CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIG-22-002 ; CERN-EP-2023-061
Search for the lepton-flavor violating decay of the Higgs boson and additional Higgs bosons in the e$ \mu $ final state in proton-proton collisions at $ \sqrt{s} = $ 13 TeV
Phys. Rev. D 108 (2023) 072004
Abstract: A search for the lepton-flavor violating decay of the Higgs boson and potential additional Higgs bosons with a mass in the range 110-160 GeV to an $ \mathrm{e}^{\pm}\mu^{\mp} $ pair is presented. The search is performed with a proton-proton collision dataset at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb$ ^{-1} $. No excess is observed for the Higgs boson. The observed (expected) upper limit on the $ \mathrm{e}^{\pm}\mu^{\mp} $ branching fraction for it is determined to be 4.4 (4.7) $\times$ 10$^{-5} $ at 95% confidence level, the most stringent limit set thus far from direct searches. The largest excess of events over the expected background in the full mass range of the search is observed at an $ \mathrm{e}^{\pm}\mu^{\mp} $ invariant mass of approximately 146 GeV with a local (global) significance of 3.8 (2.8) standard deviations.
Figures & Tables Summary Additional Figures & Tables References CMS Publications
Figures

png pdf
Figure 1:
The $ {m_{\mathrm{e}\mu}} $ distributions of the data, simulated backgrounds and signals of $ {\mathrm{H}\to\mathrm{e}\mu} $ in the ggH (left) and the VBF categories (right). A $ {\mathcal{B}(\mathrm{H}\to\mathrm{e}\mu)}= $ 0.2% is assumed for the signal for illustration. The lower panel in each plot shows the ratio of the data to the total estimated background. The uncertainty band corresponds to the background uncertainties, adding in quadrature the statistical and the SM cross section uncertainties.

png pdf
Figure 1-a:
The $ {m_{\mathrm{e}\mu}} $ distributions of the data, simulated backgrounds and signals of $ {\mathrm{H}\to\mathrm{e}\mu} $ in the ggH category. A $ {\mathcal{B}(\mathrm{H}\to\mathrm{e}\mu)}= $ 0.2% is assumed for the signal for illustration. The lower panel in each plot shows the ratio of the data to the total estimated background. The uncertainty band corresponds to the background uncertainties, adding in quadrature the statistical and the SM cross section uncertainties.

png pdf
Figure 1-b:
The $ {m_{\mathrm{e}\mu}} $ distributions of the data, simulated backgrounds and signals of $ {\mathrm{H}\to\mathrm{e}\mu} $ in the VBF category. A $ {\mathcal{B}(\mathrm{H}\to\mathrm{e}\mu)}= $ 0.2% is assumed for the signal for illustration. The lower panel in each plot shows the ratio of the data to the total estimated background. The uncertainty band corresponds to the background uncertainties, adding in quadrature the statistical and the SM cross section uncertainties.

png pdf
Figure 2:
The ggH and VBF BDT discriminant distributions of the data, simulated backgrounds and signals of $ {\mathrm{H}\to\mathrm{e}\mu} $ for each BDT trained in the ggH (left) and the VBF categories (right). A $ \mathcal{B}(\mathrm{H}\to\mathrm{e}\mu) =$ 1.0% is assumed for the signal for illustration. The lower panel in each plot shows the ratio of the data to the total estimated background. The uncertainty band corresponds to the background uncertainties, adding in quadrature the statistical and the SM cross section uncertainties. Vertical lines in the plots illustrate boundaries of the subcategories: ggH cat 0-3 and VBF cat 0-1, as defined in Section 6.2. Events in the shaded region of the VBF category with a VBF BDT discriminant less than 0.78 are discarded since their sensitivity is an order of magnitude lower than other subcategories.

png pdf
Figure 2-a:
The BDT discriminant distribution of the data, simulated backgrounds and signals of $ {\mathrm{H}\to\mathrm{e}\mu} $ for each BDT trained in the ggH category. A $ \mathcal{B}(\mathrm{H}\to\mathrm{e}\mu) =$ 1.0% is assumed for the signal for illustration. The lower panel shows the ratio of the data to the total estimated background. The uncertainty band corresponds to the background uncertainties, adding in quadrature the statistical and the SM cross section uncertainties. The vertical lines in the plot illustrate boundaries of the subcategories: ggH cat 0-3, as defined in Section 6.2.

