CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-EXO-21-011 ; CERN-EP-2024-161
Search for long-lived heavy neutral leptons in proton-proton collision events with a lepton-jet pair associated with a secondary vertex at $ \sqrt{s} = $ 13 TeV
Accepted for publication in J. High Energy Phys.
Abstract: A search for long-lived heavy neutral leptons (HNLs) using proton-proton collision data corresponding to an integrated luminosity of 138 fb$ ^{-1} $ collected at $ \sqrt{s} = $ 13 TeV with the CMS detector at the CERN LHC is presented. Events are selected with a charged lepton originating from the primary vertex associated with the proton-proton interaction, as well as a second charged lepton and a hadronic jet associated with a secondary vertex that corresponds to the semileptonic decay of a long-lived HNL. No excess of events above the standard model expectation is observed. Exclusion limits at 95% confidence level are evaluated for HNLs that mix with electron and/or muon neutrinos. Limits are presented in the mass range of 1-16.5 GeV, with excluded square mixing parameter values reaching as low as 2 $ \times $ 10$^{-7} $. For masses above 11 GeV, the presented limits exceed all previous results in the semileptonic decay channel, and for some of the considered scenarios are the strongest to date.
Figures & Tables Summary Additional Figures References CMS Publications
Figures

png pdf
Figure 1:
Examples of LO Feynman diagrams for production and decay of an HNL (indicated with the symbol N) resulting in a final state with two charged leptons and two quarks. In the left diagram, the HNL is a Dirac particle and thus the two charged leptons must have opposite charge. In the right diagram, the HNL is a Majorana particle and the two charged leptons can have the same charge.

png pdf
Figure 1-a:
Examples of LO Feynman diagrams for production and decay of an HNL (indicated with the symbol N) resulting in a final state with two charged leptons and two quarks. In the left diagram, the HNL is a Dirac particle and thus the two charged leptons must have opposite charge. In the right diagram, the HNL is a Majorana particle and the two charged leptons can have the same charge.

png pdf
Figure 1-b:
Examples of LO Feynman diagrams for production and decay of an HNL (indicated with the symbol N) resulting in a final state with two charged leptons and two quarks. In the left diagram, the HNL is a Dirac particle and thus the two charged leptons must have opposite charge. In the right diagram, the HNL is a Majorana particle and the two charged leptons can have the same charge.

png pdf
Figure 2:
Selection efficiencies of nonprompt electrons (upper) and muons (lower), evaluated in simulated HNL signal events as functions of the generated lepton $ p_{\mathrm{T}} $ (left) and transverse displacement of the generated SV (right). Three HNL signal scenarios are shown, with $ m_{\mathrm{N}} = $ 3 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 9.9 $\times$ 10$^{-5} $ (HNL3, corresponding to $ c\tau_{\mathrm{N}} = $ 23 mm), $ m_{\mathrm{N}} = $ 5 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 1.6 $\times$ 10$^{-6} $ (HNL5, corresponding to $ c\tau_{\mathrm{N}} = $ 92 mm), and $ m_{\mathrm{N}} = $ 10 GeV and $ |V_{\ell{\mathrm{N}} }|^2= $ 5.7 $\times$ 10$^{-7} $ (HNL10, corresponding to $ c\tau_{\mathrm{N}} = $ 7 mm). The error bars in the plot represent statistical uncertainties.

png pdf
Figure 2-a:
Selection efficiencies of nonprompt electrons (upper) and muons (lower), evaluated in simulated HNL signal events as functions of the generated lepton $ p_{\mathrm{T}} $ (left) and transverse displacement of the generated SV (right). Three HNL signal scenarios are shown, with $ m_{\mathrm{N}} = $ 3 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 9.9 $\times$ 10$^{-5} $ (HNL3, corresponding to $ c\tau_{\mathrm{N}} = $ 23 mm), $ m_{\mathrm{N}} = $ 5 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 1.6 $\times$ 10$^{-6} $ (HNL5, corresponding to $ c\tau_{\mathrm{N}} = $ 92 mm), and $ m_{\mathrm{N}} = $ 10 GeV and $ |V_{\ell{\mathrm{N}} }|^2= $ 5.7 $\times$ 10$^{-7} $ (HNL10, corresponding to $ c\tau_{\mathrm{N}} = $ 7 mm). The error bars in the plot represent statistical uncertainties.

png pdf
Figure 2-b:
Selection efficiencies of nonprompt electrons (upper) and muons (lower), evaluated in simulated HNL signal events as functions of the generated lepton $ p_{\mathrm{T}} $ (left) and transverse displacement of the generated SV (right). Three HNL signal scenarios are shown, with $ m_{\mathrm{N}} = $ 3 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 9.9 $\times$ 10$^{-5} $ (HNL3, corresponding to $ c\tau_{\mathrm{N}} = $ 23 mm), $ m_{\mathrm{N}} = $ 5 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 1.6 $\times$ 10$^{-6} $ (HNL5, corresponding to $ c\tau_{\mathrm{N}} = $ 92 mm), and $ m_{\mathrm{N}} = $ 10 GeV and $ |V_{\ell{\mathrm{N}} }|^2= $ 5.7 $\times$ 10$^{-7} $ (HNL10, corresponding to $ c\tau_{\mathrm{N}} = $ 7 mm). The error bars in the plot represent statistical uncertainties.

png pdf
Figure 2-c:
Selection efficiencies of nonprompt electrons (upper) and muons (lower), evaluated in simulated HNL signal events as functions of the generated lepton $ p_{\mathrm{T}} $ (left) and transverse displacement of the generated SV (right). Three HNL signal scenarios are shown, with $ m_{\mathrm{N}} = $ 3 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 9.9 $\times$ 10$^{-5} $ (HNL3, corresponding to $ c\tau_{\mathrm{N}} = $ 23 mm), $ m_{\mathrm{N}} = $ 5 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 1.6 $\times$ 10$^{-6} $ (HNL5, corresponding to $ c\tau_{\mathrm{N}} = $ 92 mm), and $ m_{\mathrm{N}} = $ 10 GeV and $ |V_{\ell{\mathrm{N}} }|^2= $ 5.7 $\times$ 10$^{-7} $ (HNL10, corresponding to $ c\tau_{\mathrm{N}} = $ 7 mm). The error bars in the plot represent statistical uncertainties.

png pdf
Figure 2-d:
Selection efficiencies of nonprompt electrons (upper) and muons (lower), evaluated in simulated HNL signal events as functions of the generated lepton $ p_{\mathrm{T}} $ (left) and transverse displacement of the generated SV (right). Three HNL signal scenarios are shown, with $ m_{\mathrm{N}} = $ 3 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 9.9 $\times$ 10$^{-5} $ (HNL3, corresponding to $ c\tau_{\mathrm{N}} = $ 23 mm), $ m_{\mathrm{N}} = $ 5 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 1.6 $\times$ 10$^{-6} $ (HNL5, corresponding to $ c\tau_{\mathrm{N}} = $ 92 mm), and $ m_{\mathrm{N}} = $ 10 GeV and $ |V_{\ell{\mathrm{N}} }|^2= $ 5.7 $\times$ 10$^{-7} $ (HNL10, corresponding to $ c\tau_{\mathrm{N}} = $ 7 mm). The error bars in the plot represent statistical uncertainties.

png pdf
Figure 3:
The SV reconstruction efficiency in simulated HNL signal events as a function of the SV displacement for vertices with a nonprompt electron (left) or muon (right). Three HNL signal scenarios are shown, with $ m_{\mathrm{N}} = $ 3 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 9.9 $\times$ 10$^{-5} $ (HNL3, corresponding to $ c\tau_{\mathrm{N}} = $ 23 mm), $ m_{\mathrm{N}} = $ 5 GeV and $ |V_{\ell{\mathrm{N}} }|^2= $ 1.6 $\times$ 10$^{-6} $ (HNL5, corresponding to $ c\tau_{\mathrm{N}} = $ 92 mm), and $ m_{\mathrm{N}} = $ 10 GeV and $ |V_{\ell{\mathrm{N}} }|^2= $ 5.7 $\times$ 10$^{-7} $ (HNL10, corresponding to $ c\tau_{\mathrm{N}} = $ 7 mm). The error bars in the plot represent statistical uncertainties.

