CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-SUS-16-051 ; CERN-EP-2017-109
Search for top squark pair production in pp collisions at $ \sqrt{s} = $ 13 TeV using single lepton events
J. High Energy Phys. 10 (2017) 019
Abstract: A search for top squark pair production in pp collisions at $ \sqrt{s} = $ 13 TeV is performed using events with a single isolated electron or muon, jets, and a large transverse momentum imbalance. The results are based on data collected in 2016 with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. No significant excess of events is observed above the expectation from standard model processes. Exclusion limits are set in the context of supersymmetric models of pair production of top squarks that decay either to a top quark and a neutralino or to a bottom quark and a chargino. Depending on the details of the model, we exclude top squarks with masses as high as 1120 GeV. Detailed information is also provided to facilitate theoretical interpretations in other scenarios of physics beyond the standard model.
Figures & Tables Summary Additional Figures & Tables References CMS Publications
Additional information on efficiencies needed for reinterpretation of these results are available here.
Additional technical material for CMS speakers can be found here.
Figures

png pdf
Figure 1:
Simplified-models diagrams corresponding to top squark pair production, followed by the specific decay modes targeted in this paper. (a) $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } \to \mathrm{ t } \tilde{\chi}^0_1 \mathrm{ \bar{t} } \tilde{\chi}^0_1 $; (b) $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } \to \mathrm{ b } \tilde{ \chi }^{+}_1 \mathrm{ \bar{b} } \tilde{ \chi }^{-}_1 $; (c) $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } \to \mathrm{ b } \tilde{ \chi }^{+}_1 \mathrm{ \bar{t} } \tilde{\chi}^0_1 $. Charge-conjugate decays are implied.

png pdf
Figure 1-a:
Simplified-model diagram corresponding to top squark pair-production and decay: $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } \to \mathrm{ t } \tilde{\chi}^0_1 \mathrm{ \bar{t} } \tilde{\chi}^0_1 $.

png pdf
Figure 1-b:
Simplified-model diagram corresponding to top squark pair-production and decay: $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } \to \mathrm{ b } \tilde{ \chi }^{+}_1 \mathrm{ \bar{b} } \tilde{ \chi }^{-}_1 $. Charge-conjugate decays are implied.

png pdf
Figure 1-c:
Simplified-model diagram corresponding to top squark pair-production and decay: $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } \to \mathrm{ b } \tilde{ \chi }^{+}_1 \mathrm{ \bar{t} } \tilde{\chi}^0_1 $. Charge-conjugate decays are implied.

png pdf
Figure 2:
Distributions in $ {E_{\mathrm {T}}^{\text {miss}}} $ for a top quark enriched control region of e$\mu$ events with at least one b-tagged jet. The ratio of data to simulation as a function of $ {E_{\mathrm {T}}^{\text {miss}}} $ is also shown.

png pdf
Figure 3:
Comparison of the modeling of kinematic distributions in data and simulation relevant for the estimate of the single lepton backgrounds. (a) Distribution in $ {M_{\ell \mathrm{ b } }} $ in a control sample with 1 or 2 jets, with 60 $ < {M_{\mathrm {T}}} < $ 120 GeV and $ E_{\mathrm {T}}^{\text {miss}} > $ 250 GeV. The distribution is shown separately for events with 0 and $\geq $1 jet passing the requirement of the medium b tagging WP. The lower panel shows the ratio of the transfer factors (TF) from the 0 tags to the $\geq $1 tags samples, in data and simulation. The uncertainty shown is statistical only. (b) Distribution in the number of b-tagged jets in the same control sample. The shaded band shows the uncertainty resulting from a 50% systematic uncertainty in the heavy flavor component of the W+jets sample. (c) Comparison of the $ {E_{\mathrm {T}}^{\text {miss}}} $ distribution between data and simulation in the $ \gamma $+jets control region. The uncertainty shown is statistical only.

png pdf
Figure 3-a:
Distribution in $ {M_{\ell \mathrm{ b } }} $ in a control sample with 1 or 2 jets, with 60 $ < {M_{\mathrm {T}}} < $ 120 GeV and $ E_{\mathrm {T}}^{\text {miss}} > $ 250 GeV. The distribution is shown separately for events with 0 and $\geq $1 jet passing the requirement of the medium b tagging WP. The lower panel shows the ratio of the transfer factors (TF) from the 0 tags to the $\geq $1 tags samples, in data and simulation. The uncertainty shown is statistical only.