png pdf
Figure 2-b:
The BDT discriminant distribution of the data, simulated backgrounds and signals of $ {\mathrm{H}\to\mathrm{e}\mu} $ for each BDT trained in the VBF category. A $ \mathcal{B}(\mathrm{H}\to\mathrm{e}\mu) =$ 1.0% is assumed for the signal for illustration. The lower panel shows the ratio of the data to the total estimated background. The uncertainty band corresponds to the background uncertainties, adding in quadrature the statistical and the SM cross section uncertainties. The vertical lines in the plot illustrate boundaries of the subcategories: VBF cat 0-1, as defined in Section 6.2. Events in the shaded region of the VBF category with a VBF BDT discriminant less than 0.78 are discarded since their sensitivity is an order of magnitude lower than other subcategories.

png pdf
Figure 3:
The $ p_{\mathrm{T}}^\text{miss} $ distributions of the data, simulated backgrounds and signals of $ {\mathrm{H}\to\mathrm{e}\mu} $ in the ggH (left) and the VBF categories (right). A $ \mathcal{B}(\mathrm{H}\to\mathrm{e}\mu)= $ 1.0% is assumed for the signal for illustration. The lower panel in each plot shows the ratio of the data to the total estimated background. The uncertainty band corresponds to the background uncertainties, adding in quadrature the statistical and the SM cross section uncertainties.

png pdf
Figure 3-a:
The $ p_{\mathrm{T}}^\text{miss} $ distributions of the data, simulated backgrounds and signals of $ {\mathrm{H}\to\mathrm{e}\mu} $ in the ggH category. A $ \mathcal{B}(\mathrm{H}\to\mathrm{e}\mu)= $ 1.0% is assumed for the signal for illustration. The lower panel shows the ratio of the data to the total estimated background. The uncertainty band corresponds to the background uncertainties, adding in quadrature the statistical and the SM cross section uncertainties.

png pdf
Figure 3-b:
The $ p_{\mathrm{T}}^\text{miss} $ distributions of the data, simulated backgrounds and signals of $ {\mathrm{H}\to\mathrm{e}\mu} $ in the VBF category. A $ \mathcal{B}(\mathrm{H}\to\mathrm{e}\mu)= $ 1.0% is assumed for the signal for illustration. The lower panel shows the ratio of the data to the total estimated background. The uncertainty band corresponds to the background uncertainties, adding in quadrature the statistical and the SM cross section uncertainties.

png pdf
Figure 4:
Example fits of the signal models to the simulated $ {{\mathrm{H}\to\mathrm{e}\mu}} $ signal in the analysis categories ggH cat 0 and ggH cat 3 (left), as well as VBF cat 0 and VBF cat 1 (right), summing events from both the ggH and VBF production modes. Half of the smallest symmetric $ {m_{\mathrm{e}\mu}} $ interval that contains 68% of the signal events, $ {\sigma_{\text{eff}}} $, is shown in the legends for each signal as an illustration of the signal resolution. The signal resolution in general improves with the signal purity of the analysis categories.

png pdf
Figure 4-a:
Example fits of the signal models to the simulated $ {{\mathrm{H}\to\mathrm{e}\mu}} $ signal in the analysis categories ggH cat 0 and ggH cat 3, summing events from both the ggH and VBF production modes. Half of the smallest symmetric $ {m_{\mathrm{e}\mu}} $ interval that contains 68% of the signal events, $ {\sigma_{\text{eff}}} $, is shown in the legends for each signal as an illustration of the signal resolution. The signal resolution in general improves with the signal purity of the analysis categories.

png pdf
Figure 4-b:
Example fits of the signal models to the simulated $ {{\mathrm{H}\to\mathrm{e}\mu}} $ signal in the analysis categories VBF cat 0 and VBF cat 1, summing events from both the ggH and VBF production modes. Half of the smallest symmetric $ {m_{\mathrm{e}\mu}} $ interval that contains 68% of the signal events, $ {\sigma_{\text{eff}}} $, is shown in the legends for each signal as an illustration of the signal resolution. The signal resolution in general improves with the signal purity of the analysis categories.

png pdf
Figure 5:
Observed (expected) 95% CL upper limits on $ {\mathcal{B}(\mathrm{H}\to\mathrm{e}\mu)} $ for each individual analysis category (as shown in the left axis label) and for the combination of all analysis categories.

