CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-SUS-21-005
Search for new physics using single-lepton events with high jet and b jet multiplicities in proton-proton collisions at $ \sqrt{s}= $ 13 TeV
Abstract: This note presents a search for new physics using single-lepton events with high multiplicity of jets and b-tagged jets, without a requirement on missing transverse momentum. The analysis is based on proton-proton collision data collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$ ^{-1} $. It is sensitive to $ R $-parity violating supersymmetry models, where supersymmetric particles can decay into standard model particles through interactions that violate baryon number conservation. In particular, the target model is gluino pair production where each gluino decays to top, bottom, and strange quarks. The sum of large-radius jet masses is used to distinguish the signal from background. No significant excess over the background is observed, and constraints are placed on the parameter space of gluino mass. Such gluinos with a mass of 1890 GeV are excluded at 95% confidence level.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Diagram of the signal model considered in this analysis. Gluinos are produced in pairs and decay to top (t), bottom (b), and strange (s) quarks.

png pdf
Figure 2:
Distributions of $ N_{\textrm{jet}} $ (left), $ N_{\textrm{b}} $ (middle), and $ M_{\textrm{J}} $ (right) for $ {\mathrm{t}\overline{\mathrm{t}}} $ and signal events with two gluino mass scenarios, after applying the baseline selection, as described in Section 3.

png pdf
Figure 2-a:
Distributions of $ N_{\textrm{jet}} $ (left), $ N_{\textrm{b}} $ (middle), and $ M_{\textrm{J}} $ (right) for $ {\mathrm{t}\overline{\mathrm{t}}} $ and signal events with two gluino mass scenarios, after applying the baseline selection, as described in Section 3.

png pdf
Figure 2-b:
Distributions of $ N_{\textrm{jet}} $ (left), $ N_{\textrm{b}} $ (middle), and $ M_{\textrm{J}} $ (right) for $ {\mathrm{t}\overline{\mathrm{t}}} $ and signal events with two gluino mass scenarios, after applying the baseline selection, as described in Section 3.

png pdf
Figure 2-c:
Distributions of $ N_{\textrm{jet}} $ (left), $ N_{\textrm{b}} $ (middle), and $ M_{\textrm{J}} $ (right) for $ {\mathrm{t}\overline{\mathrm{t}}} $ and signal events with two gluino mass scenarios, after applying the baseline selection, as described in Section 3.

png pdf
Figure 3:
Comparison of $ M_{\textrm{J}} $ templates between data and MC in the control regions used to measure the $ \kappa $ factors for QCD (left), $ \mathrm{W}+ $jets (middle), and $ {\mathrm{t}\overline{\mathrm{t}}} $ (right). The selection corresponds to $ N_{\textrm{lep}}= $ 0, $ N_{\textrm{jet}}\ge $ 9, $ N_{\textrm{b}}= $ 0 for QCD; a Drell-Yan-dominated region with $ N_{\textrm{lep}}= $ 2, $ N_{\textrm{jet}}\ge $ 7, $ N_{\textrm{b}}\le $ 0 for $ \mathrm{W}+ $jets; and $ N_{\textrm{lep}}= $ 1, $ N_{\textrm{jet}}\ge $ 8, $ N_{\textrm{b}}= $ 1 for $ {\mathrm{t}\overline{\mathrm{t}}} $. The MC is normalized to data in all regions.

png pdf
Figure 3-a:
Comparison of $ M_{\textrm{J}} $ templates between data and MC in the control regions used to measure the $ \kappa $ factors for QCD (left), $ \mathrm{W}+ $jets (middle), and $ {\mathrm{t}\overline{\mathrm{t}}} $ (right). The selection corresponds to $ N_{\textrm{lep}}= $ 0, $ N_{\textrm{jet}}\ge $ 9, $ N_{\textrm{b}}= $ 0 for QCD; a Drell-Yan-dominated region with $ N_{\textrm{lep}}= $ 2, $ N_{\textrm{jet}}\ge $ 7, $ N_{\textrm{b}}\le $ 0 for $ \mathrm{W}+ $jets; and $ N_{\textrm{lep}}= $ 1, $ N_{\textrm{jet}}\ge $ 8, $ N_{\textrm{b}}= $ 1 for $ {\mathrm{t}\overline{\mathrm{t}}} $. The MC is normalized to data in all regions.

png pdf
Figure 3-b:
Comparison of $ M_{\textrm{J}} $ templates between data and MC in the control regions used to measure the $ \kappa $ factors for QCD (left), $ \mathrm{W}+ $jets (middle), and $ {\mathrm{t}\overline{\mathrm{t}}} $ (right). The selection corresponds to $ N_{\textrm{lep}}= $ 0, $ N_{\textrm{jet}}\ge $ 9, $ N_{\textrm{b}}= $ 0 for QCD; a Drell-Yan-dominated region with $ N_{\textrm{lep}}= $ 2, $ N_{\textrm{jet}}\ge $ 7, $ N_{\textrm{b}}\le $ 0 for $ \mathrm{W}+ $jets; and $ N_{\textrm{lep}}= $ 1, $ N_{\textrm{jet}}\ge $ 8, $ N_{\textrm{b}}= $ 1 for $ {\mathrm{t}\overline{\mathrm{t}}} $. The MC is normalized to data in all regions.