png pdf
Figure 3-b:
Distribution in the number of b-tagged jets in the same control sample. The shaded band shows the uncertainty resulting from a 50% systematic uncertainty in the heavy flavor component of the W+jets sample.

png pdf
Figure 3-c:
Distribution in the number of b-tagged jets in the same control sample. The shaded band shows the uncertainty resulting from a 50% systematic uncertainty in the heavy flavor component of the W+jets sample.

png pdf
Figure 4:
Observed data yields compared with the SM background estimations for the 31 signal regions of Tables 2 and 3. The total uncertainty in the background estimate, determined as the sum in quadrature of statistical and systematic uncertainties, is shown as a shaded band. The expectations for three signal hypotheses are overlaid. The corresponding numbers in parentheses in the legend refer to the masses in GeV of the top squark and the neutralino.

png pdf root
Figure 5:
The exclusion limits at 95% CL for direct top squark pair production with decay $\tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } \to \mathrm{ t } \tilde{\chi}^0_1 \mathrm{ \bar{t} } \tilde{\chi}^0_1 $. The interpretation is done in the two-dimensional space of $m_{\tilde{ \mathrm{ t } } }$ vs. $m_{\tilde{\chi}^0_1 }$. The color indicates the 95% CL upper limit on the cross section times branching fraction at each point in the $m_{\tilde{ \mathrm{ t } } }$ vs. $m_{\tilde{\chi}^0_1 }$ plane. The area to the left of and below the thick black curve represents the observed exclusion region at 95% CL assuming 100% branching fraction, while the dashed red lines indicate the expected limits at 95% CL and their ${\pm }$1$\sigma $ experimental standard deviation uncertainties. The thin black lines show the effect of the theoretical uncertainties ($\sigma _\text {theory}$) in the signal cross section. The whited out region is discussed in Section 7.

png pdf root
Figure 6:
The exclusion limit at 95% CL for direct top squark pair production with decay $\tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } \to \mathrm{ b } \tilde{ \chi }^{+}_1 \mathrm{ \bar{b} } \tilde{ \chi }^{-}_1 $, $\tilde{ \chi }^{\pm}_1 \to \mathrm{ W } ^{\pm }\tilde{\chi}^0_1 $. The mass of the chargino is chosen to be $(m_{\tilde{ \mathrm{ t } } } + m_{\tilde{\chi}^0_1 })/$2. The interpretation is done in the two-dimensional space of $m_{\tilde{ \mathrm{ t } } }$ vs. $m_{\tilde{\chi}^0_1 }$. The color indicates the 95% CL upper limit on the cross section times branching fraction at each point in the $m_{\tilde{ \mathrm{ t } } }$ vs. $m_{\tilde{\chi}^0_1 }$ plane. The area between the thick black curves represents the observed exclusion region at 95% CL assuming 100% branching fraction, while the dashed red lines indicate the expected limits at 95% CL and their ${\pm }$1$\sigma $ experimental standard deviation uncertainties. The thin black lines show the effect of the theoretical uncertainties ($\sigma _\text {theory}$) in the signal cross section.

png pdf root
Figure 7:
The exclusion limit at 95% CL for direct top squark pair production with decay $\tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } \to \mathrm{ b } \tilde{ \chi }^{+}_1 \mathrm{ \bar{t} } \tilde{\chi}^0_1 $, $\tilde{ \chi }^{\pm}_1 \to \mathrm{ W } ^{\pm }\tilde{\chi}^0_1 $. The mass splitting of the chargino and neutralino is fixed to 5 GeV. The interpretation is done in the two-dimensional space of $m_{\tilde{ \mathrm{ t } } }$ vs. $m_{\tilde{\chi}^0_1 }$. The color indicates the 95% CL upper limit on the cross section at each point in the $m_{\tilde{ \mathrm{ t } } }$ vs. $m_{\tilde{\chi}^0_1 }$ plane. The area between the thick black curves represents the observed exclusion region at 95% CL, while the dashed red lines indicate the expected limits at 95% CL and their ${\pm }$1$\sigma $ experimental standard deviation uncertainties. The thin black lines show the effect of the theoretical uncertainties ($\sigma _\text {theory}$) in the signal cross section.

png pdf
Figure 8:
Correlation matrix for the background predictions for the signal regions for the standard selection (in percent). The labelling of the regions follows the convention of Fig.4.