png pdf
Figure 6:
Constraints on the lepton-flavor violating Yukawa couplings, $ {|Y_{\mathrm{e}\mu}|} $ and $ {|Y_{\mu\mathrm{e}}|} $. The observed (expected) limit in black (red) line is derived from the limit on $ {\mathcal{B}(\mathrm{H}\to\mathrm{e}\mu)} $ in this analysis. The green (yellow) band indicates the one (two) standard deviation uncertainty in the expected limit. The hashed region is excluded by this direct search. Other shaded regions represent indirect constraints derived from the null searches for $ {\mu\to3\mathrm{e}} $ (gray) [89], $ {\mu\to\mathrm{e}} $ conversion (light blue) [90], and $ {\mu\to\mathrm{e}\gamma} $ (dark green) [31]. The flavor-diagonal Yukawa couplings, $ {|Y_{\mathrm{e}\mathrm{e}}|} $ and $ {|Y_{\mu\mu}|} $, are assumed to be at their SM values in the calculation of these indirect limits. The purple line is the theoretical naturalness limit of $ {|Y_{\mathrm{e}\mu}Y_{\mu\mathrm{e}}|\leq{m_{\mathrm{e}}}m_{\mu}/v^2} $, where $ {v} $ is the vacuum expectation value of the Higgs field. Dotted lines represent the corresponding constraints on $ {|Y_{\mathrm{e}\mu}|} $ and $ {|Y_{\mu\mathrm{e}}|} $ at upper limits on $ {{\mathcal{B}(\mathrm{H}\to\mathrm{e}\mu)}} $ at 10$^{-5}$, 10$^{-6}$, 10$^{-7}$, and 10$^{-8} $, respectively.

png pdf
Figure 7:
Left: the observed (expected) 95% CL upper limits on $ {\sigma(\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu)} $ as a function of the hypothesised $ {m_{\mathrm{X}}} $ assuming the relative SM-like production cross sections of the ggH and VBF production modes. Right: the observed local $ p $-values against the background-only hypothesis are shown as a function of the hypothesised $ {m_{\mathrm{X}}} $.

png pdf
Figure 7-a:
The observed (expected) 95% CL upper limits on $ {\sigma(\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu)} $ as a function of the hypothesised $ {m_{\mathrm{X}}} $ assuming the relative SM-like production cross sections of the ggH and VBF production modes.

png pdf
Figure 7-b:
The observed local $ p $-values against the background-only hypothesis are shown as a function of the hypothesised $ {m_{\mathrm{X}}} $.

png pdf
Figure 8:
The $ {m_{\mathrm{e}\mu}} $ distribution of the observed data is shown, with the $ S{+}B $ fit at $ m_{\mathrm{X}}= $ 146 GeV in red solid line, and the background component of the fit in red dotted line. Events and fit in each category are weighted by $ {S/(S+B)} $. The one and two standard deviation uncertainty bands of the background component are shown in green and yellow. The lower panel shows the residuals after subtracting the background component of the fit from data.

png pdf
Figure 9:
Observed (expected) 95% CL upper limits on $ {\sigma(\mathrm{p}\mathrm{p} \to \mathrm{X}(146) \to \mathrm{e} \mu)} $ for each individual analysis category (as shown in the left axis label) and for the combination of all analysis categories assuming the relative SM-like production cross sections of the ggH and VBF production modes.
Tables

png pdf
Table 1:
Range of the ggH (VBF) BDT discriminant to define the ggH (VBF) subcategories, and the corresponding expected background ($ {B} $), and signal yield of $ \mathrm{H}\to\mathrm{e}\mu $ at $ \mathcal{B}= $ 10$^{-4} $ ($ {S} $) at an integrated luminosity of 138 fb$ ^{-1} $. The yields are estimated by the number of MC events within a $ {m_{\mathrm{e}\mu}} $ interval of 125 GeV $\pm\sigma_\text{eff} $, where $ {\sigma_\text{eff}} $ is half of the smallest symmetric interval that contains 68% of the signal events in each category. The fraction contributions of the expected signal yields from the ggH and VBF production mode are listed. An estimate of the expected significance in each category by $ {S/\sqrt{B}} $ is also listed.

png pdf
Table 2:
Systematic uncertainties in the expected signal yields from different sources for the ggH and VBF production modes. All the uncertainties are treated as correlated among categories.

png pdf
Table 3:
Observed and expected 95% CL upper limits on $ {\mathcal{B}(\mathrm{H}\to\mathrm{e}\mu)} $ at for each individual analysis category and for the combination of all analysis categories.

