Collaboration Search for dijet resonances in proton-proton collisions at $ \sqrt{s} $ = 13 TeV and constraints on dark matter and other models PLB 769 (2017) 520 CMS-EXO-16-032
1611.03568
35 CMS Collaboration Search for new physics with dijet angular distributions in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 07 (2017) 013 CMS-EXO-15-009
1703.09986
36 CMS Collaboration Search for narrow resonances in the b-tagged dijet mass spectrum in proton-proton collisions at $ \sqrt{s} = $ 8 TeV PRL 120 (2018) 201801 CMS-EXO-16-057
1802.06149
37 CMS Collaboration Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 05 (2020) 033 CMS-EXO-19-012
1911.03947
38 CMS Collaboration Search for narrow resonances in the b-tagged dijet mass spectrum in proton-proton collisions at $ \sqrt{s} $ = 13 TeV Accepted by PRD CMS-EXO-20-008
2205.01835
39 CMS Collaboration Search for low mass vector resonances decaying to quark-antiquark pairs in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PRL 119 (2017) 111802 CMS-EXO-16-030
1705.10532
40 CMS Collaboration Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 01 (2018) 097 CMS-EXO-17-001
1710.00159
41 CMS Collaboration Search for low-mass resonances decaying into bottom quark-antiquark pairs in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PRD 99 (2019) 012005 CMS-EXO-17-024
1810.11822
42 CMS Collaboration Search for Low-Mass Quark-Antiquark Resonances Produced in Association with a Photon at $ \sqrt {s} $ =13 TeV PRL 123 (2019) 231803 CMS-EXO-17-027
1905.10331
43 CMS Collaboration Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PRD 100 (2019) 112007 CMS-EXO-18-012
1909.04114
44 CMS Collaboration Search for dijet resonances using events with three jets in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PLB 805 (2020) 135448 CMS-EXO-19-004
1911.03761
45 ATLAS Collaboration A search for pair-produced resonances in four-jet final states at $ \sqrt{s} = $ 13 TeV with the ATLAS detector EPJC 78 (2018) 250 1710.07171
46 CMS Collaboration Search for pair-produced resonances decaying to quark pairs in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PRD 98 (2018) 112014 CMS-EXO-17-021
1808.03124
47 CMS Collaboration Search for pair-produced resonances each decaying into at least four quarks in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PRL 121 (2018) 141802 CMS-EXO-17-022
1806.01058
48 ATLAS Collaboration Search for R-parity-violating supersymmetric particles in multi-jet final states produced in $ p-p $ collisions at $ \sqrt{s} = $ 13 TeV using the ATLAS detector at the LHC PLB 785 (2018) 136 1804.03568
49 CMS Collaboration Search for pair-produced three-jet resonances in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PRD 99 (2019) 012010 CMS-EXO-17-030
1810.10092
50 CMS Collaboration Search for resonant and nonresonant production of pairs of dijet resonances in proton-proton collisions at $ \sqrt{s} $ = 13 TeV Accepted by JHEP CMS-EXO-21-010
2206.09997
51 CMS Collaboration Search for high-mass resonances decaying to a jet and a Lorentz-boosted resonance in proton-proton collisions at s=13TeV PLB 832 (2022) 137263 CMS-EXO-20-007
2201.02140
52 K. Huitu, J. Maalampi, A. Pietila, and M. Raidal Doubly charged Higgs at LHC NPB 487 (1997) 27 hep-ph/9606311
53 K. S. Agashe et al. LHC signals from cascade decays of warped vector resonances Including private communications with authors, 2017
JHEP 05 (2017) 078
1612.00047
54 K. Agashe, M. Ekhterachian, D. Kim, and D. Sathyan LHC signals for KK graviton from an extended warped extra dimension JHEP 11 (2020) 109 2008.06480
55 U. Baur, M. Spira, and P. M. Zerwas Excited-quark and -lepton production at hadron colliders PRD 42 (1990) 815
56 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13\,TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
57 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
58 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_t $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
59 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
60 CMS Collaboration Pileup mitigation at CMS in 13 TeV data JINST 15 (2020) P09018 CMS-JME-18-001
2003.00503
61 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
62 CMS Collaboration Jet algorithms performance in 13 TeV data CMS Physics Analysis Summary, 2017
CMS-PAS-JME-16-003
CMS-PAS-JME-16-003
63 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
64 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
65 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 10 1706.00428
66 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
67 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
68 R. A. Fisher On the interpretation of $ \chi^{2} $ from contingency tables, and the calculation of P J. R. Stat. Soc. 85 (1922) 87
69 ATLAS and CMS Collaborations, and LHC Higgs Combination Group Procedure for the LHC Higgs boson search combination in Summer 2011 Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011
70 P. D. Dauncey, M. Kenzie, N. Wardle, and G. J. Davies Handling uncertainties in background shapes: the discrete profiling method JINST 10 (2015) P04015 1408.6865
71 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
72 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} $ = 13 TeV CMS Physics Analysis Summary, 2018
link
CMS-PAS-LUM-17-004
73 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} $ = 13 TeV CMS Physics Analysis Summary, 2019
link
CMS-PAS-LUM-18-002
74 E. Gross and O. Vitells Trial factors for the look elsewhere effect in high energy physics EPJC 70 (2010) 525 1005.1891
75 A. L. Read Presentation of search results: The CL$ _{\text{s}} $ technique JPG 28 (2002) 2693
76 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435 hep-ex/9902006
77 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
Compact Muon Solenoid
LHC, CERN