CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-EXO-21-012
Search for dark matter particles produced in W$^{+}$W$^{-} $ events with transverse momentum imbalance in proton-proton collisions at $ \sqrt{s}= $ 13 TeV with the CMS detector
Abstract: A search for dark matter particles is performed using events with a pair of W bosons and large missing transverse momentum. Candidates are selected by requiring one or two leptons (electrons or muons) from the W boson decays. The analysis is based on proton-proton collision data taken at a center-of-mass energy of 13 TeV by the CMS experiment at the LHC and corresponding to an integrated luminosity of 137 fb$ ^{-1} $. No significant excess over the expected standard model background is observed in the semi- and di-leptonic final states of the W$^{+}$W$^{-}$ decay channel. Limits are set on dark matter production in the context of a dark Higgs simplified model, with a dark Higgs mass above the W$^{+}$W$^{-}$ mass threshold.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Representative Born-level Feynman diagrams for the benchmark signal model considered in this note: $ q \bar q \to \mathrm{Z}^{'} \to s \chi \chi $, and $ s \to \mathrm{W^+}\mathrm{W^-} $.

png pdf
Figure 1-a:
Representative Born-level Feynman diagrams for the benchmark signal model considered in this note: $ q \bar q \to \mathrm{Z}^{'} \to s \chi \chi $, and $ s \to \mathrm{W^+}\mathrm{W^-} $.

png pdf
Figure 1-b:
Representative Born-level Feynman diagrams for the benchmark signal model considered in this note: $ q \bar q \to \mathrm{Z}^{'} \to s \chi \chi $, and $ s \to \mathrm{W^+}\mathrm{W^-} $.

png pdf
Figure 2:
Normalized $ m_{\mathrm{T}}^{\ell\, \text{min}, p_{\mathrm{T}}^\text{miss}} $ distribution in the di-leptonic channel for a signal with $ m_{s} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV, after the event preselection criteria are applied. Predictions of the two main backgrounds of the analysis, WW and $ \mathrm{t}\mathrm{W} $\text{and} $ {\mathrm{t}\bar{\mathrm{t}}} $, are shown as blue and yellow solid lines respectively. The last bin includes the overflow.

png pdf
Figure 3:
Unrolled $ m_{\ell\ell}-m_{\mathrm{T}}^{\ell\,\text{min}, p_{\mathrm{T}}^\text{miss}} $ post-fit distributions in the di-leptonic channel for three signal regions SR1 (top left), SR2 (top right), and SR3 (bottom), for the full data set. The histogram bins are spaced uniformly. Each group of five bins (from left to right) corresponds to the $ m_{\mathrm{T}}^{\ell\,\text{min}, p_{\mathrm{T}}^\text{miss}} $ distribution in a $ m_{\ell\ell} $ region, placed in ascending order. The black line indicates the signal prediction for $ m_{s} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV.

png pdf
Figure 3-a:
Unrolled $ m_{\ell\ell}-m_{\mathrm{T}}^{\ell\,\text{min}, p_{\mathrm{T}}^\text{miss}} $ post-fit distributions in the di-leptonic channel for three signal regions SR1 (top left), SR2 (top right), and SR3 (bottom), for the full data set. The histogram bins are spaced uniformly. Each group of five bins (from left to right) corresponds to the $ m_{\mathrm{T}}^{\ell\,\text{min}, p_{\mathrm{T}}^\text{miss}} $ distribution in a $ m_{\ell\ell} $ region, placed in ascending order. The black line indicates the signal prediction for $ m_{s} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV.

png pdf
Figure 3-b:
Unrolled $ m_{\ell\ell}-m_{\mathrm{T}}^{\ell\,\text{min}, p_{\mathrm{T}}^\text{miss}} $ post-fit distributions in the di-leptonic channel for three signal regions SR1 (top left), SR2 (top right), and SR3 (bottom), for the full data set. The histogram bins are spaced uniformly. Each group of five bins (from left to right) corresponds to the $ m_{\mathrm{T}}^{\ell\,\text{min}, p_{\mathrm{T}}^\text{miss}} $ distribution in a $ m_{\ell\ell} $ region, placed in ascending order. The black line indicates the signal prediction for $ m_{s} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV.