png pdf
Table 4:
Observed (expected) 95% CL upper limits, best fit, and local significance in unit of standard deviation ($ {\sigma} $) of $ {\sigma(\mathrm{p}\mathrm{p} \to \mathrm{X}(146) \to \mathrm{e} \mu)} $ for each individual analysis category and for the combination of all analysis categories.
Summary
Searches for the lepton-flavor violation decay of H and X with a $ {m_{\mathrm{X}}} $ in the range 110-160 GeV have been performed in the $ \mathrm{e} \mu $ final state in data collected by the CMS experiment. The data correspond to an integrated luminosity of 138 fb$ ^{-1} $ of pp collisions at a center-of-mass energy of 13 TeV. The observed (expected) upper limit on the branching fraction of the H decay $ {\mathcal{B}(\mathrm{H}\to\mathrm{e}\mu)} $ is found to be 4.4 (4.7) $\times$ 10$^{-5} $ at 95% confidence level, which is the most stringent direct limit set thus far. Upper limits on the cross sections of $ {\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu} $ are set in the $ {m_{\mathrm{X}}} $ range 110-160 GeV at 95% confidence level. This is the first result of a direct search for $ {\mathrm{X}\to\mathrm{e}\mu} $, with $ {m_{\mathrm{X}}} $ below twice the W boson mass. The largest excess of events over the expected background is observed with a local (global) significance of 3.8 (2.8) standard deviations at an invariant mass of the $ \mathrm{e} \mu $ final state of around 146 GeV. The observed significance of this excess is insufficient to draw any conclusions. More data will be needed to clarify the nature of the excess.
Additional Figures

png pdf
Additional Figure 1:
To investigate whether there is sculpting of the $ m_{\mathrm{e}\mu} $ spectrum near the $ m_{\mathrm{H}} $ or $ m_{\mathrm{X}} $ of the signal samples, we look at the $ m_{\mathrm{e}\mu} $ distributions in different ranges of the $ {\mathrm{g}\mathrm{g}\mathrm{H}} $ BDT discriminant in the $ {\mathrm{g}\mathrm{g}\mathrm{H}} $ category. The upper panel shows the $ m_{\mathrm{e}\mu} $ density distributions of the MC background samples in quantiles of the $ {\mathrm{g}\mathrm{g}\mathrm{H}} $ BDT discriminant with the same expected yield. The total $ m_{\mathrm{e}\mu} $ density distribution is also plotted. The lower panel shows the ratio of each quantile to the total density distribution. No localized patterns at $ {m_{\mathrm{e}\mu}=} $ 110, 120, 125, 130, 140, 150, 160 GeV, corresponding to the $ m_{\mathrm{H}} $ or $ m_{\mathrm{X}} $ of the signal samples used in the BDT trainings, is observed for events with high or low BDT discriminants. This demonstrates that the BDTs do not preferentially identify events near $ m_{\mathrm{H}} $ or $ m_{\mathrm{X}} $ as signal.

png pdf
Additional Figure 2:
To investigate whether there is sculpting of the $ m_{\mathrm{e}\mu} $ spectrum near the $ m_{\mathrm{H}} $ or $ m_{\mathrm{X}} $ of the signal samples, we look at the $ m_{\mathrm{e}\mu} $ distributions in different ranges of the VBF BDT discriminant in the VBF category. The upper panel shows the $ m_{\mathrm{e}\mu} $ density distributions of the MC background samples in quantiles of the VBF BDT discriminant with the same expected yield. The total $ m_{\mathrm{e}\mu} $ density distribution is also plotted. The lower panel shows the ratio of each quantile to the total density distribution. No localized patterns at $ {m_{\mathrm{e}\mu}=} $ 110, 120, 125, 130, 140, 150, 160 GeV, corresponding to the $ m_{\mathrm{H}} $ or $ m_{\mathrm{X}} $ of the signal samples used in the BDT trainings, is observed for events with high or low BDT discriminants. This demonstrates that the BDTs do not preferentially identify events near $ m_{\mathrm{H}} $ or $ m_{\mathrm{X}} $ as signal.

png pdf
Additional Figure 3:
The $ {\mathrm{g}\mathrm{g}\mathrm{H}} $ discriminant density distributions of the MC signal samples in the $ {\mathrm{g}\mathrm{g}\mathrm{H}} $ category are shown. The lower panel shows the ratios of the $ {{\mathrm{X}\to\mathrm{e}\mu}} $ samples to the $ {{\mathrm{H}\to\mathrm{e}\mu}} $ samples. The uncertainty band corresponds to the statistical uncertainties of the $ {{\mathrm{H}\to\mathrm{e}\mu}} $ samples.