png pdf
Figure 9:
Correlation matrix for the background predictions for the signal regions for the compressed selection (in percent). The labelling of the regions follows the convention of Fig.4.
Tables

png pdf
Table 1:
Summary of the event preselection. The symbol $ {p_{\mathrm {T}}} ^{\mathrm {lep}}$ denotes the ${p_{\mathrm {T}}}$ of the lepton, while $ {p_{\mathrm {T}}} ^{\text {sum$ {p_{\mathrm {T}}} $}}$ is the scalar $ {p_{\mathrm {T}}} $ sum of PF candidates in a cone around the lepton but excluding the lepton. For veto tracks this variable is calculated using charged PF candidates, while in the case of selected and veto leptons neutral PF candidates are also included. Light-flavor jets are defined as jets originating from u, d, s quarks or gluons.

png pdf
Table 2:
Definitions for the 27 signal regions of the standard selection. At least one b-tagged jet satisfying the medium WP algorithm is required in all search regions. To suppress the W+jets background in signal regions with $ {M_{\ell \mathrm{ b } }} > $ 175 GeV, we instead use the more strict tight WP requirement.

png pdf
Table 3:
Summary of the compressed selection and the requirements for the four corresponding signal regions. The symbol $\Delta \phi ( {E_{\mathrm {T}}^{\text {miss}}},\ell ) $ denotes the angle between $ {\vec p}_{\mathrm {T}}^{\, \text {miss}} $ and the $ {\vec p}_{\mathrm {T}}$ of the lepton.

png pdf
Table 4:
Dilepton control regions utilizing combined bins in $ {E_{\mathrm {T}}^{\text {miss}}} $.

png pdf
Table 5:
Result of the background estimates and data yields corresponding to 35.9 fb$^{-1}$, for the 31 signal regions of Tables 2 and 3.

png pdf
Table 6:
Summary of the systematic uncertainties in the signal efficiency.

png pdf
Table 7:
Background predictions and yields in data corresponding to 35.9 fb$^{-1}$ for aggregate signal regions.
Summary
We have reported on a search for top squark pair production in pp collisions at $ \sqrt{s} = $ 13 TeV in events with a single isolated electron or muon, jets, and large missing transverse momentum using data collected with the CMS detector during the 2016 run of the LHC, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The event data yields are consistent with the expectations from SM processes. The results are interpreted as exclusion limits in the context of supersymmetric models with pair production of top squarks that decay either to a top quark and a neutralino or to a bottom quark and a chargino. Assuming both top squarks decay to a top quark and a neutralino, we exclude at 95% CL top squark masses up to 1120 GeV for a massless neutralino and neutralino masses up to 515 GeV for a 950 GeV top squark mass. For a scenario where both top squarks decay to a bottom quark and a chargino, with the chargino mass the average of the masses of the neutralino and top squark, we exclude at the 95% CL top squark masses up to 1000 GeV for a massless neutralino and neutralino masses up to 450 GeV for a 800 GeV top squark mass. For the mixed decay scenario, with the mass splitting between the chargino and neutralino fixed to be 5 GeV, we exclude at the 95% CL top squark masses up to 980 GeV for a massless neutralino and neutralino masses up to 400 GeV for a 825 GeV top squark mass.
Additional Figures

png pdf root
Additional Figure 1:
Comparison between postfit and prefit background predictions and data for 35.9 fb$^{-1}$ collected during 2016 pp collisions.

png pdf root
Additional Figure 2:
Covariance matrix for the background predictions for the signal regions for the standard selection. The labelling of the regions follows the convention of correlation matrices in the appendix of the paper.

png pdf root
Additional Figure 3:
Covariance matrix for the background predictions for the signal regions for the compressed selection. The labelling of the regions follows the convention of correlation matrices in the appendix of the paper.

png pdf
Additional Figure 4:
Significances for a model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } $, $\tilde{ \mathrm{ t } } \to \mathrm{ t } ^{(*)}\tilde{\chi}^0_1 $ as a function of $m_{\tilde{ \mathrm{ t } } }$ and $m_{\tilde{\chi}^0_1 }$. Left: Observed, right: expected.

png pdf
Additional Figure 4-a:
Observed significance for a model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } $, $\tilde{ \mathrm{ t } } \to \mathrm{ t } ^{(*)}\tilde{\chi}^0_1 $ as a function of $m_{\tilde{ \mathrm{ t } } }$ and $m_{\tilde{\chi}^0_1 }$.