png pdf
Figure 3-c:
Unrolled $ m_{\ell\ell}-m_{\mathrm{T}}^{\ell\,\text{min}, p_{\mathrm{T}}^\text{miss}} $ post-fit distributions in the di-leptonic channel for three signal regions SR1 (top left), SR2 (top right), and SR3 (bottom), for the full data set. The histogram bins are spaced uniformly. Each group of five bins (from left to right) corresponds to the $ m_{\mathrm{T}}^{\ell\,\text{min}, p_{\mathrm{T}}^\text{miss}} $ distribution in a $ m_{\ell\ell} $ region, placed in ascending order. The black line indicates the signal prediction for $ m_{s} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV.

png pdf
Figure 4:
Post-fit BDT distributions in the semi-leptonic channel for the full data set in the top CR (top left) and $ \mathrm{W}+ $jets CR (top right). The signal region has different binning in 2016 (bottom left) and 2017-2018 (bottom right) to ensure good statistical precision in all bins. The red line indicates the signal prediction when $ m_{s} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV.

png pdf
Figure 4-a:
Post-fit BDT distributions in the semi-leptonic channel for the full data set in the top CR (top left) and $ \mathrm{W}+ $jets CR (top right). The signal region has different binning in 2016 (bottom left) and 2017-2018 (bottom right) to ensure good statistical precision in all bins. The red line indicates the signal prediction when $ m_{s} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV.

png pdf
Figure 4-b:
Post-fit BDT distributions in the semi-leptonic channel for the full data set in the top CR (top left) and $ \mathrm{W}+ $jets CR (top right). The signal region has different binning in 2016 (bottom left) and 2017-2018 (bottom right) to ensure good statistical precision in all bins. The red line indicates the signal prediction when $ m_{s} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV.

png pdf
Figure 4-c:
Post-fit BDT distributions in the semi-leptonic channel for the full data set in the top CR (top left) and $ \mathrm{W}+ $jets CR (top right). The signal region has different binning in 2016 (bottom left) and 2017-2018 (bottom right) to ensure good statistical precision in all bins. The red line indicates the signal prediction when $ m_{s} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV.

png pdf
Figure 4-d:
Post-fit BDT distributions in the semi-leptonic channel for the full data set in the top CR (top left) and $ \mathrm{W}+ $jets CR (top right). The signal region has different binning in 2016 (bottom left) and 2017-2018 (bottom right) to ensure good statistical precision in all bins. The red line indicates the signal prediction when $ m_{s} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV.

png pdf
Figure 5:
Observed (expected) exclusion regions at 95% CL for the dark Higgs model in the ($ m_{s} $, $ m_{\mathrm{Z}^{'}} $) plane, marked by the solid red (black) line. The expected $ \pm $ 1$ \sigma $ and $ \pm $ 2$ \sigma $ bands are shown as the thinner black lines. Upper left: $ m_{\chi} = $ 100 GeV, upper right: $ m_{\chi} = $ 150 GeV, lower left: $ m_{\chi} = $ 200 GeV, lower right: $ m_{\chi} = $ 300 GeV. The gray line indicates were the model parameters produce exactly the observed relic density $ \Omega_c h^2 = $ 0.12 [7].

png pdf
Figure 5-a:
Observed (expected) exclusion regions at 95% CL for the dark Higgs model in the ($ m_{s} $, $ m_{\mathrm{Z}^{'}} $) plane, marked by the solid red (black) line. The expected $ \pm $ 1$ \sigma $ and $ \pm $ 2$ \sigma $ bands are shown as the thinner black lines. Upper left: $ m_{\chi} = $ 100 GeV, upper right: $ m_{\chi} = $ 150 GeV, lower left: $ m_{\chi} = $ 200 GeV, lower right: $ m_{\chi} = $ 300 GeV. The gray line indicates were the model parameters produce exactly the observed relic density $ \Omega_c h^2 = $ 0.12 [7].

png pdf
Figure 5-b:
Observed (expected) exclusion regions at 95% CL for the dark Higgs model in the ($ m_{s} $, $ m_{\mathrm{Z}^{'}} $) plane, marked by the solid red (black) line. The expected $ \pm $ 1$ \sigma $ and $ \pm $ 2$ \sigma $ bands are shown as the thinner black lines. Upper left: $ m_{\chi} = $ 100 GeV, upper right: $ m_{\chi} = $ 150 GeV, lower left: $ m_{\chi} = $ 200 GeV, lower right: $ m_{\chi} = $ 300 GeV. The gray line indicates were the model parameters produce exactly the observed relic density $ \Omega_c h^2 = $ 0.12 [7].