png pdf
Additional Figure 4:
The VBF discriminant density distributions of the MC signal samples in the VBF category are shown. The lower panel shows the ratios of the $ {{\mathrm{X}\to\mathrm{e}\mu}} $ samples to the $ {{\mathrm{H}\to\mathrm{e}\mu}} $ samples. The uncertainty band corresponds to the statistical uncertainties of the $ {{\mathrm{H}\to\mathrm{e}\mu}} $ samples.

png pdf
Additional Figure 5:
The $ m_{\mathrm{e}\mu} $ distribution of the observed data in the category $ {\mathrm{g}\mathrm{g}\mathrm{H}} $ cat 0 is shown, with the $ S{+}B $ fit at $ m_{\mathrm{X}}= $ 146 GeV in solid red line, and the background component of the fit in dotted red line. The green and yellow bands represent the one and two standard deviations of the background component. The lower panel shows the residuals after subtracting the background component of the fit from data.

png pdf
Additional Figure 6:
The $ m_{\mathrm{e}\mu} $ distribution of the observed data in the category $ {\mathrm{g}\mathrm{g}\mathrm{H}} $ cat 1 is shown, with the $ S{+}B $ fit at $ m_{\mathrm{X}}= $ 146 GeV in solid red line, and the background component of the fit in dotted red line. The green and yellow bands represent the one and two standard deviations of the background component. The lower panel shows the residuals after subtracting the background component of the fit from data.

png pdf
Additional Figure 7:
The $ m_{\mathrm{e}\mu} $ distribution of the observed data in the category $ {\mathrm{g}\mathrm{g}\mathrm{H}} $ cat 2 is shown, with the $ S{+}B $ fit at $ m_{\mathrm{X}}= $ 146 GeV in solid red line, and the background component of the fit in dotted red line. The green and yellow bands represent the one and two standard deviations of the background component. The lower panel shows the residuals after subtracting the background component of the fit from data.

png pdf
Additional Figure 8:
The $ m_{\mathrm{e}\mu} $ distribution of the observed data in the category $ {\mathrm{g}\mathrm{g}\mathrm{H}} $ cat 3 is shown, with the $ S{+}B $ fit at $ m_{\mathrm{X}}= $ 146 GeV in solid red line, and the background component of the fit in dotted red line. The green and yellow bands represent the one and two standard deviations of the background component. The lower panel shows the residuals after subtracting the background component of the fit from data.

png pdf
Additional Figure 9:
The $ m_{\mathrm{e}\mu} $ distribution of the observed data in the category VBF cat 0 is shown, with the $ S{+}B $ fit at $ m_{\mathrm{X}}= $ 146 GeV in solid red line, and the background component of the fit in dotted red line. The green and yellow bands represent the one and two standard deviations of the background component. The lower panel shows the residuals after subtracting the background component of the fit from data.

png pdf
Additional Figure 10:
The $ m_{\mathrm{e}\mu} $ distribution of the observed data in the category VBF cat 1 is shown, with the $ S{+}B $ fit at $ m_{\mathrm{X}}= $ 146 GeV in solid red line, and the background component of the fit in dotted red line. The green and yellow bands represent the one and two standard deviations of the background component. The lower panel shows the residuals after subtracting the background component of the fit from data.

png pdf
Additional Figure 11:
Best fit of $ {\sigma(\mathrm{p}\mathrm{p} \to \mathrm{X}(146) \to \mathrm{e} \mu)} $ for each analysis category (black point) compared to the best fit for the combination of all analysis categories (blue line). The one standard deviation uncertainty of the per-category best fit is shown in red line and the one standard deviation uncertainty of the combined best fit is shown in green band.
Additional Tables

png pdf
Additional Table 1:
The efficiency times acceptance of the signal rate for each analysis category and $ m_{\mathrm{X}} $ hypothesised.

png pdf
Additional Table 2:
The observed and expected 95% CL upper limits on $ {\sigma_{{\mathrm{g}\mathrm{g}\mathrm{H}},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ and $ {\sigma_{\mathrm{VBF},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ with $ {f_{\mathrm{VBF}}=} $ 0.0.

png pdf
Additional Table 3:
The observed and expected 95% CL upper limits on $ {\sigma_{{\mathrm{g}\mathrm{g}\mathrm{H}},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ and $ {\sigma_{\mathrm{VBF},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ with $ {f_{\mathrm{VBF}}=} $ 0.1.