png pdf
Additional Figure 4-b:
Expected significance for a model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } $, $\tilde{ \mathrm{ t } } \to \mathrm{ t } ^{(*)}\tilde{\chi}^0_1 $ as a function of $m_{\tilde{ \mathrm{ t } } }$ and $m_{\tilde{\chi}^0_1 }$.

png pdf
Additional Figure 5:
Significances for a model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } \to \mathrm{ b \bar{b} } \tilde{ \chi }^{\pm}_1 \tilde{ \chi }^{\pm}_1 $, $\tilde{ \chi }^{\pm}_1 \to \mathrm{ W } \tilde{\chi}^0_1 $ as a function of $m_{\tilde{ \mathrm{ t } } }$ and $m_{\tilde{\chi}^0_1 }$. The mass of the chargino is chosen to be $(m_{\tilde{ \mathrm{ t } } } + m_{\tilde{\chi}^0_1 })/2$. Left: Observed, right: expected.

png pdf
Additional Figure 5-a:
Observed significance for a model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } \to \mathrm{ b \bar{b} } \tilde{ \chi }^{\pm}_1 \tilde{ \chi }^{\pm}_1 $, $\tilde{ \chi }^{\pm}_1 \to \mathrm{ W } \tilde{\chi}^0_1 $ as a function of $m_{\tilde{ \mathrm{ t } } }$ and $m_{\tilde{\chi}^0_1 }$. The mass of the chargino is chosen to be $(m_{\tilde{ \mathrm{ t } } } + m_{\tilde{\chi}^0_1 })/2$.

png pdf
Additional Figure 5-b:
Expected significance for a model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } \to \mathrm{ b \bar{b} } \tilde{ \chi }^{\pm}_1 \tilde{ \chi }^{\pm}_1 $, $\tilde{ \chi }^{\pm}_1 \to \mathrm{ W } \tilde{\chi}^0_1 $ as a function of $m_{\tilde{ \mathrm{ t } } }$ and $m_{\tilde{\chi}^0_1 }$. The mass of the chargino is chosen to be $(m_{\tilde{ \mathrm{ t } } } + m_{\tilde{\chi}^0_1 })/2$.

png pdf
Additional Figure 6:
Significances for a model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } $, $\tilde{ \mathrm{ t } } \to \mathrm{ b } \tilde{ \chi }^{\pm}_1 / \mathrm{ t } \tilde{\chi}^0_1 $, $\tilde{ \chi }^{\pm}_1 \to \mathrm{ W } \tilde{\chi}^0_1 $, $m_{\tilde{ \chi }^{\pm}_1 } = m_{\tilde{\chi}^0_1 }$ + 5 GeV, BR($\tilde{ \mathrm{ t } } \to \mathrm{ b } \tilde{ \chi }^{\pm}_1 $) = BR($\tilde{ \mathrm{ t } } \to \mathrm{ t } \tilde{\chi}^0_1 $) = 0.5 as a function of $m_{\tilde{ \mathrm{ t } } }$ and $m_{\tilde{\chi}^0_1 }$. Left: Observed, right: expected.

png pdf
Additional Figure 6-a:
Observed significance for a model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } $, $\tilde{ \mathrm{ t } } \to \mathrm{ b } \tilde{ \chi }^{\pm}_1 / \mathrm{ t } \tilde{\chi}^0_1 $, $\tilde{ \chi }^{\pm}_1 \to \mathrm{ W } \tilde{\chi}^0_1 $, $m_{\tilde{ \chi }^{\pm}_1 } = m_{\tilde{\chi}^0_1 }$ + 5 GeV, BR($\tilde{ \mathrm{ t } } \to \mathrm{ b } \tilde{ \chi }^{\pm}_1 $) = BR($\tilde{ \mathrm{ t } } \to \mathrm{ t } \tilde{\chi}^0_1 $) = 0.5 as a function of $m_{\tilde{ \mathrm{ t } } }$ and $m_{\tilde{\chi}^0_1 }$.

png pdf
Additional Figure 6-b:
Expected significance for a model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } $, $\tilde{ \mathrm{ t } } \to \mathrm{ b } \tilde{ \chi }^{\pm}_1 / \mathrm{ t } \tilde{\chi}^0_1 $, $\tilde{ \chi }^{\pm}_1 \to \mathrm{ W } \tilde{\chi}^0_1 $, $m_{\tilde{ \chi }^{\pm}_1 } = m_{\tilde{\chi}^0_1 }$ + 5 GeV, BR($\tilde{ \mathrm{ t } } \to \mathrm{ b } \tilde{ \chi }^{\pm}_1 $) = BR($\tilde{ \mathrm{ t } } \to \mathrm{ t } \tilde{\chi}^0_1 $) = 0.5 as a function of $m_{\tilde{ \mathrm{ t } } }$ and $m_{\tilde{\chi}^0_1 }$.