png pdf
Figure 5-c:
Observed (expected) exclusion regions at 95% CL for the dark Higgs model in the ($ m_{s} $, $ m_{\mathrm{Z}^{'}} $) plane, marked by the solid red (black) line. The expected $ \pm $ 1$ \sigma $ and $ \pm $ 2$ \sigma $ bands are shown as the thinner black lines. Upper left: $ m_{\chi} = $ 100 GeV, upper right: $ m_{\chi} = $ 150 GeV, lower left: $ m_{\chi} = $ 200 GeV, lower right: $ m_{\chi} = $ 300 GeV. The gray line indicates were the model parameters produce exactly the observed relic density $ \Omega_c h^2 = $ 0.12 [7].

png pdf
Figure 5-d:
Observed (expected) exclusion regions at 95% CL for the dark Higgs model in the ($ m_{s} $, $ m_{\mathrm{Z}^{'}} $) plane, marked by the solid red (black) line. The expected $ \pm $ 1$ \sigma $ and $ \pm $ 2$ \sigma $ bands are shown as the thinner black lines. Upper left: $ m_{\chi} = $ 100 GeV, upper right: $ m_{\chi} = $ 150 GeV, lower left: $ m_{\chi} = $ 200 GeV, lower right: $ m_{\chi} = $ 300 GeV. The gray line indicates were the model parameters produce exactly the observed relic density $ \Omega_c h^2 = $ 0.12 [7].
Tables

png pdf
Table 1:
Summary of all variables considered in the BDT for the semi-leptonic channel.

png pdf
Table 2:
Summary of the event preselection criteria in the di-leptonic channel.

png pdf
Table 3:
Selection criteria for the leptons for 2016, 2017 and 2018 data in the semi-leptonic channel. The $ p_{\mathrm{T}} $ thresholds are chosen to be on the single lepton trigger threshold.

png pdf
Table 4:
Summary of the event preselection criteria for the semi-leptonic channel.

png pdf
Table 5:
Data and background yields for each data period and signal region in the di-leptonic channel. Central values and uncertainties of the background contributions correspond to the post-fit values. The signal prediction corresponds to pre-fit yields and uncertainties for a sample with $ m_{s} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV.