png pdf
Figure 3-a:
The SV reconstruction efficiency in simulated HNL signal events as a function of the SV displacement for vertices with a nonprompt electron (left) or muon (right). Three HNL signal scenarios are shown, with $ m_{\mathrm{N}} = $ 3 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 9.9 $\times$ 10$^{-5} $ (HNL3, corresponding to $ c\tau_{\mathrm{N}} = $ 23 mm), $ m_{\mathrm{N}} = $ 5 GeV and $ |V_{\ell{\mathrm{N}} }|^2= $ 1.6 $\times$ 10$^{-6} $ (HNL5, corresponding to $ c\tau_{\mathrm{N}} = $ 92 mm), and $ m_{\mathrm{N}} = $ 10 GeV and $ |V_{\ell{\mathrm{N}} }|^2= $ 5.7 $\times$ 10$^{-7} $ (HNL10, corresponding to $ c\tau_{\mathrm{N}} = $ 7 mm). The error bars in the plot represent statistical uncertainties.

png pdf
Figure 3-b:
The SV reconstruction efficiency in simulated HNL signal events as a function of the SV displacement for vertices with a nonprompt electron (left) or muon (right). Three HNL signal scenarios are shown, with $ m_{\mathrm{N}} = $ 3 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 9.9 $\times$ 10$^{-5} $ (HNL3, corresponding to $ c\tau_{\mathrm{N}} = $ 23 mm), $ m_{\mathrm{N}} = $ 5 GeV and $ |V_{\ell{\mathrm{N}} }|^2= $ 1.6 $\times$ 10$^{-6} $ (HNL5, corresponding to $ c\tau_{\mathrm{N}} = $ 92 mm), and $ m_{\mathrm{N}} = $ 10 GeV and $ |V_{\ell{\mathrm{N}} }|^2= $ 5.7 $\times$ 10$^{-7} $ (HNL10, corresponding to $ c\tau_{\mathrm{N}} = $ 7 mm). The error bars in the plot represent statistical uncertainties.

png pdf
Figure 4:
The $ m(\ell_1,\text{SV}) $ distribution of predicted events yields after applying the selection summarized in Table 1, for the $ \mathrm{e}\mathrm{e} $ (upper left), $ \mu\mu $ (upper right), $ \mathrm{e}\mu $ (lower left), and $ \mu\mathrm{e} $ (lower right) categories. The filled histograms display the predicted background yields. The lines show the predicted yields for three HNL signal scenarios, with $ m_{\mathrm{N}} = $ 3 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 9.9 $\times$ 10$^{-5} $ (HNL3), $ m_{\mathrm{N}} = $ 5 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 1.6 $\times$ 10$^{-5} $ (HNL5), and $ m_{\mathrm{N}} = $ 10 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 5.7 $\times$ 10$^{-7} $ (HNL10). The HNL signal yield is normalized to the total background yield. The last bins include the overflow.

png pdf
Figure 4-a:
The $ m(\ell_1,\text{SV}) $ distribution of predicted events yields after applying the selection summarized in Table 1, for the $ \mathrm{e}\mathrm{e} $ (upper left), $ \mu\mu $ (upper right), $ \mathrm{e}\mu $ (lower left), and $ \mu\mathrm{e} $ (lower right) categories. The filled histograms display the predicted background yields. The lines show the predicted yields for three HNL signal scenarios, with $ m_{\mathrm{N}} = $ 3 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 9.9 $\times$ 10$^{-5} $ (HNL3), $ m_{\mathrm{N}} = $ 5 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 1.6 $\times$ 10$^{-5} $ (HNL5), and $ m_{\mathrm{N}} = $ 10 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 5.7 $\times$ 10$^{-7} $ (HNL10). The HNL signal yield is normalized to the total background yield. The last bins include the overflow.

png pdf
Figure 4-b:
The $ m(\ell_1,\text{SV}) $ distribution of predicted events yields after applying the selection summarized in Table 1, for the $ \mathrm{e}\mathrm{e} $ (upper left), $ \mu\mu $ (upper right), $ \mathrm{e}\mu $ (lower left), and $ \mu\mathrm{e} $ (lower right) categories. The filled histograms display the predicted background yields. The lines show the predicted yields for three HNL signal scenarios, with $ m_{\mathrm{N}} = $ 3 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 9.9 $\times$ 10$^{-5} $ (HNL3), $ m_{\mathrm{N}} = $ 5 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 1.6 $\times$ 10$^{-5} $ (HNL5), and $ m_{\mathrm{N}} = $ 10 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 5.7 $\times$ 10$^{-7} $ (HNL10). The HNL signal yield is normalized to the total background yield. The last bins include the overflow.

png pdf
Figure 4-c:
The $ m(\ell_1,\text{SV}) $ distribution of predicted events yields after applying the selection summarized in Table 1, for the $ \mathrm{e}\mathrm{e} $ (upper left), $ \mu\mu $ (upper right), $ \mathrm{e}\mu $ (lower left), and $ \mu\mathrm{e} $ (lower right) categories. The filled histograms display the predicted background yields. The lines show the predicted yields for three HNL signal scenarios, with $ m_{\mathrm{N}} = $ 3 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 9.9 $\times$ 10$^{-5} $ (HNL3), $ m_{\mathrm{N}} = $ 5 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 1.6 $\times$ 10$^{-5} $ (HNL5), and $ m_{\mathrm{N}} = $ 10 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 5.7 $\times$ 10$^{-7} $ (HNL10). The HNL signal yield is normalized to the total background yield. The last bins include the overflow.

png pdf
Figure 4-d:
The $ m(\ell_1,\text{SV}) $ distribution of predicted events yields after applying the selection summarized in Table 1, for the $ \mathrm{e}\mathrm{e} $ (upper left), $ \mu\mu $ (upper right), $ \mathrm{e}\mu $ (lower left), and $ \mu\mathrm{e} $ (lower right) categories. The filled histograms display the predicted background yields. The lines show the predicted yields for three HNL signal scenarios, with $ m_{\mathrm{N}} = $ 3 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 9.9 $\times$ 10$^{-5} $ (HNL3), $ m_{\mathrm{N}} = $ 5 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 1.6 $\times$ 10$^{-5} $ (HNL5), and $ m_{\mathrm{N}} = $ 10 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 5.7 $\times$ 10$^{-7} $ (HNL10). The HNL signal yield is normalized to the total background yield. The last bins include the overflow.

png pdf
Figure 5:
The PFN score distribution of predicted events yields after applying the selection summarized in Table 1, for the combined $ \mathrm{e}\mathrm{e} $ and $ \mu\mathrm{e} $ (left) or $ \mu\mu $ and $ \mathrm{e}\mu $ (right) categories, using the low-mass (upper) or high-mass (lower) PFNs. The filled histograms display the predicted background yields, where the QCD multijet background displays huge statistical fluctuations for PFN scores above 0.2. The lines show the predicted yields for four HNL signal scenarios, with $ m_{\mathrm{N}} = $ 3 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 9.9 $\times$ 10$^{-5} $ (HNL3), $ m_{\mathrm{N}} = $ 5 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 1.6 $\times$ 10$^{-6} $ (HNL5), $ m_{\mathrm{N}} = $ 6 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 2.0 $\times$ 10$^{-6} $ (HNL6), and $ m_{\mathrm{N}} = $ 10 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 5.7 $\times$ 10$^{-7} $ (HNL10). The HNL signal yield is normalized to the total background yield.