png pdf root
Additional Figure 7:
Exclusion limit for the model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } $, $\tilde{ \mathrm{ t } } \to \mathrm{ b } \tilde{ \chi }^{\pm}_1 / \mathrm{ t } \tilde{\chi}^0_1 $, $\tilde{ \chi }^{\pm}_1 \to \mathrm{ W } \tilde{\chi}^0_1 $, $m_{\tilde{ \chi }^{\pm}_1 } = m_{\tilde{\chi}^0_1 }$ + 5 GeV as a function of $m_{\tilde{ \mathrm{ t } } }$ and $m_{\tilde{\chi}^0_1 }$ for various choices of the branching fraction between the two decays. Left: Observed, right: expected.

png pdf root
Additional Figure 7-a:
Observed exclusion limit for the model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } $, $\tilde{ \mathrm{ t } } \to \mathrm{ b } \tilde{ \chi }^{\pm}_1 / \mathrm{ t } \tilde{\chi}^0_1 $, $\tilde{ \chi }^{\pm}_1 \to \mathrm{ W } \tilde{\chi}^0_1 $, $m_{\tilde{ \chi }^{\pm}_1 } = m_{\tilde{\chi}^0_1 }$ + 5 GeV as a function of $m_{\tilde{ \mathrm{ t } } }$ and $m_{\tilde{\chi}^0_1 }$ for various choices of the branching fraction between the two decays.

png pdf root
Additional Figure 7-b:
Expected exclusion limit for the model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } $, $\tilde{ \mathrm{ t } } \to \mathrm{ b } \tilde{ \chi }^{\pm}_1 / \mathrm{ t } \tilde{\chi}^0_1 $, $\tilde{ \chi }^{\pm}_1 \to \mathrm{ W } \tilde{\chi}^0_1 $, $m_{\tilde{ \chi }^{\pm}_1 } = m_{\tilde{\chi}^0_1 }$ + 5 GeV as a function of $m_{\tilde{ \mathrm{ t } } }$ and $m_{\tilde{\chi}^0_1 }$ for various choices of the branching fraction between the two decays.

png pdf root
Additional Figure 8:
Exclusion limit for the model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } $, $\tilde{ \mathrm{ t } } \to \mathrm{ t } ^{(*)}\tilde{\chi}^0_1 $ as a function of $m_{\tilde{ \mathrm{ t } } }$ and $m_{\tilde{\chi}^0_1 }$ for unpolarized top quarks (black lines), right-handed top quarks (red lines), and left-handed top quarks (blue lines).

png pdf
Additional Figure 9:
Exclusion limits as presented in the note, with the addition of the most recent previous limits as presented during ICHEP 2016 or Moriond 2015. Left: for the model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } $, $\tilde{ \mathrm{ t } } \to \mathrm{ t } ^{(*)}\tilde{\chi}^0_1 $, middle: for the model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } \to \mathrm{ b \bar{b} } \tilde{ \chi }^{\pm}_1 \tilde{ \chi }^{\pm}_1 $, $\tilde{ \chi }^{\pm}_1 \to \mathrm{ W } \tilde{\chi}^0_1 $ as a function of $m_{\tilde{ \mathrm{ t } } }$ and $m_{\tilde{\chi}^0_1 }$. The mass of the chargino is chosen to be $(m_{\tilde{ \mathrm{ t } } } + m_{\tilde{\chi}^0_1 })/2$, right: for the model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } $, $\tilde{ \mathrm{ t } } \to \mathrm{ b } \tilde{ \chi }^{\pm}_1 / \mathrm{ t } \tilde{\chi}^0_1 $, $\tilde{ \chi }^{\pm}_1 \to \mathrm{ W } \tilde{\chi}^0_1 $, $m_{\tilde{ \chi }^{\pm}_1 } = m_{\tilde{\chi}^0_1 }$ + 5 GeV, BR($\tilde{ \mathrm{ t } } \to \mathrm{ b } \tilde{ \chi }^{\pm}_1 $) = BR($\tilde{ \mathrm{ t } } \to \mathrm{ t } \tilde{\chi}^0_1 $) = 0.5.