png pdf
Additional Table 4:
The observed and expected 95% CL upper limits on $ {\sigma_{{\mathrm{g}\mathrm{g}\mathrm{H}},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ and $ {\sigma_{\mathrm{VBF},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ with $ {f_{\mathrm{VBF}}=} $ 0.2.

png pdf
Additional Table 5:
The observed and expected 95% CL upper limits on $ {\sigma_{{\mathrm{g}\mathrm{g}\mathrm{H}},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ and $ {\sigma_{\mathrm{VBF},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ with $ {f_{\mathrm{VBF}}=} $ 0.3.

png pdf
Additional Table 6:
The observed and expected 95% CL upper limits on $ {\sigma_{{\mathrm{g}\mathrm{g}\mathrm{H}},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ and $ {\sigma_{\mathrm{VBF},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ with $ {f_{\mathrm{VBF}}=} $ 0.4.

png pdf
Additional Table 7:
The observed and expected 95% CL upper limits on $ {\sigma_{{\mathrm{g}\mathrm{g}\mathrm{H}},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ and $ {\sigma_{\mathrm{VBF},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ with $ {f_{\mathrm{VBF}}=} $ 0.5.

png pdf
Additional Table 8:
The observed and expected 95% CL upper limits on $ {\sigma_{{\mathrm{g}\mathrm{g}\mathrm{H}},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ and $ {\sigma_{\mathrm{VBF},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ with $ {f_{\mathrm{VBF}}=} $ 0.6.

png pdf
Additional Table 9:
The observed and expected 95% CL upper limits on $ {\sigma_{{\mathrm{g}\mathrm{g}\mathrm{H}},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ and $ {\sigma_{\mathrm{VBF},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ with $ {f_{\mathrm{VBF}}=} $ 0.7.

png pdf
Additional Table 10:
The observed and expected 95% CL upper limits on $ {\sigma_{{\mathrm{g}\mathrm{g}\mathrm{H}},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ and $ {\sigma_{\mathrm{VBF},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ with $ {f_{\mathrm{VBF}}=} $ 0.8.

png pdf
Additional Table 11:
The observed and expected 95% CL upper limits on $ {\sigma_{{\mathrm{g}\mathrm{g}\mathrm{H}},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ and $ {\sigma_{\mathrm{VBF},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ with $ {f_{\mathrm{VBF}}=} $ 0.9.