png pdf
Figure 5-a:
The PFN score distribution of predicted events yields after applying the selection summarized in Table 1, for the combined $ \mathrm{e}\mathrm{e} $ and $ \mu\mathrm{e} $ (left) or $ \mu\mu $ and $ \mathrm{e}\mu $ (right) categories, using the low-mass (upper) or high-mass (lower) PFNs. The filled histograms display the predicted background yields, where the QCD multijet background displays huge statistical fluctuations for PFN scores above 0.2. The lines show the predicted yields for four HNL signal scenarios, with $ m_{\mathrm{N}} = $ 3 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 9.9 $\times$ 10$^{-5} $ (HNL3), $ m_{\mathrm{N}} = $ 5 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 1.6 $\times$ 10$^{-6} $ (HNL5), $ m_{\mathrm{N}} = $ 6 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 2.0 $\times$ 10$^{-6} $ (HNL6), and $ m_{\mathrm{N}} = $ 10 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 5.7 $\times$ 10$^{-7} $ (HNL10). The HNL signal yield is normalized to the total background yield.

png pdf
Figure 5-b:
The PFN score distribution of predicted events yields after applying the selection summarized in Table 1, for the combined $ \mathrm{e}\mathrm{e} $ and $ \mu\mathrm{e} $ (left) or $ \mu\mu $ and $ \mathrm{e}\mu $ (right) categories, using the low-mass (upper) or high-mass (lower) PFNs. The filled histograms display the predicted background yields, where the QCD multijet background displays huge statistical fluctuations for PFN scores above 0.2. The lines show the predicted yields for four HNL signal scenarios, with $ m_{\mathrm{N}} = $ 3 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 9.9 $\times$ 10$^{-5} $ (HNL3), $ m_{\mathrm{N}} = $ 5 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 1.6 $\times$ 10$^{-6} $ (HNL5), $ m_{\mathrm{N}} = $ 6 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 2.0 $\times$ 10$^{-6} $ (HNL6), and $ m_{\mathrm{N}} = $ 10 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 5.7 $\times$ 10$^{-7} $ (HNL10). The HNL signal yield is normalized to the total background yield.

png pdf
Figure 5-c:
The PFN score distribution of predicted events yields after applying the selection summarized in Table 1, for the combined $ \mathrm{e}\mathrm{e} $ and $ \mu\mathrm{e} $ (left) or $ \mu\mu $ and $ \mathrm{e}\mu $ (right) categories, using the low-mass (upper) or high-mass (lower) PFNs. The filled histograms display the predicted background yields, where the QCD multijet background displays huge statistical fluctuations for PFN scores above 0.2. The lines show the predicted yields for four HNL signal scenarios, with $ m_{\mathrm{N}} = $ 3 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 9.9 $\times$ 10$^{-5} $ (HNL3), $ m_{\mathrm{N}} = $ 5 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 1.6 $\times$ 10$^{-6} $ (HNL5), $ m_{\mathrm{N}} = $ 6 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 2.0 $\times$ 10$^{-6} $ (HNL6), and $ m_{\mathrm{N}} = $ 10 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 5.7 $\times$ 10$^{-7} $ (HNL10). The HNL signal yield is normalized to the total background yield.

png pdf
Figure 5-d:
The PFN score distribution of predicted events yields after applying the selection summarized in Table 1, for the combined $ \mathrm{e}\mathrm{e} $ and $ \mu\mathrm{e} $ (left) or $ \mu\mu $ and $ \mathrm{e}\mu $ (right) categories, using the low-mass (upper) or high-mass (lower) PFNs. The filled histograms display the predicted background yields, where the QCD multijet background displays huge statistical fluctuations for PFN scores above 0.2. The lines show the predicted yields for four HNL signal scenarios, with $ m_{\mathrm{N}} = $ 3 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 9.9 $\times$ 10$^{-5} $ (HNL3), $ m_{\mathrm{N}} = $ 5 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 1.6 $\times$ 10$^{-6} $ (HNL5), $ m_{\mathrm{N}} = $ 6 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 2.0 $\times$ 10$^{-6} $ (HNL6), and $ m_{\mathrm{N}} = $ 10 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 5.7 $\times$ 10$^{-7} $ (HNL10). The HNL signal yield is normalized to the total background yield.

png pdf
Figure 6:
Predicted and observed event yields in the PFN score distribution for $ \mathrm{K^0_S}\to\pi^{+}\pi^{-} $ decays in $ \mathrm{Z}\to\mu^{+}\mu^{-} $ events, using the low-mass PFNs for the electron (left) and muon (right) channels, where the $ \pi^{\pm} $ with higher $ p_{\mathrm{T}} $ is treated as the lepton. The prediction is scaled to match the overall data yield. The lower panels show the data-to-prediction ratio.

png pdf
Figure 6-a:
Predicted and observed event yields in the PFN score distribution for $ \mathrm{K^0_S}\to\pi^{+}\pi^{-} $ decays in $ \mathrm{Z}\to\mu^{+}\mu^{-} $ events, using the low-mass PFNs for the electron (left) and muon (right) channels, where the $ \pi^{\pm} $ with higher $ p_{\mathrm{T}} $ is treated as the lepton. The prediction is scaled to match the overall data yield. The lower panels show the data-to-prediction ratio.

png pdf
Figure 6-b:
Predicted and observed event yields in the PFN score distribution for $ \mathrm{K^0_S}\to\pi^{+}\pi^{-} $ decays in $ \mathrm{Z}\to\mu^{+}\mu^{-} $ events, using the low-mass PFNs for the electron (left) and muon (right) channels, where the $ \pi^{\pm} $ with higher $ p_{\mathrm{T}} $ is treated as the lepton. The prediction is scaled to match the overall data yield. The lower panels show the data-to-prediction ratio.

png pdf
Figure 7:
Illustration of the target and sideband region definitions for the ABCD method applied to the SR, in terms of $ N $ (jets), $ m(\ell_1,\text{SV}) $, and the PFN score.

png pdf
Figure 8:
The PFN scores in data in the VR, shown for the electron (left) and muon (right) trainings with the low-mass (upper) and high-mass (lower) samples. The distributions are normalized to unity to facilitate a shape comparison. Statistical uncertainties are indicated with error bars and shaded areas. The lower panels show the ratio of the VR-AB to the VR-CD yields.

png pdf
Figure 8-a:
The PFN scores in data in the VR, shown for the electron (left) and muon (right) trainings with the low-mass (upper) and high-mass (lower) samples. The distributions are normalized to unity to facilitate a shape comparison. Statistical uncertainties are indicated with error bars and shaded areas. The lower panels show the ratio of the VR-AB to the VR-CD yields.

png pdf
Figure 8-b:
The PFN scores in data in the VR, shown for the electron (left) and muon (right) trainings with the low-mass (upper) and high-mass (lower) samples. The distributions are normalized to unity to facilitate a shape comparison. Statistical uncertainties are indicated with error bars and shaded areas. The lower panels show the ratio of the VR-AB to the VR-CD yields.

png pdf
Figure 8-c:
The PFN scores in data in the VR, shown for the electron (left) and muon (right) trainings with the low-mass (upper) and high-mass (lower) samples. The distributions are normalized to unity to facilitate a shape comparison. Statistical uncertainties are indicated with error bars and shaded areas. The lower panels show the ratio of the VR-AB to the VR-CD yields.

png pdf
Figure 8-d:
The PFN scores in data in the VR, shown for the electron (left) and muon (right) trainings with the low-mass (upper) and high-mass (lower) samples. The distributions are normalized to unity to facilitate a shape comparison. Statistical uncertainties are indicated with error bars and shaded areas. The lower panels show the ratio of the VR-AB to the VR-CD yields.

png pdf
Figure 9:
Predicted and observed event yields in the CR for the low-mass PFNs in the SS (upper) and OS (lower) categories, binned by flavor channel, $ m_{\text{SV}} $ (as specified below the flavor channel), and $ \Delta_{\mathrm{2D}} $. The hashed bands represent the total uncertainty in the background prediction. The lower panels show the data-to-prediction ratio and the background prediction uncertainty is split into statistical and systematic contributions.

png pdf
Figure 9-a:
Predicted and observed event yields in the CR for the low-mass PFNs in the SS (upper) and OS (lower) categories, binned by flavor channel, $ m_{\text{SV}} $ (as specified below the flavor channel), and $ \Delta_{\mathrm{2D}} $. The hashed bands represent the total uncertainty in the background prediction. The lower panels show the data-to-prediction ratio and the background prediction uncertainty is split into statistical and systematic contributions.