png pdf
Additional Figure 9-a:
Exclusion limits as presented in the note, with the addition of the most recent previous limits as presented during ICHEP 2016 or Moriond 2015, for the model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } $, $\tilde{ \mathrm{ t } } \to \mathrm{ t } ^{(*)}\tilde{\chi}^0_1 $.

png pdf
Additional Figure 9-b:
Exclusion limits as presented in the note, with the addition of the most recent previous limits as presented during ICHEP 2016 or Moriond 2015, for the model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } \to \mathrm{ b \bar{b} } \tilde{ \chi }^{\pm}_1 \tilde{ \chi }^{\pm}_1 $, $\tilde{ \chi }^{\pm}_1 \to \mathrm{ W } \tilde{\chi}^0_1 $ as a function of $m_{\tilde{ \mathrm{ t } } }$ and $m_{\tilde{\chi}^0_1 }$. The mass of the chargino is chosen to be $(m_{\tilde{ \mathrm{ t } } } + m_{\tilde{\chi}^0_1 })/2$.

png pdf
Additional Figure 9-c:
Exclusion limits as presented in the note, with the addition of the most recent previous limits as presented during ICHEP 2016 or Moriond 2015, for the model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } $, $\tilde{ \mathrm{ t } } \to \mathrm{ b } \tilde{ \chi }^{\pm}_1 / \mathrm{ t } \tilde{\chi}^0_1 $, $\tilde{ \chi }^{\pm}_1 \to \mathrm{ W } \tilde{\chi}^0_1 $, $m_{\tilde{ \chi }^{\pm}_1 } = m_{\tilde{\chi}^0_1 }$ + 5 GeV, BR($\tilde{ \mathrm{ t } } \to \mathrm{ b } \tilde{ \chi }^{\pm}_1 $) = BR($\tilde{ \mathrm{ t } } \to \mathrm{ t } \tilde{\chi}^0_1 $) = 0.5.

png pdf
Additional Figure 10:
Exclusion limits as presented in the note, however the color map is showing the 95% confidence level on the signal strength modifier. Left: for the model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } $, $\tilde{ \mathrm{ t } } \to \mathrm{ t } ^{(*)}\tilde{\chi}^0_1 $, middle: for the model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } \to \mathrm{ b \bar{b} } \tilde{ \chi }^{\pm}_1 \tilde{ \chi }^{\pm}_1 $, $\tilde{ \chi }^{\pm}_1 \to \mathrm{ W } \tilde{\chi}^0_1 $ as a function of $m_{\tilde{ \mathrm{ t } } }$ and $m_{\tilde{\chi}^0_1 }$. The mass of the chargino is chosen to be $(m_{\tilde{ \mathrm{ t } } } + m_{\tilde{\chi}^0_1 })/2$, right: for the model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } $, $\tilde{ \mathrm{ t } } \to \mathrm{ b } \tilde{ \chi }^{\pm}_1 / \mathrm{ t } \tilde{\chi}^0_1 $, $\tilde{ \chi }^{\pm}_1 \to \mathrm{ W } \tilde{\chi}^0_1 $, $m_{\tilde{ \chi }^{\pm}_1 } = m_{\tilde{\chi}^0_1 }$ + 5 GeV, BR($\tilde{ \mathrm{ t } } \to \mathrm{ b } \tilde{ \chi }^{\pm}_1 $) = BR($\tilde{ \mathrm{ t } } \to \mathrm{ t } \tilde{\chi}^0_1 $) = 0.5.

png pdf
Additional Figure 10-a:
Exclusion limits as presented in the note, however the color map is showing the 95% confidence level on the signal strength modifier: for the model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } $, $\tilde{ \mathrm{ t } } \to \mathrm{ t } ^{(*)}\tilde{\chi}^0_1 $.

png pdf
Additional Figure 10-b:
Exclusion limits as presented in the note, however the color map is showing the 95% confidence level on the signal strength modifier: for the model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } \to \mathrm{ b \bar{b} } \tilde{ \chi }^{\pm}_1 \tilde{ \chi }^{\pm}_1 $, $\tilde{ \chi }^{\pm}_1 \to \mathrm{ W } \tilde{\chi}^0_1 $ as a function of $m_{\tilde{ \mathrm{ t } } }$ and $m_{\tilde{\chi}^0_1 }$. The mass of the chargino is chosen to be $(m_{\tilde{ \mathrm{ t } } } + m_{\tilde{\chi}^0_1 })/2$.