png pdf
Additional Table 12:
The observed and expected 95% CL upper limits on $ {\sigma_{{\mathrm{g}\mathrm{g}\mathrm{H}},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ and $ {\sigma_{\mathrm{VBF},f_{\mathrm{VBF}}}({\mathrm{p}\mathrm{p} \to \mathrm{X} \to \mathrm{e} \mu})} $ with $ {f_{\mathrm{VBF}}=} $ 1.0.
References
1 ATLAS Collaboration Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} $ = 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 ATLAS Collaboration A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery Nature 607 (2022) 52 2207.00092
5 CMS Collaboration A portrait of the Higgs boson by the CMS experiment ten years after the discovery Nature 607 (2022) 60 CMS-HIG-22-001
2207.00043
6 ATLAS Collaboration Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at $ \sqrt{s}= $ 7 and 8 TeV in the ATLAS experiment EPJC 76 (2016) 6 1507.04548
7 CMS Collaboration Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV EPJC 75 (2015) 212 CMS-HIG-14-009
1412.8662
8 CMS Collaboration Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs PRL 110 (2013) 081803 CMS-HIG-12-041
1212.6639
9 ATLAS Collaboration Evidence for the spin-0 nature of the Higgs boson using ATLAS data PLB 726 (2013) 120 1307.1432
10 CMS Collaboration Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV PRD 92 (2015) 012004 CMS-HIG-14-018
1411.3441
11 CMS Collaboration Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at $ \sqrt{s}= $ 13 TeV JHEP 11 (2017) 047 CMS-HIG-16-041
1706.09936
12 J. D. Bjorken and S. Weinberg A mechanism for nonconservation of muon number PRL 38 (1977) 622
13 G. C. Branco et al. Theory and phenomenology of two-higgs-doublet models Physics Reports 516 (2012) 1 1106.0034
14 H. Ishimori et al. Non-Abelian discrete symmetries in particle physics Prog. Theor. Phys. Suppl. 183 (2010) 1 1003.3552
15 G. Perez and L. Randall Natural neutrino masses and mixings from warped geometry JHEP 01 (2009) 077 0805.4652
16 S. Casagrande et al. Flavor physics in the Randall-Sundrum model: I. Theoretical setup and electroweak precision tests JHEP 10 (2008) 094 0807.4937
17 A. J. Buras, B. Duling, and S. Gori The impact of Kaluza-Klein fermions on standard model fermion couplings in a RS model with custodial protection JHEP 09 (2009) 076 0905.2318
18 M. Blanke et al. $ \Delta F= $ 2 observables and fine-tuning in a warped extra dimension with custodial protection JHEP 03 (2009) 001 0809.1073
19 M. E. Albrecht et al. Electroweak and flavour structure of a warped extra dimension with custodial protection JHEP 09 (2009) 064 0903.2415
20 K. Agashe and R. Contino Composite Higgs-mediated FCNC PRD 80 (2009) 075016 0906.1542
21 A. Azatov, M. Toharia, and L. Zhu Higgs mediated FCNC's in warped extra dimensions PRD 80 (2009) 035016 0906.1990
22 J. L. Diaz-Cruz and J. J. Toscano Lepton flavor violating decays of Higgs bosons beyond the standard model PRD 62 (2000) 116005 hep-ph/9910233
23 T. Han and D. Marfatia $ h\rightarrow\mu\tau $ at hadron colliders PRL 86 (2001) 1442 hep-ph/0008141
24 A. Arhrib, Y. Cheng, and O. C. W. Kong Comprehensive analysis on lepton flavor violating Higgs boson to $ \mu^\mp \tau^\pm $ decay in supersymmetry without $ R $ parity PRD 87 (2013) 015025 1210.8241
25 J. A. Aguilar Saavedra A minimal set of top-Higgs anomalous couplings NPB 821 (2009) 215 0904.2387
26 A. Goudelis, O. Lebedev, and J. H. Park Higgs-induced lepton flavor violation PLB 707 (2012) 369 1111.1715
27 D. McKeen, M. Pospelov, and A. Ritz Modified Higgs branching ratios versus CP and lepton flavor violation PRD 86 (2012) 113004 1208.4597
28 A. Pilaftsis Lepton flavor nonconservation in $ \mathrm{H}^{0} $ decays PLB 285 (1992) 68
29 J. G. Körner, A. Pilaftsis, and K. Schilcher Leptonic CP asymmetries in flavor changing $ \mathrm{H}^{0} $ decays PRD 47 (1993) 1080 hep-ph/9301289
30 O. U. Shanker Flavor violation, scalar particles and leptoquarks NPB 206 (1982) 253
31 B. McWilliams and L.-F. Li Virtual effects of Higgs particles NPB 179 (1981) 62
32 MEG Collaboration Search for the lepton flavour violating decay $ \mu ^+ \rightarrow \mathrm {e}^+ \gamma $ with the full dataset of the MEG experiment EPJC 76 (2016) 434 1605.05081
33 R. Harnik, J. Kopp, and J. Zupan Flavor violating Higgs decays JHEP 03 (2013) 026 1209.1397
34 ATLAS Collaboration A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS detector PLB 812 (2021) 135980 2007.07830
35 CMS Collaboration Evidence for Higgs boson decay to a pair of muons JHEP 01 (2021) 148 CMS-HIG-19-006
2009.04363
36 ATLAS Collaboration Search for the Higgs boson decays $ H \to ee $ and $ H \to e\mu $ in $ pp $ collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector PLB 801 (2019) 135148 1909.10235
37 R. Primulando, J. Julio, and P. Uttayarat Collider constraints on lepton flavor violation in the 2HDM PRD 101 (2020) 055021 1912.08533
38 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
39 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
40 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
41 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
42 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA 8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
43 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
44 GEANT 4 Collaboration GEANT 4 --- a simulation toolkit NIM A 506 (2003) 250
45 H. M. Georgi, S. L. Glashow, M. E. Machacek, and D. V. Nanopoulos Higgs bosons from two gluon annihilation in proton-proton collisions PRL 40 (1978) 692