png pdf
Figure 9-b:
Predicted and observed event yields in the CR for the low-mass PFNs in the SS (upper) and OS (lower) categories, binned by flavor channel, $ m_{\text{SV}} $ (as specified below the flavor channel), and $ \Delta_{\mathrm{2D}} $. The hashed bands represent the total uncertainty in the background prediction. The lower panels show the data-to-prediction ratio and the background prediction uncertainty is split into statistical and systematic contributions.

png pdf
Figure 10:
Predicted and observed event yields in the CR for the high-mass PFNs in the SS (upper) and OS (lower) categories, binned by flavor channel, $ m_{\text{SV}} $ (as specified below the flavor channel), and $ \Delta_{\mathrm{2D}} $. The hashed bands represent the total uncertainty in the background prediction. The lower panels show the data-to-prediction ratio and the background prediction uncertainty is split into statistical and systematic contributions.

png pdf
Figure 10-a:
Predicted and observed event yields in the CR for the high-mass PFNs in the SS (upper) and OS (lower) categories, binned by flavor channel, $ m_{\text{SV}} $ (as specified below the flavor channel), and $ \Delta_{\mathrm{2D}} $. The hashed bands represent the total uncertainty in the background prediction. The lower panels show the data-to-prediction ratio and the background prediction uncertainty is split into statistical and systematic contributions.

png pdf
Figure 10-b:
Predicted and observed event yields in the CR for the high-mass PFNs in the SS (upper) and OS (lower) categories, binned by flavor channel, $ m_{\text{SV}} $ (as specified below the flavor channel), and $ \Delta_{\mathrm{2D}} $. The hashed bands represent the total uncertainty in the background prediction. The lower panels show the data-to-prediction ratio and the background prediction uncertainty is split into statistical and systematic contributions.

png pdf
Figure 11:
Predicted and observed SR event yields for the SS (upper) and OS (lower) categories of the low-mass PFNs, binned by flavor channel, $ m_{\text{SV}} $ (as specified below the flavor channel), and $ \Delta_{\mathrm{2D}} $. The hashed band represents the total systematic and statistical uncertainty in the background prediction. Signal predictions are shown for two HNL production hypotheses, with $ m_{\mathrm{N}} = $ 3 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 9.9 $\times$ 10$^{-5} $ (HNL3), and $ m_{\mathrm{N}} = $ 5 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 1.6 $\times$ 10$^{-6} $ (HNL5). The lower panels show the data-to-prediction ratio and the background prediction uncertainty is split into statistical, main systematic, and DY scale factor contributions.

png pdf
Figure 11-a:
Predicted and observed SR event yields for the SS (upper) and OS (lower) categories of the low-mass PFNs, binned by flavor channel, $ m_{\text{SV}} $ (as specified below the flavor channel), and $ \Delta_{\mathrm{2D}} $. The hashed band represents the total systematic and statistical uncertainty in the background prediction. Signal predictions are shown for two HNL production hypotheses, with $ m_{\mathrm{N}} = $ 3 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 9.9 $\times$ 10$^{-5} $ (HNL3), and $ m_{\mathrm{N}} = $ 5 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 1.6 $\times$ 10$^{-6} $ (HNL5). The lower panels show the data-to-prediction ratio and the background prediction uncertainty is split into statistical, main systematic, and DY scale factor contributions.

png pdf
Figure 11-b:
Predicted and observed SR event yields for the SS (upper) and OS (lower) categories of the low-mass PFNs, binned by flavor channel, $ m_{\text{SV}} $ (as specified below the flavor channel), and $ \Delta_{\mathrm{2D}} $. The hashed band represents the total systematic and statistical uncertainty in the background prediction. Signal predictions are shown for two HNL production hypotheses, with $ m_{\mathrm{N}} = $ 3 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 9.9 $\times$ 10$^{-5} $ (HNL3), and $ m_{\mathrm{N}} = $ 5 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 1.6 $\times$ 10$^{-6} $ (HNL5). The lower panels show the data-to-prediction ratio and the background prediction uncertainty is split into statistical, main systematic, and DY scale factor contributions.

png pdf
Figure 12:
Predicted and observed SR event yields for the SS (upper) and OS (lower) categories of the high-mass PFNs, binned by flavor channel, $ m_{\text{SV}} $ (as specified below the flavor channel), and $ \Delta_{\mathrm{2D}} $. The hashed band represents the total systematic and statistical uncertainty in the background prediction. Signal predictions are shown for two HNL production hypotheses, with $ m_{\mathrm{N}} = $ 6 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 2.0 $\times$ 10$^{-7} $ (HNL6), and $ m_{\mathrm{N}} = $ 6 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 5.7 $\times$ 10$^{-7} $ (HNL10). The lower panels show the data-to-prediction ratio and the background prediction uncertainty is split into statistical and systematic contributions.

png pdf
Figure 12-a:
Predicted and observed SR event yields for the SS (upper) and OS (lower) categories of the high-mass PFNs, binned by flavor channel, $ m_{\text{SV}} $ (as specified below the flavor channel), and $ \Delta_{\mathrm{2D}} $. The hashed band represents the total systematic and statistical uncertainty in the background prediction. Signal predictions are shown for two HNL production hypotheses, with $ m_{\mathrm{N}} = $ 6 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 2.0 $\times$ 10$^{-7} $ (HNL6), and $ m_{\mathrm{N}} = $ 6 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 5.7 $\times$ 10$^{-7} $ (HNL10). The lower panels show the data-to-prediction ratio and the background prediction uncertainty is split into statistical and systematic contributions.

png pdf
Figure 12-b:
Predicted and observed SR event yields for the SS (upper) and OS (lower) categories of the high-mass PFNs, binned by flavor channel, $ m_{\text{SV}} $ (as specified below the flavor channel), and $ \Delta_{\mathrm{2D}} $. The hashed band represents the total systematic and statistical uncertainty in the background prediction. Signal predictions are shown for two HNL production hypotheses, with $ m_{\mathrm{N}} = $ 6 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 2.0 $\times$ 10$^{-7} $ (HNL6), and $ m_{\mathrm{N}} = $ 6 GeV and $ |V_{\ell{\mathrm{N}} }|^2=$ 5.7 $\times$ 10$^{-7} $ (HNL10). The lower panels show the data-to-prediction ratio and the background prediction uncertainty is split into statistical and systematic contributions.

png pdf
Figure 13:
Exclusion limits at 95% CL on $ |V_{\mathrm{e}{\mathrm{N}} }|^2 $ (upper row), $ |V_{\mu{\mathrm{N}} }|^2 $ (middle row), and $ |V_{\mathrm{e}{\mathrm{N}} }V_{\mu{\mathrm{N}} }|^2/(|V_{\mathrm{e}{\mathrm{N}} }|^2+|V_{\mu{\mathrm{N}} }|^2) $ (lower row) as functions of $ m_{\mathrm{N}} $ for a Majorana (left) and Dirac (right) HNL. The solid (dashed) black curve indicates the observed (expected) exclusion, where the parameter combinations inside the curve are excluded.

png pdf
Figure 13-a:
Exclusion limits at 95% CL on $ |V_{\mathrm{e}{\mathrm{N}} }|^2 $ (upper row), $ |V_{\mu{\mathrm{N}} }|^2 $ (middle row), and $ |V_{\mathrm{e}{\mathrm{N}} }V_{\mu{\mathrm{N}} }|^2/(|V_{\mathrm{e}{\mathrm{N}} }|^2+|V_{\mu{\mathrm{N}} }|^2) $ (lower row) as functions of $ m_{\mathrm{N}} $ for a Majorana (left) and Dirac (right) HNL. The solid (dashed) black curve indicates the observed (expected) exclusion, where the parameter combinations inside the curve are excluded.