png pdf
Table 6:
Data and background yields for the semi-leptonic channel with a BDT discriminator score above 0.6. Central values and uncertainties of the background contributions correspond to the post-fit values. The signal prediction corresponds to the pre-fit yields and uncertainties for a sample with $ m_{s} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, and $ m_{\mathrm{Z}^{'}} = $ 500 GeV.
Summary
A search for dark matter particles produced in association with a dark Higgs boson has been presented. A sample of proton-proton collision data at a center-of-mass energy of 13 TeV is used, corresponding to an integrated luminosity of 137 fb$ ^{-1} $. The decay mode of the dark Higgs boson to a W$^{+}$W$^{-}$pair has been explored; this is the first time the CMS Collaboration explores this new physics scenario. Results from the combination of di-leptonic and semi-leptonic analysis channels of the W$^{+}$W$^{-}$pair are presented. No significant deviation from the Standard Model prediction is observed, so upper limits at 95% confidence level on the production cross section of dark matter are set on the dark Higgs model parameters. This analysis extends the search from previous public results to a wider DM mass range, from 100 GeV to 300 GeV, and extends the limit on $ m_{\mathrm{Z}^{'}} $ masses in the region 160 GeV $< m_{s} \lesssim $ 250 GeV for $ m_{DM} = $ 200 GeV. The most stringent limit is set for a $ m_{DM} = $ 200 GeV, excluding $ m_{s} $ masses up to $ \approx $350 GeV at $ m_{\mathrm{Z}^{'}} $ masses of 700 GeV, and up to $ m_{\mathrm{Z}^{'}} \approx $ 2200 GeV for a $ m_{s} = $ 160 GeV.
References
1 R. J. Gaitskell Direct detection of dark matter Ann. Rev. Nucl. Part. Sci. 54 (2004) 315
2 V. Trimble Existence and nature of dark matter in the universe Ann. Rev. Astron. Astrophys. 25 (1987) 425
3 T. A. Porter, R. P. Johnson, and P. W. Graham Dark Matter searches with astroparticle data Ann. Rev. Astron. Astrophys. 49 (2011) 155 1104.2836
4 G. Bertone, D. Hooper, and J. Silk Particle dark matter: evidence, candidates and constraints Phys. Rept. 405 (2005) 279 hep-ph/0404175
5 J. L. Feng Dark matter candidates from particle physics and methods of detection Ann. Rev. Astron. Astrophys. 48 (2010) 495 1003.0904
6 R. J. Scherrer and M. S. Turner On the relic, cosmic abundance of stable, weakly interacting massive particles PRD 33 (1986) 1585
7 Planck Collaboration Planck 2018 results. VI. Cosmological parameters Astron. Astrophys. 641 (2020) A6
8 G. Steigman and M. S. Turner Cosmological constraints on the properties of weakly interacting massive particles NPB 253 (1985) 375
9 ATLAS Collaboration Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector JHEP 01 (2018) 126 1711.03301
10 CMS Collaboration Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at $ \sqrt{s}=$ 13 TeV PRD 97 (2018) 092005 CMS-EXO-16-048
1712.02345
11 ATLAS Collaboration Search for dark matter produced in association with bottom or top quarks in $ \sqrt{s}= $ 13 TeV pp collisions with the ATLAS detector EPJC 78 (2018) 18 1710.11412
12 CMS Collaboration Search for dark matter in events with energetic, hadronically decaying top quarks and missing transverse momentum at $ \sqrt{s}= $ 13 TeV JHEP 06 (2018) 027 CMS-EXO-16-051
1801.08427
13 ATLAS Collaboration Search for dark matter at $ \sqrt{s}= $ 13 TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector EPJC 77 (2017) 393 1704.03848
14 CMS Collaboration Search for new physics in the monophoton final state in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 10 (2017) 073 CMS-EXO-16-039
1706.03794
15 ATLAS Collaboration Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a $ Z $ boson in pp collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector PLB 776 (2018) 318 1708.09624
16 CMS Collaboration Search for new physics in events with a leptonically decaying Z boson and a large transverse momentum imbalance in proton-proton collisions at $ \sqrt{s} = $ 13 TeV EPJC 78 (2018) 291 CMS-EXO-16-052
1711.00431
17 ATLAS Collaboration Search for dark matter in events with a hadronically decaying vector boson and missing transverse momentum in pp collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector JHEP 10 (2018) 180 1807.11471
18 CMS Collaboration Search for dark matter particles produced in association with a Higgs boson in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 3 (2020) 25 1908.01713
19 M. Duerr et al. Hunting the dark Higgs JHEP 4 (2017) 143 1701.08780
20 ATLAS Collaboration and CMS Collaboration Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $ \sqrt{s} = $ 7 and 8 TeV JHEP 8 (2016) 45 1606.02266
21 M. Duerr et al. How to save the WIMP: global analysis of a dark matter model with two $ s $-channel mediators JHEP 9 (2016) 42 1606.07609
22 ATLAS Collaboration RECAST framework reinterpretation of an ATLAS Dark Matter Search constraining a model of a dark Higgs boson decaying to two $ b $-quarks technical report, CERN, 2019
23 ATLAS Collaboration Search for dark matter produced in association with a dark Higgs boson decaying into $ \mathrm{W^+}\mathrm{W^-} $ or ZZ in fully hadronic final states from $ \sqrt{s} = $ 13 TeV $ pp $ collisions recorded with the ATLAS detector PRL 126 (2021) 121802
24 ATLAS Collaboration Search for dark matter produced in association with a dark higgs boson decaying into $ \mathrm{W^+}\mathrm{W^-} $ in the one-lepton final state at $ \sqrt{s} = $ 13 TeV using 139 fb$^{-1}$ of $ pp $ collisions recorded with the ATLAS detector Submitted to JHEP., 2022 2211.07175
25 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