46 R. N. Cahn, S. D. Ellis, R. Kleiss, and W. J. Stirling Transverse momentum signatures for heavy Higgs bosons PRD 35 (1987) 1626
47 S. L. Glashow, D. V. Nanopoulos, and A. Yildiz Associated production of Higgs bosons and Z particles PRD 18 (1978) 1724
48 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
49 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
50 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
51 S. Alioli et al. Jet pair production in POWHEG JHEP 04 (2011) 081 1012.3380
52 S. Alioli, P. Nason, C. Oleari, and E. Re NLO Higgs boson production via gluon fusion matched with shower in POWHEG JHEP 04 (2009) 002 0812.0578
53 E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM JHEP 02 (2012) 088 1111.2854
54 G. Heinrich et al. NLO predictions for Higgs boson pair production with full top quark mass dependence matched to parton showers JHEP 08 (2017) 088 1703.09252
55 G. Buchalla et al. Higgs boson pair production in non-linear effective field theory with full $ m_t $-dependence at NLO QCD JHEP 09 (2018) 057 1806.05162
56 J. Bellm et al. Herwig 7.0/Herwig++ 3.0 release note EPJC 76 (2016) 196 1512.01178
57 CMS Collaboration Development and validation of HERWIG 7 tunes from CMS underlying-event measurements EPJC 81 (2021) 312 CMS-GEN-19-001
2011.03422
58 B. Jager et al. Parton-shower effects in Higgs production via vector-boson Fusion no.~8, 756, 2020
EPJC 80 (2020)
2003.12435
59 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
60 J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions EPJC 53 (2008) 473 0706.2569
61 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
62 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
63 CMS Collaboration Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015
CDS
64 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) P05014 CMS-EGM-17-001
2012.06888
65 CMS Collaboration ECAL 2016 refined calibration and Run2 summary plots CMS Detector Performance Summary CMS-DP-2020-021, 2020
CDS
66 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
67 M. Cacciari, G. P. Salam, and G. Soyez The catchment area of jets JHEP 04 (2008) 005 0802.1188
68 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
69 M. Cacciari, G. P. Salam, and G. Soyez Fastjet user manual EPJC 72 (2012) 1896 1111.6097
70 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
71 E. Bols et al. Jet flavour classification using DeepJet JINST 15 (2020) P12012 2008.10519
72 CMS Collaboration Performance of reconstruction and identification of $ \tau $ leptons decaying to hadrons and $ \nu_\tau $ in pp collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P10005 CMS-TAU-16-003
1809.02816
73 CMS Collaboration Identification of hadronic tau lepton decays using a deep neural network JINST 17 (2022) P07023 CMS-TAU-20-001
2201.08458
74 CMS Collaboration Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s} = $ 13 TeV using the CMS detector JINST 14 (2019) P07004 CMS-JME-17-001
1903.06078
75 CMS Collaboration Search for lepton-flavor violating decays of the Higgs boson in the $ \mu\tau $ and e$ \tau $ final states in proton-proton collisions at $ \sqrt{s} $ = 13 TeV PRD 104 (2021) 032013 CMS-HIG-20-009
2105.03007
76 T. Chen and C. Guestrin XGBoost: A scalable tree boosting system in nd ACM SIGKDD Intern. Conf. on Knowledge Discovery and Data Mining, KDD '16, New York, 2016
In Proc. 2 (2016) 785
77 D. de Florian et al. Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector CERN Report CERN-2017-002-M, 2016
link
1610.07922
78 F. Schissler and D. Zeppenfeld Parton shower effects on W and Z production via vector boson fusion at NLO QCD JHEP 04 (2013) 057 1302.2884
79 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
80 S. S. Wilks The large-sample distribution of the likelihood ratio for testing composite hypotheses Ann. Math. Statist. 9 (1938) 60
81 CMS Collaboration Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton-proton collisions at $ \sqrt{s} = $ 13 TeV EPJC 81 (2021) 488 CMS-HIG-19-001
2103.04956
82 CMS Collaboration Measurements of inclusive W and Z cross sections in pp collisions at $ \sqrt{s}= $ 7 TeV JHEP 01 (2011) 080 CMS-EWK-10-002
1012.2466
83 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
84 CMS Collaboration Performance of b tagging algorithms in proton-proton collisions at 13 TeV with Phase 1 CMS detector CMS Detector Performance Note CMS-DP-2018-033, 2018
CDS
85 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
86 CMS CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 1960
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
87 CMS CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2018
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
88 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435 hep-ex/9902006
89 A. L. Read Presentation of search results: The $ \text{CL}_\text{s} $ technique JPG 28 (2002) 2693
90 CMS Collaboration HEPData record for this analysis link
91 A. Denner et al. Standard model Higgs-boson branching ratios with uncertainties EPJC 71 (2011) 1753 1107.5909
92 SINDRUM Collaboration Search for the decay $ \mu^+ \rightarrow \mathrm {e}^+ \mathrm {e}^+ \mathrm {e}^- $ NPB 299 (1988) 1
93 R. Kitano, M. Koike, and Y. Okada Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei PRD 66 (2002) 096002 hep-ph/0203110
Compact Muon Solenoid
LHC, CERN