png pdf
Figure 13-b:
Exclusion limits at 95% CL on $ |V_{\mathrm{e}{\mathrm{N}} }|^2 $ (upper row), $ |V_{\mu{\mathrm{N}} }|^2 $ (middle row), and $ |V_{\mathrm{e}{\mathrm{N}} }V_{\mu{\mathrm{N}} }|^2/(|V_{\mathrm{e}{\mathrm{N}} }|^2+|V_{\mu{\mathrm{N}} }|^2) $ (lower row) as functions of $ m_{\mathrm{N}} $ for a Majorana (left) and Dirac (right) HNL. The solid (dashed) black curve indicates the observed (expected) exclusion, where the parameter combinations inside the curve are excluded.

png pdf
Figure 13-c:
Exclusion limits at 95% CL on $ |V_{\mathrm{e}{\mathrm{N}} }|^2 $ (upper row), $ |V_{\mu{\mathrm{N}} }|^2 $ (middle row), and $ |V_{\mathrm{e}{\mathrm{N}} }V_{\mu{\mathrm{N}} }|^2/(|V_{\mathrm{e}{\mathrm{N}} }|^2+|V_{\mu{\mathrm{N}} }|^2) $ (lower row) as functions of $ m_{\mathrm{N}} $ for a Majorana (left) and Dirac (right) HNL. The solid (dashed) black curve indicates the observed (expected) exclusion, where the parameter combinations inside the curve are excluded.

png pdf
Figure 13-d:
Exclusion limits at 95% CL on $ |V_{\mathrm{e}{\mathrm{N}} }|^2 $ (upper row), $ |V_{\mu{\mathrm{N}} }|^2 $ (middle row), and $ |V_{\mathrm{e}{\mathrm{N}} }V_{\mu{\mathrm{N}} }|^2/(|V_{\mathrm{e}{\mathrm{N}} }|^2+|V_{\mu{\mathrm{N}} }|^2) $ (lower row) as functions of $ m_{\mathrm{N}} $ for a Majorana (left) and Dirac (right) HNL. The solid (dashed) black curve indicates the observed (expected) exclusion, where the parameter combinations inside the curve are excluded.

png pdf
Figure 13-e:
Exclusion limits at 95% CL on $ |V_{\mathrm{e}{\mathrm{N}} }|^2 $ (upper row), $ |V_{\mu{\mathrm{N}} }|^2 $ (middle row), and $ |V_{\mathrm{e}{\mathrm{N}} }V_{\mu{\mathrm{N}} }|^2/(|V_{\mathrm{e}{\mathrm{N}} }|^2+|V_{\mu{\mathrm{N}} }|^2) $ (lower row) as functions of $ m_{\mathrm{N}} $ for a Majorana (left) and Dirac (right) HNL. The solid (dashed) black curve indicates the observed (expected) exclusion, where the parameter combinations inside the curve are excluded.

png pdf
Figure 13-f:
Exclusion limits at 95% CL on $ |V_{\mathrm{e}{\mathrm{N}} }|^2 $ (upper row), $ |V_{\mu{\mathrm{N}} }|^2 $ (middle row), and $ |V_{\mathrm{e}{\mathrm{N}} }V_{\mu{\mathrm{N}} }|^2/(|V_{\mathrm{e}{\mathrm{N}} }|^2+|V_{\mu{\mathrm{N}} }|^2) $ (lower row) as functions of $ m_{\mathrm{N}} $ for a Majorana (left) and Dirac (right) HNL. The solid (dashed) black curve indicates the observed (expected) exclusion, where the parameter combinations inside the curve are excluded.
Tables

png pdf
Table 1:
Selection criteria for electrons and muons. Numbers in parentheses indicate values applied in the 2017-2018 data sets, when different from those for 2016.

png pdf
Table 2:
Summary of the event selection criteria.

png pdf
Table 3:
Definition of target and sideband regions used in the ABCD background estimation method for the signal (SR), validation (VR), and control (CR) regions. The threshold value $ x $ is chosen between 0.97 and 0.998 separately for each event category, as described in the text.

png pdf
Table 4:
Summary of systematic uncertainty sources in the signal and background predictions.

png pdf
Table 5:
Comparison of lowest and highest $ |V_{\ell{\mathrm{N}} }|^2 $ values excluded at 95% CL for Majorana and Dirac HNLs with different coupling scenarios. For each scenario, the $ m_{\mathrm{N}} $ value where the lowest $ |V_{\ell{\mathrm{N}} }|^2 $ value is excluded is shown.
Summary
A search for long-lived heavy neutral leptons (HNLs) has been presented using proton-proton collision events with one prompt lepton and a system of a nonprompt lepton and a jet associated with a secondary vertex. The data set corresponds to 138 fb$ ^{-1} $ and was collected by the CMS experiment at the LHC in 2016-2018. A dedicated machine-learning method is developed and utilized to identify the secondary vertex associated with the HNL decay. No excess of events above the standard model background prediction obtained from control samples in data is found. Exclusion limits at 95% confidence level are evaluated for different HNL coupling scenarios as functions of the HNL mass and the mixing parameter with standard model neutrinos. The obtained exclusion limits cover HNL masses from 1 to 16.5 GeV and squared mixing parameters as low as 2 $ \times $ 10$^{-7} $, depending on the scenario. These results exceed previous experimental constraints derived in the single-lepton decay channel in the mass range 11-16.5 GeV. For some of the considered coupling scenarios and mass ranges, the presented limits are the strongest to date.
Additional Figures

png pdf
Additional Figure 1:
Distribution of predicted event yields as a function of $ \Delta_{\mathrm{2D}} $ after applying the baseline event selection for the $ \mathrm{ee} $ category. The filled histograms display the predicted background yields. The lines show the predicted yields for three HNL signal scenarios, with $ m_{\mathrm{N}}= $ 3 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 9.9$\times$10$^{-5} $ (HNL3), $ m_{\mathrm{N}}= $ 5 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 1.6$\times$10$^{-5} $ (HNL5), and $ m_{\mathrm{N}}= $ 10 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 5.7$\times$10$^{-7} $ (HNL10). The HNL signal yield is normalized to the total background yield. The last bin includes the overflow.

png pdf
Additional Figure 2:
Distribution of predicted event yields as a function of $ m_{\mathrm{SV}} $ after applying the baseline event selection for the $ \mathrm{ee} $ category. The filled histograms display the predicted background yields. The lines show the predicted yields for three HNL signal scenarios, with $ m_{\mathrm{N}}= $ 3 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 9.9$\times$10$^{-5} $ (HNL3), $ m_{\mathrm{N}}= $ 5 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 1.6$\times$10$^{-5} $ (HNL5), and $ m_{\mathrm{N}}= $ 10 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 5.7$\times$10$^{-7} $ (HNL10). The HNL signal yield is normalized to the total background yield. The last bin includes the overflow.

png pdf
Additional Figure 3:
Distribution of predicted event yields as a function of the track multiplicity after applying the baseline event selection for the $ \mathrm{ee} $ category. The filled histograms display the predicted background yields. The lines show the predicted yields for three HNL signal scenarios, with $ m_{\mathrm{N}}= $ 3 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 9.9$\times$10$^{-5} $ (HNL3), $ m_{\mathrm{N}}= $ 5 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 1.6$\times$10$^{-5} $ (HNL5), and $ m_{\mathrm{N}}= $ 10 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 5.7$\times$10$^{-7} $ (HNL10). The HNL signal yield is normalized to the total background yield.

png pdf
Additional Figure 4:
Distribution of predicted event yields as a function of the $ p_{\mathrm{T}} $ of the SV after applying the baseline event selection for the $ \mathrm{ee} $ category. The filled histograms display the predicted background yields. The lines show the predicted yields for three HNL signal scenarios, with $ m_{\mathrm{N}}= $ 3 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 9.9$\times$10$^{-5} $ (HNL3), $ m_{\mathrm{N}}= $ 5 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 1.6$\times$10$^{-5} $ (HNL5), and $ m_{\mathrm{N}}= $ 10 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 5.7$\times$10$^{-7} $ (HNL10). The HNL signal yield is normalized to the total background yield. The last bin includes the overflow.