26 CMS Collaboration The CMS Experiment at the CERN LHC JINST 3 (2008) S08004
27 CMS Collaboration CMS Luminosity Measurements for the 2016 Data Taking Period Physics Analysis Summary
CMS-PAS-LUM-17-001
CMS-PAS-LUM-17-001
28 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV Physics Analysis Summary
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
29 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV Physics Analysis Summary
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
30 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
31 CMS Collaboration Event generator tunes obtained from underlying event and multiparton scattering measurements EPJC 76 (2016) 155 CMS-GEN-14-001
1512.00815
32 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
33 NNPDF Collaboration Parton distributions with QED corrections NPB 877 (2013) 290 1308.0598
34 NNPDF Collaboration Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO NPB 855 (2012) 153 1107.2652
35 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
36 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 2014 (2014) 79
37 D. Abercrombie et al. Dark matter benchmark models for early LHC Run-2 searches: Report of the ATLAS/CMS Dark Matter Forum Phys. Dark Univ. 27 (2020) 100371
38 T. Melia, P. Nason, R. Rontsch, and G. Zanderighi W$ ^+ $W$ ^- $, WZ and ZZ production in the POWHEG BOX JHEP 11 (2011) 078 1107.5051
39 J. M. Campbell, R. K. Ellis, and C. Williams Vector boson pair production at the LHC JHEP 07 (2011) 018 1105.0020
40 J. M. Campbell, R. K. Ellis, and W. T. Giele A multi-threaded version of MCFM EPJC 75 (2015) 246 1503.06182
41 P. Meade, H. Ramani, and M. Zeng Transverse momentum resummation effects in $ \mathrm{W}^+\mathrm{W}^- $ measurements PRD 90 (2014) 114006 1407.4481
42 P. Jaiswal and T. Okui Explanation of the WW excess at the LHC by jet-veto resummation PRD 90 (2014) 073009 1407.4537
43 S. Gieseke, T. Kasprzik, and J. H. Kühn Vector-boson pair production and electroweak corrections in herwig++
44 F. Caola, K. Melnikov, R. Röntsch, and L. Tancredi QCD corrections to $ \mathrm{W}^+\mathrm{W}^- $ production through gluon fusion PLB 754 (2016) 275 1511.08617
45 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
46 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
47 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
48 E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM JHEP 02 (2012) 088 1111.2854
49 P. Nason and C. Oleari NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG JHEP 02 (2010) 037 0911.5299
50 G. Luisoni, P. Nason, C. Oleari, and F. Tramontano $ \mathrm{H}\mathrm{W}^{\pm}/\mathrm{H}\mathrm{Z} $ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO JHEP 10 (2013) 083 1306.2542
51 H. B. Hartanto, B. Jager, L. Reina, and D. Wackeroth Higgs boson production in association with top quarks in the POWHEG BOX PRD 91 (2015) 094003 1501.04498
52 S. Bolognesi et al. On the spin and parity of a single-produced resonance at the LHC PRD 86 (2012) 095031 1208.4018
53 M. Czakon et al. Top-pair production at the LHC through NNLO QCD and NLO EW JHEP 10 (2017) 186 1705.04105
54 J. M. Lindert et al. Precise predictions for V + jets dark matter backgrounds EPJC 77 (2017) 12
55 K. Melnikov and F. Petriello Electroweak gauge boson production at hadron colliders through $ O(\alpha_s^2) $ PRD 74 (2006) 114017 hep-ph/0609070
56 CMS Collaboration Measurement of the $ \mathrm{t}\bar{\mathrm{t}} $ production cross section in the $ \mathrm{e}\mu $ channel in proton-proton collisions at $ \sqrt{s} = $ 7 and 8 TeV JHEP 08 (2016) 029 CMS-TOP-13-004
1603.02303
57 GEANT4 Collaboration GEANT4---a simulation toolkit NIM A 506 (2003) 250
58 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
59 W. Waltenberger, R. Frühwirth, and P. Vanlaer Adaptive vertex fitting JPG 34 (2007) N343
60 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
61 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
62 CMS Collaboration Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P06005 CMS-EGM-13-001
1502.02701
63 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
64 CMS Collaboration Performance of the reconstruction and identification of high-momentum muons in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 15 (2020) P02027 CMS-MUO-17-001
1912.03516
65 CMS Collaboration Jet algorithms performance in 13 TeV data Physics Analysis Summary, , . \url https://cds.cern.ch/record/2256875, 2017
CMS-PAS-JME-16-003
CMS-PAS-JME-16-003
66 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014
67 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
68 CMS Collaboration Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s} = $ 13 TeV using the CMS detector JINST 14 (2019) P07004 CMS-JME-17-001
1903.06078
69 D. Bertolini, P. Harris, M. Low, and N. Tran Pileup per particle identification JHEP 10 (2014) 059 1407.6013
70 L. Moneta et al. The RooStats Project PoS ACAT 057, 2010
link
1009.1003
71 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics [Erratum: Eur.Phys.J.C 73, 2501 ()], 2011
EPJC 71 (2011) 1554
1007.1727
72 CMS Collaboration Measurements of properties of the Higgs boson decaying to a W boson pair in pp collisions at $ \sqrt{s}= $ 13 TeV PLB 791 (2019) 96 CMS-HIG-16-042
1806.05246
73 CMS Collaboration Measurement of the inelastic proton-proton cross section at $ \sqrt{s}= $ 13 TeV JHEP 07 (2018) 161 CMS-FSQ-15-005
1802.02613
74 F. Caola et al. QCD corrections to vector boson pair production in gluon fusion including interference effects with off-shell Higgs at the LHC JHEP 07 (2016) 087 1605.04610
75 C. Arina et al. Indirect dark-matter detection with maddm v3.2 -- lines and loops link
Compact Muon Solenoid
LHC, CERN