png pdf
Additional Figure 10-c:
Exclusion limits as presented in the note, however the color map is showing the 95% confidence level on the signal strength modifier: for the model of direct top-squark production with decay $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \bar{ \tilde{ \mathrm{t} } } $, $\tilde{ \mathrm{ t } } \to \mathrm{ b } \tilde{ \chi }^{\pm}_1 / \mathrm{ t } \tilde{\chi}^0_1 $, $\tilde{ \chi }^{\pm}_1 \to \mathrm{ W } \tilde{\chi}^0_1 $, $m_{\tilde{ \chi }^{\pm}_1 } = m_{\tilde{\chi}^0_1 }$ + 5 GeV, BR($\tilde{ \mathrm{ t } } \to \mathrm{ b } \tilde{ \chi }^{\pm}_1 $) = BR($\tilde{ \mathrm{ t } } \to \mathrm{ t } \tilde{\chi}^0_1 $) = 0.5.

png pdf
Additional Figure 11:
Background predictions and data for the aggregated signal regions using 35.9 fb$^{-1}$ collected during 2016 pp collisions.
Additional Tables

png pdf
Additional Table 1:
Cutflow table for $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \tilde{ \mathrm{ t } } ^{*}\to \mathrm{ t \bar{t} } \tilde{\chi}^0_1 \tilde{\chi}^0_1 $ signals for an integrated luminosity of 35.9 fb$^{-1}$. The uncertainties are purely statistical. No correction for signal contamination in data control regions are applied.

png pdf
Additional Table 2:
Cutflow table for $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \tilde{ \mathrm{ t } } ^{*}, \tilde{ \mathrm{ t } } \to \mathrm{ t } \tilde{\chi}^0_1 / \mathrm{ b } \tilde{ \chi }^{\pm}_1 $ signals for an integrated luminosity of 35.9 fb$^{-1}$. The branching fraction for this model is BR($\tilde{ \mathrm{ t } } \to \mathrm{ t } \tilde{\chi}^0_1 $) = BR($\tilde{ \mathrm{ t } } \to \mathrm{ b } \tilde{ \chi }^{\pm}_1 $) = 0.5, and $m_{\tilde{ \chi }^{\pm}_1 } = m_{\tilde{\chi}^0_1 } + 5 GeV $. The uncertainties are purely statistical. No correction for signal contamination in data control regions are applied.