png pdf
Additional Figure 5:
Distribution of predicted event yields as a function of $ \Delta_{\mathrm{2D}} $ after applying the baseline event selection for the $ \mu\mu $ category. The filled histograms display the predicted background yields. The lines show the predicted yields for three HNL signal scenarios, with $ m_{\mathrm{N}}= $ 3 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 9.9$\times$10$^{-5} $ (HNL3), $ m_{\mathrm{N}}= $ 5 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 1.6$\times$10$^{-5} $ (HNL5), and $ m_{\mathrm{N}}= $ 10 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 5.7$\times$10$^{-7} $ (HNL10). The HNL signal yield is normalized to the total background yield. The last bin includes the overflow.

png pdf
Additional Figure 6:
Distribution of predicted event yields as a function of $ m_{\mathrm{SV}} $ after applying the baseline event selection for the $ \mu\mu $ category. The filled histograms display the predicted background yields. The lines show the predicted yields for three HNL signal scenarios, with $ m_{\mathrm{N}}= $ 3 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 9.9$\times$10$^{-5} $ (HNL3), $ m_{\mathrm{N}}= $ 5 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 1.6$\times$10$^{-5} $ (HNL5), and $ m_{\mathrm{N}}= $ 10 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 5.7$\times$10$^{-7} $ (HNL10). The HNL signal yield is normalized to the total background yield. The last bin includes the overflow.

png pdf
Additional Figure 7:
Distribution of predicted event yields as a function of the track multiplicity after applying the baseline event selection for the $ \mu\mu $ category. The filled histograms display the predicted background yields. The lines show the predicted yields for three HNL signal scenarios, with $ m_{\mathrm{N}}= $ 3 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 9.9$\times$10$^{-5} $ (HNL3), $ m_{\mathrm{N}}= $ 5 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 1.6$\times$10$^{-5} $ (HNL5), and $ m_{\mathrm{N}}= $ 10 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 5.7$\times$10$^{-7} $ (HNL10). The HNL signal yield is normalized to the total background yield.

png pdf
Additional Figure 8:
Distribution of predicted event yields as a function of the $ p_{\mathrm{T}} $ of the SV after applying the baseline event selection for the $ \mu\mu $ category. The filled histograms display the predicted background yields. The lines show the predicted yields for three HNL signal scenarios, with $ m_{\mathrm{N}}= $ 3 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 9.9$\times$10$^{-5} $ (HNL3), $ m_{\mathrm{N}}= $ 5 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 1.6$\times$10$^{-5} $ (HNL5), and $ m_{\mathrm{N}}= $ 10 GeV and $ |V_{\ell\mathrm{N}}|^2=$ 5.7$\times$10$^{-7} $ (HNL10). The HNL signal yield is normalized to the total background yield. The last bin includes the overflow.

png pdf
Additional Figure 9:
Illustration of the target and sideband region definitions for the ABCD method applied to the VR in terms of $ N(\mathrm{jets}) $, $ m(\ell_1,\mathrm{SV}) $, and the PFN score.

png pdf
Additional Figure 10:
Illustration of the target and sideband region definitions for the ABCD method applied to the CR in terms of $ N(\mathrm{jets}) $, $ m(\ell_1,\mathrm{SV}) $, and the PFN score.

png pdf
Additional Figure 11:
Exclusion limits at 95% CL on $ |V_{\mathrm{eN}}|^2 $ as functions of $ m_{\mathrm{N}} $ for a Majorana HNL. The solid (dashed) black curve indicates the observed (expected) exclusion, where the parameter combinations inside the curve are excluded. The results from this analysis are shown in black, and the results from earlier CMS analyses that use different channels and/or techniques in different colors.

png pdf
Additional Figure 12:
Exclusion limits at 95% CL on $ |V_{\mathrm{eN}}|^2 $ as functions of $ m_{\mathrm{N}} $ for a Dirac HNL. The solid (dashed) black curve indicates the observed (expected) exclusion, where the parameter combinations inside the curve are excluded. The results from this analysis are shown in black, and the results from earlier CMS analyses that use different channels and/or techniques in different colors.

png pdf
Additional Figure 13:
Exclusion limits at 95% CL on $ |V_{\mu\mathrm{N}}|^2 $ as functions of $ m_{\mathrm{N}} $ for a Majorana HNL. The solid (dashed) black curve indicates the observed (expected) exclusion, where the parameter combinations inside the curve are excluded. The results from this analysis are shown in black, and the results from earlier CMS analyses that use different channels and/or techniques in different colors.