png pdf
Additional Table 3:
Cutflow table for $\mathrm{ p } \mathrm{ p } \to \tilde{ \mathrm{ t } } \tilde{ \mathrm{ t } } ^{*}\to \mathrm{ b \bar{b} } \tilde{ \chi }^{\pm}_1 \tilde{ \chi }^{\pm}_1 $, $\tilde{ \chi }^{\pm}_1 \to \mathrm{ W } \tilde{\chi}^0_1 $ signals with $m_{\tilde{ \chi }^{\pm}_1 } = (m_{\tilde{ \mathrm{ t } } }+m_{\tilde{\chi}^0_1 })/2$ for an integrated luminosity of 35.9 fb$^{-1}$. The uncertainties are purely statistical. No correction for signal contamination in data control regions are applied.
Electronic version of the limit curves can be found as three rootfiles here, here, and here.
The correlation and covariance matrices can be found as two rootfiles here, and here.
A code snippet to calculate the $t_{\text{mod}} $ variables together with an example how to use it is provided here.
References
1 P. Ramond Dual theory for free fermions PRD 3 (1971) 2415
2 Y. A. Golfand and E. P. Likhtman Extension of the algebra of Poincare group generators and violation of P invariance JEPTL 13 (1971)323
3 A. Neveu and J. H. Schwarz Factorizable dual model of pions Nucl. Phys. B 31 (1971) 86
4 D. V. Volkov and V. P. Akulov Possible universal neutrino interaction JEPTL 16 (1972)438
5 J. Wess and B. Zumino A Lagrangian model invariant under supergauge transformations PLB 49 (1974) 52
6 J. Wess and B. Zumino Supergauge transformations in four dimensions Nucl. Phys. B 70 (1974) 39
7 P. Fayet Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino Nucl. Phys. B 90 (1975) 104
8 H. P. Nilles Supersymmetry, supergravity and particle physics Phys. Rep. 110 (1984) 1
9 ATLAS Collaboration Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
10 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
11 CMS Collaboration Combined results of searches for the standard model Higgs boson in pp collisions at $ \sqrt{s}=$ 7 TeV PLB 710 (2012) 26 CMS-HIG-11-032
1202.1488
12 M. Papucci, J. T. Ruderman, and A. Weiler Natural SUSY endures JHEP 09 (2012) 035 1110.6926
13 R. Barbieri and D. Pappadopulo S-particles at their naturalness limits JHEP 10 (2009) 061 0906.4546
14 S. Dimopoulos and G. F. Giudice Naturalness constraints in supersymmetric theories with nonuniversal soft terms PLB 357 (1995) 573 hep-ph/9507282
15 ATLAS Collaboration Search for top squarks in final states with one isolated lepton, jets, and missing transverse momentum in $ \sqrt{s}=$ 13 TeV $ pp $ collisions with the ATLAS detector PRD 94 (2016) 052009 1606.03903
16 CMS Collaboration Searches for pair production for third-generation squarks in $ \sqrt{s} = $ 13 TeV pp collisions Accepted to EPJC CMS-SUS-16-008
1612.03877
17 CMS Collaboration Search for supersymmetry in the all-hadronic final state using top quark tagging in pp collisions at $ \sqrt{s} = $ 13 TeV CMS-SUS-16-009
1701.01954
18 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
19 N. Arkani-Hamed et al. MARMOSET: The Path from LHC Data to the New Standard Model via On-Shell Effective Theories hep-ph/0703088
20 J. Alwall, P. Schuster, and N. Toro Simplified models for a first characterization of new physics at the LHC PRD 79 (2009) 075020 0810.3921
21 J. Alwall, M.-P. Le, M. Lisanti, and J. G. Wacker Model-Independent Jets plus Missing Energy Searches PRD 79 (2009) 015005 0809.3264
22 LHC New Physics Working Group Collaboration Simplified Models for LHC New Physics Searches JPG 39 (2012) 105005 1105.2838
23 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
24 J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions EPJC 53 (2008) 473 0706.2569
25 NNPDF Collaboration Parton distributions for the LHC Run II JHEP 04 (2015) 040 1410.8849
26 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
27 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
28 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
29 E. Re Single-top $ Wt $-channel production matched with parton showers using the POWHEG method EPJC 71 (2011) 1547 1009.2450
30 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
31 T. Sjostrand et al. An introduction to PYTHIA 8.2 CPC 191 (2015) 159 1410.3012
32 GEANT4 Collaboration GEANT4---a simulation toolkit NIMA 506 (2003) 250
33 S. Abdullin et al. The fast simulation of the CMS detector at LHC J. Phys. Conf. Ser. 331 (2011) 032049
34 CMS Collaboration Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus, and $ E_{\mathrm{T}}^{\text{miss}} $ CDS
35 CMS Collaboration Commissioning of the Particle-flow Event Reconstruction with the first LHC collisions recorded in the CMS detector CDS
36 CMS Collaboration Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P06005 CMS-EGM-13-001
1502.02701
37 CMS Collaboration Performance of CMS muon reconstruction in pp collision events at $ \sqrt{s}=$ 7 TeV JINST 7 (2012) P10002 CMS-MUO-10-004
1206.4071
38 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_t $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
39 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
40 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
41 CMS Collaboration Identification of b-quark jets with the CMS experiment JINST 8 (2013) P04013 CMS-BTV-12-001
1211.4462
42 CMS Collaboration Identification of b quark jets at the CMS Experiment in the LHC Run 2 CMS-PAS-BTV-15-001 CMS-PAS-BTV-15-001
43 CMS Collaboration Missing transverse energy performance of the CMS detector JINST 6 (2011) P09001 CMS-JME-10-009
1106.5048
44 M. L. Graesser and J. Shelton Hunting Mixed Top Squark Decays PRL 111 (2013) 121802 1212.4495
45 T. Junk Confidence level computation for combining searches with small statistics NIMA 434 (1999) 435 hep-ex/9902006
46 A. L. Read Presentation of search results: the $ CL_{S} $ technique JPG 28 (2002) 2693
47 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
48 ATLAS and CMS Collaborations, LHC Higgs Combination Group Procedure for the LHC Higgs boson search combination in Summer 2011 ATL-PHYS-PUB 2011-11, CMS NOTE 2011/005
49 C. Borschensky et al. Squark and gluino production cross sections in $ pp $ collisions at $ \sqrt{s} = $ 13, 14, 33 and 100 TeV EPJC 74 (2014) 3174 1407.5066
50 CMS Collaboration Simplified likelihood for the re-interpretation of public CMS results CDS
Compact Muon Solenoid
LHC, CERN