png pdf
Additional Figure 14:
Exclusion limits at 95% CL on $ |V_{\mu\mathrm{N}}|^2 $ as functions of $ m_{\mathrm{N}} $ for a Dirac HNL. The solid (dashed) black curve indicates the observed (expected) exclusion, where the parameter combinations inside the curve are excluded. The results from this analysis are shown in black, and the results from earlier CMS analyses that use different channels and/or techniques in different colors.
References
1 Super-Kamiokande Collaboration Evidence for oscillation of atmospheric neutrinos PRL 81 (1998) 1562 hep-ex/9807003
2 SNO Collaboration Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory PRL 89 (2002) 011301 nucl-ex/0204008
3 KamLAND Collaboration First results from KamLAND: Evidence for reactor antineutrino disappearance PRL 90 (2003) 021802 hep-ex/0212021
4 S. Bilenky Neutrino oscillations: From a historical perspective to the present status NPB 908 (2016) 2 1602.00170
5 Planck Collaboration Planck 2018 results. VI. cosmological parameters Astron. Astrophys. 641 (2020) A6 1807.06209
6 eBOSS Collaboration Completed SDSS-IV extended baryon oscillation spectroscopic survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory PRD 103 (2021) 083533 2007.08991
7 Z. Sakr A short review on the latest neutrinos mass and number constraints from cosmological observables Universe 8 (2022) 284
8 J. Formaggio, A. de Gouvêa, and R. Robertson Direct measurements of neutrino mass Phys. Rept. 914 (2021) 1 2102.00594
9 KATRIN Collaboration Direct neutrino-mass measurement with sub-electronvolt sensitivity Nature Phys. 18 (2022) 160 2105.08533
10 P. Minkowski $ {\mu\to\mathrm{e}\gamma} $ at a rate of one out of 10$^9 $ muon decays? PLB 67 (1977) 421
11 T. Yanagida Horizontal gauge symmetry and masses of neutrinos in Proc. Workshop on the Unified Theories and the Baryon Number in the Universe: Tsukuba, Japan, 1979
Conf. Proc. C 7902131 (1979) 95
12 M. Gell-Mann, P. Ramond, and R. Slansky Complex spinors and unified theories in Proc. Supergravity Workshop: Stony Brook NY, USA, 1979
Conf. Proc. C 790927 (1979) 315
1306.4669
13 S. Glashow The future of elementary particle physics NATO Sci. Ser. B 61 (1980) 687
14 R. Mohapatra and G. Senjanović Neutrino mass and spontaneous parity nonconservation PRL 44 (1980) 912
15 J. Schechter and J. Valle Neutrino masses in $ \mathrm{SU}(2)\otimes\mathrm{U}(1) $ theories PRD 22 (1980) 2227
16 R. Shrock General theory of weak leptonic and semileptonic decays. I. leptonic pseudoscalar meson decays, with associated tests for, and bounds on, neutrino masses and lepton mixing PRD 24 (1981) 1232
17 Y. Cai, T. Han, T. Li, and R. Ruiz Lepton number violation: Seesaw models and their collider tests Front. Phys. 6 (2018) 40 1711.02180
18 S. Dodelson and L. Widrow Sterile neutrinos as dark matter PRL 72 (1994) 17 hep-ph/9303287
19 A. Boyarsky et al. Sterile neutrino dark matter Prog. Part. Nucl. Phys. 104 (2019) 1 1807.07938
20 M. Fukugita and T. Yanagida Baryogenesis without grand unification PLB 174 (1986) 45
21 E. Chun et al. Probing leptogenesis Int. J. Mod. Phys. A 33 (2018) 1842005 1711.02865
22 M. Drewes, Y. Georis, and J. Klarić Mapping the viable parameter space for testable leptogenesis PRL 128 (2022) 051801 2106.16226
23 T. Asaka, S. Blanchet, and M. Shaposhnikov The \PGnMSM, dark matter and neutrino masses PLB 631 (2005) 151 hep-ph/0503065
24 F. del Aguila and J. Aguilar-Saavedra Distinguishing seesaw models at LHC with multi-lepton signals NPB 813 (2009) 22 0808.2468
25 A. Atre, T. Han, S. Pascoli, and B. Zhang The search for heavy Majorana neutrinos JHEP 05 (2009) 030 0901.3589
26 V. Tello et al. Left-right symmetry: from LHC to neutrinoless double beta decay PRL 106 (2011) 151801 1011.3522
27 F. Deppisch, P. Bhupal Dev, and A. Pilaftsis Neutrinos and collider physics New J. Phys. 17 (2015) 075019 1502.06541
28 S. Pascoli, R. Ruiz, and C. Weiland Heavy neutrinos with dynamic jet vetoes: multilepton searches at $ \sqrt{s}= $ 14, 27, and 100 TeV JHEP 06 (2019) 049 1812.08750
29 J. Alimena et al. Searching for long-lived particles beyond the standard model at the Large Hadron Collider JPG 47 (2020) 090501 1903.04497
30 A. Abdullahi et al. The present and future status of heavy neutral leptons JPG 50 (2023) 020501 2203.08039
31 C. Antel et al. Feebly interacting particles: FIPs 2022 workshop report EPJC 83 (2023) 1122 2305.01715
32 CMS Collaboration Search for heavy Majorana neutrinos in $ {\mu^\pm\mu^\pm}+ $jets and $ {\mathrm{e}^\pm\mathrm{e}^\pm}+ $jets events in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 7 TeV PLB 717 (2012) 109 CMS-EXO-11-076
1207.6079
33 CMS Collaboration Search for heavy Majorana neutrinos in $ {\mu^\pm\mu^\pm}+ $jets events in proton-proton collisions at $ \sqrt{s}= $ 8 TeV PLB 748 (2015) 144 CMS-EXO-12-057
1501.05566
34 ATLAS Collaboration Search for heavy Majorana neutrinos with the ATLAS detector in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 8 TeV JHEP 07 (2015) 162 1506.06020
35 CMS Collaboration Search for heavy Majorana neutrinos in $ {\mathrm{e}^\pm\mathrm{e}^\pm}+ $jets and $ {\mathrm{e}^\pm\mu^\pm}+ $jets events in proton-proton collisions at $ \sqrt{s}= $ 8 TeV JHEP 04 (2016) 169 CMS-EXO-14-014
1603.02248
36 CMS Collaboration Search for heavy neutral leptons in events with three charged leptons in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PRL 120 (2018) 221801 CMS-EXO-17-012
1802.02965
37 CMS Collaboration Search for heavy Majorana neutrinos in same-sign dilepton channels in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 01 (2019) 122 CMS-EXO-17-028
1806.10905
38 ATLAS Collaboration Search for heavy neutral leptons in decays of W bosons produced in 13 TeV $ {\mathrm{p}\mathrm{p}} $ collisions using prompt and displaced signatures with the ATLAS detector JHEP 10 (2019) 265 1905.09787
39 LHCb Collaboration Search for heavy neutral leptons in $ {\mathrm{W^+}\to\mu^{+}\mu^\pm\,\text{jet}} $ decays EPJC 81 (2021) 248 2011.05263
40 CMS Collaboration Search for long-lived heavy neutral leptons with displaced vertices in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 07 (2022) 081 CMS-EXO-20-009
2201.05578
41 ATLAS Collaboration Search for heavy neutral leptons in decays of W bosons using a dilepton displaced vertex in $ \sqrt{s}= $ 13 TeV $ {\mathrm{p}\mathrm{p}} $ collisions with the ATLAS detector PRL 131 (2023) 061803 2204.11988
42 CMS Collaboration Probing heavy Majorana neutrinos and the Weinberg operator through vector boson fusion processes in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PRL 131 (2023) 011803 CMS-EXO-21-003
2206.08956
43 ATLAS Collaboration Search for Majorana neutrinos in same-sign $ {\mathrm{W}\mathrm{W}} $ scattering events from $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 13 TeV EPJC 83 (2023) 824 2305.14931
44 CMS Collaboration Search for long-lived heavy neutral leptons with lepton flavour conserving or violating decays to a jet and a charged lepton JHEP 03 (2024) 105 CMS-EXO-21-013
2312.07484
45 CMS Collaboration Search for long-lived heavy neutral leptons decaying in the CMS muon detectors in proton-proton collisions at $ \sqrt{s}= $ 13 TeV Accepted by Phys. Rev. D, 2024 CMS-EXO-22-017
2402.18658
46 CMS Collaboration Search for heavy neutral leptons in final states with electrons, muons, and hadronically decaying tau leptons in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 06 (2024) 123 CMS-EXO-22-011
2403.00100
47 CMS Collaboration Search for long-lived heavy neutrinos in the decays of $ {\mathrm{B}} $ mesons produced in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 06 (2024) 183 CMS-EXO-22-019
2403.04584
48 ATLAS Collaboration Search for heavy Majorana neutrinos in $ {\mathrm{e}^\pm\mathrm{e}^\pm} $ and $ {\mathrm{e}^\pm\mu^\pm} $ final states via $ {\mathrm{W}\mathrm{W}} $ scattering in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector Submitted to Phys. Lett. B, 2024 2403.15016
49 CMS Collaboration Review of searches for vector-like quarks, vector-like leptons, and heavy neutral leptons in proton-proton collisions at $ \sqrt{s}= $ 13 TeV at the CMS experiment Submitted to Phys. Rept, 2024 CMS-EXO-23-006
2405.17605
50 DELPHI Collaboration Search for neutral heavy leptons produced in Z decays Z. Phys. C 74 (1997) 57
51 Belle Collaboration Search for heavy neutrinos at Belle PRD 87 (2013) 071102 1301.1105
52 BaBar Collaboration Search for heavy neutral leptons using tau lepton decays at BaBaR PRD 107 (2023) 052009 2207.09575
53 Belle Collaboration Search for a heavy neutrino in $ \tau $ decays at Belle PRL 131 (2023) 211802 2212.10095
54 Belle Collaboration Search for a heavy neutral lepton that mixes predominantly with the tau neutrino PRD 109 (2024) L111102 2402.02580
55 WA66 Collaboration Search for heavy neutrino decays in the BEBC beam dump experiment PLB 160 (1985) 207
56 CHARM Collaboration A search for decays of heavy neutrinos in the mass range 0.5-2.8 GeV PLB 166 (1986) 473
57 NA3 Collaboration Mass and lifetime limits on new longlived particles in 300 GeVc $ \pi^{-} $ interactions Z. Phys. C 31 (1986) 21
58 CHARM II Collaboration Search for heavy isosinglet neutrinos PLB 343 (1995) 453
59 A. Vaitaitis et al. Search for neutral heavy leptons in a high-energy neutrino beam PRL 83 (1999) 4943 hep-ex/9908011
60 T2K Collaboration Search for heavy neutrinos with the T2K near detector ND280 PRD 100 (2019) 052006 1902.07598
61 NA62 Collaboration Search for heavy neutral lepton production in $ \mathrm{K^+} $ decays to positrons PLB 807 (2020) 135599 2005.09575
62 NA62 Collaboration Search for $ \mathrm{K^+} $ decays to a muon and invisible particles PLB 816 (2021) 136259 2101.12304
63 ArgoNeuT Collaboration New constraints on tau-coupled heavy neutral leptons with masses $ m_{\mathrm{N}}= $ 280-970 MeV PRL 127 (2021) 121801 2106.13684
64 MicroBooNE Collaboration Search for long-lived heavy neutral leptons and Higgs portal scalars decaying in the MicroBooNE detector PRD 106 (2022) 092006 2207.03840
65 MicroBooNE Collaboration Search for heavy neutral leptons in electron-positron and neutral-pion final states with the MicroBooNE detector PRL 132 (2024) 041801 2310.07660
66 A. Abada, N. Bernal, M. Losada, and X. Marcano Inclusive displaced vertex searches for heavy neutral leptons at the LHC JHEP 01 (2019) 093 1807.10024
67 J.-L. Tastet, O. Ruchayskiy, and I. Timiryasov Reinterpreting the ATLAS bounds on heavy neutral leptons in a realistic neutrino oscillation model JHEP 12 (2021) 182 2107.12980
68 I. Boiarska, A. Boyarsky, O. Mikulenko, and M. Ovchynnikov Constraints from the CHARM experiment on heavy neutral leptons with tau mixing PRD 104 (2021) 095019 2107.14685
69 A. Abada, P. Escribano, X. Marcano, and G. Piazza Collider searches for heavy neutral leptons: beyond simplified scenarios EPJC 82 (2022) 1030 2208.13882
70 CMS Collaboration HEPData record for this analysis link
71 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
72 CMS Collaboration Development of the CMS detector for the CERN LHC Run 3 JINST 19 (2024) P05064 CMS-PRF-21-001
2309.05466
73 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
74 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
75 W. Waltenberger, R. Frühwirth, and P. Vanlaer Adaptive vertex fitting JPG 34 (2007) N343
76 CMS Collaboration Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015
link
77 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
78 CMS Tracker Group Collaboration The CMS Phase-1 pixel detector upgrade JINST 16 (2021) P02027 2012.14304
79 CMS Collaboration Track impact parameter resolution for the full pseudo rapidity coverage in the 2017 dataset with the CMS Phase-1 pixel detector CMS Detector Performance Note CMS-DP-2020-049, 2020
CDS
80 CMS Collaboration Measurement of $ {{\mathrm{B}}\overline{\mathrm{B}}} $ angular correlations based on secondary vertex reconstruction at $ \sqrt{s}= $ 7 TeV JHEP 03 (2011) 136 CMS-BPH-10-010
1102.3194
81 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in $ {\mathrm{p}\mathrm{p}} $ collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
82 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
83 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
84 M. Cacciari, G. P. Salam, and G. Soyez FASTJET user manual EPJC 72 (2012) 1896 1111.6097
85 CMS Collaboration Pileup mitigation at CMS in 13 TeV data JINST 15 (2020) P09018 CMS-JME-18-001
2003.00503
86 CMS Collaboration Jet energy scale and resolution in the CMS experiment in $ {\mathrm{p}\mathrm{p}} $ collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
87 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) P05014 CMS-EGM-17-001
2012.06888
88 CMS Collaboration ECAL 2016 refined calibration and Run 2 summary plots CMS Detector Performance Note CMS-DP-2020-021, 2020
CDS
89 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
90 CMS Collaboration Single- and double-electron trigger efficiencies using the full Run 2 data set CMS Detector Performance Note CMS-DP-2020-016, 2020
CDS
91 CMS Collaboration Performance of the CMS muon trigger system in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 16 (2021) P07001 CMS-MUO-19-001
2102.04790
92 NNPDF Collaboration Parton distributions for the LHC run II JHEP 04 (2015) 040 1410.8849
93 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
94 T. Sjöstrand et al. An introduction to PYTHIA8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
95 CMS Collaboration Event generator tunes obtained from underlying event and multiparton scattering measurements EPJC 76 (2016) 155 CMS-GEN-14-001
1512.00815
96 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
97 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
98 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
99 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
100 S. Frixione, G. Ridolfi, and P. Nason A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction JHEP 09 (2007) 126 0707.3088
101 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
102 S. Alioli, P. Nason, C. Oleari, and E. Re NLO single-top production matched with shower in POWHEG: $ s $- and $ t $-channel contributions JHEP 09 (2009) 111 0907.4076
103 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG box JHEP 06 (2010) 043 1002.2581
104 E. Re Single-top $ {\mathrm{W}\mathrm{t}} $-channel production matched with parton showers using the POWHEG method EPJC 71 (2011) 1547 1009.2450
105 T. Melia, P. Nason, R. Röntsch, and G. Zanderighi $ {\mathrm{W^+}\mathrm{W^-}} $, $ {\mathrm{W}\mathrm{Z}} $ and $ {\mathrm{Z}\mathrm{Z}} $ production in the POWHEG box JHEP 11 (2011) 078 1107.5051
106 P. Nason and G. Zanderighi $ {\mathrm{W^+}\mathrm{W^-}} $, $ {\mathrm{W}\mathrm{Z}} $ and $ {\mathrm{Z}\mathrm{Z}} $ production in the POWHEG -box-v2 EPJC 74 (2014) 2702 1311.1365
107 J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions EPJC 53 (2008) 473 0706.2569
108 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
109 D. Alva, T. Han, and R. Ruiz Heavy Majorana neutrinos from $ {\mathrm{W}\gamma} $ fusion at hadron colliders JHEP 02 (2015) 072 1411.7305
110 C. Degrande, O. Mattelaer, R. Ruiz, and J. Turner Fully-automated precision predictions for heavy neutrino production mechanisms at hadron colliders PRD 94 (2016) 053002 1602.06957
111 K. Melnikov and F. Petriello Electroweak gauge boson production at hadron colliders through $ \mathcal{O}({\alpha_\mathrm{S}^2}) $ PRD 74 (2006) 114017 hep-ph/0609070
112 R. Gavin, Y. Li, F. Petriello, and S. Quackenbush FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order Comput. Phys. Commun. 182 (2011) 2388 1011.3540
113 R. Gavin, Y. Li, F. Petriello, and S. Quackenbush W physics at the LHC with FEWZ 2.1 Comput. Phys. Commun. 184 (2013) 208 1201.5896
114 Y. Li and F. Petriello Combining QCD and electroweak corrections to dilepton production in FEWZ PRD 86 (2012) 094034 1208.5967
115 P. Komiske, E. Metodiev, and J. Thaler Energy flow networks: deep sets for particle jets JHEP 01 (2019) 121 1810.05165
116 M. Zaheeret al. Deep sets in Proc. 31st Conference on Neural Information Processing Systems (NIPS ): Long Beach CA, USA, December 04-09,, 2017
Proc. 3 (2017) 3391
1703.06114
117 F. Chollet et al. keras Software available from
https://keras.io
118 M. Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems Software available from
http://tensorflow.org
119 CMS Collaboration Displaced tracking and vertexing calibration using neutral $ \mathrm{K} $ mesons CMS Detector Performance Note CMS-DP-2024-010, 2024
CDS
120 Particle Data Group , R. L. Workman et al. Review of particle physics Prog. Theor. Exp. Phys. 2022 (2022) 083C01
121 S. Choi and H. Oh Improved extrapolation methods of data-driven background estimations in high energy physics EPJC 81 (2021) 643 1906.10831
122 B. Rémillard Tests of independence in International encyclopedia of statistical science, M. Lovric, ed., Springer-Verlag, Berlin, 2011
link
123 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s}= $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
124 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s}= $ 13 TeV CMS Physics Analysis Summary, 2018
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
125 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s}= $ 13 TeV CMS Physics Analysis Summary, 2019
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
126 CMS Collaboration Measurements of inclusive W and Z cross sections in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 7 TeV JHEP 01 (2011) 080 CMS-EWK-10-002
1012.2466
127 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435 hep-ex/9902006
128 A. L. Read Presentation of search results: The $ \text{CL}_\text{s} $ technique JPG 28 (2002) 2693
129 ATLAS and CMS Collaborations, and LHC Higgs Combination Group Procedure for the LHC Higgs boson search combination in Summer 2011 Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011
130 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
131 CMS Collaboration The CMS statistical analysis and combination tool: combine Accepted by Comput. Softw. Big Sci, 2024 CMS-CAT-23-001
2404.06614
132 W. Verkerke and D. Kirkby The RooFit toolkit for data modeling in Proc. 13th International Conference on Computing in High Energy and Nuclear Physics (CHEP ): La Jolla CA, United States, 2003
[eConf C0303241 MOLT007]
physics/0306116
133 L. Moneta et al. The RooStats project in Proc. 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT ): Jaipur, India, 2010
[PoS (ACAT) 057]
1009.1003
Compact Muon Solenoid
LHC, CERN