png pdf
Figure 3-c:
Comparison of $ M_{\textrm{J}} $ templates between data and MC in the control regions used to measure the $ \kappa $ factors for QCD (left), $ \mathrm{W}+ $jets (middle), and $ {\mathrm{t}\overline{\mathrm{t}}} $ (right). The selection corresponds to $ N_{\textrm{lep}}= $ 0, $ N_{\textrm{jet}}\ge $ 9, $ N_{\textrm{b}}= $ 0 for QCD; a Drell-Yan-dominated region with $ N_{\textrm{lep}}= $ 2, $ N_{\textrm{jet}}\ge $ 7, $ N_{\textrm{b}}\le $ 0 for $ \mathrm{W}+ $jets; and $ N_{\textrm{lep}}= $ 1, $ N_{\textrm{jet}}\ge $ 8, $ N_{\textrm{b}}= $ 1 for $ {\mathrm{t}\overline{\mathrm{t}}} $. The MC is normalized to data in all regions.

png pdf
Figure 4:
$ \kappa $ factors measured in control regions for QCD (yellow), $ \mathrm{W}+ $jets (purple), and $ {\mathrm{t}\overline{\mathrm{t}}} $ (blue). The top and bottom corresponds to $ \kappa_1 $ and $ \kappa_2 $, respectively. In each case, the three points indicate the $ \kappa $ values in each $ N_{\textrm{jet}} $ bin. The error bars include the statistical uncertainties of data (dominant) and MC samples.

png pdf
Figure 5:
Post-fit $ M_{\textrm{J}} $ distributions in the $ N_{\textrm{lep}}= $ 1 region for all three years. The three $ M_{\textrm{J}} $ bins used, defined as 500 $ < M_{\textrm{J}} < $ 800, 800 $ < M_{\textrm{J}} < $ 1100, and $ M_{\textrm{J}} > 1100 \,\text{Ge\hspace{-.08em}V} $, are shown from left to right. The data-to-MC ratio is shown in the lower panel, where the gray band represents the total (statistical and systematic) uncertainty in the background prediction.

png pdf
Figure 6:
Cross section upper limits at 95% CL compared to the gluino pair production with $ \mathrm{\widetilde{g}} \rightarrow \mathrm{t} \mathrm{b} \mathrm{s} $ (magenta). The theoretical uncertainties in the cross section are represented by the dotted band. The expected limits are shown by the black dashed line, with $ \pm $1$\sigma $ and $ \pm $2$\sigma $ variations indicated by the green and yellow bands, respectively. The observed limit is shown as a black solid line with dots.
Tables

png pdf
Table 1:
A diagram representing the analysis regions after the baseline selection. ``CR'' denotes a control region and ``SR'' denotes a signal region. Yellow indicates regions where the $ M_{\textrm{J}} $ template is used, while lighter yellow corresponds to regions where it is not used.

png pdf
Table 2:
Selection criteria applied for measuring the $ \kappa $ factors of the main backgrounds.

png pdf
Table 3:
Uncertainties of $ \kappa $ factors for QCD, $ \mathrm{W}+ $jets, and $ {\mathrm{t}\overline{\mathrm{t}}} $ backgrounds in the three $ N_{\textrm{jet}} $ regions, used in the global fit.

png pdf
Table 4:
List of signal systematic uncertainties and their effects on the yields in the $ N_{\textrm{jet}}\ge $ 8 and $ N_{\textrm{b}}\ge $ 4 bin for the all three years combined. The signal corresponds to $ m_{\mathrm{\widetilde{g}}}= $ 1800 GeV.

png pdf
Table 5:
Post-fit yields in the signal region for all three years combined.
Summary
This analysis investigates the existence of physics beyond the standard model in events characterized by high jet and b-jet multiplicities in the single-lepton final state, without a requirement on missing transverse momentum. The scalar sum of the large-radius jet masses ($ M_{\textrm{J}} $) in an event is used for both background rejection and prediction, and a simultaneous fit to the $ M_{\textrm{J}} $ templates, in bins of jet multiplicity $ N_{\textrm{jet}} $ and the number of b-tagged jets $ N_{\textrm{b}} $, is performed to extract potential excesses in data. The templates, derived from simulation, are corrected by measurements comparing data and simulation in dedicated control regions. This method enables a data-driven prediction of background across bins of $ N_{\textrm{jet}} $, $ N_{\textrm{b}} $, and $ M_{\textrm{J}} $. The observed event yields are consistent with background predictions. The result is interpreted within the framework of $ R $-parity violating Supersymmetry under the minimal flavor violating scenario. The search focuses on gluino pair production, where each gluino decays to a top, a bottom, and a strange quark via the $ \lambda^{\prime\prime}_{332} $ coupling. Using proton-proton collisions at $ \sqrt{s} = $ 13 TeV from the CERN LHC collected by the CMS experiment between 2016 to 2018 and corresponding to an integrated luminosity of 138 fb$ ^{-1} $, gluinos are excluded up to a mass of 1890 GeV at 95% confidence level.
References
1 C. Csàki, Y. Grossman, and B. Heidenreich Minimal flavor violation supersymmetry: A natural theory for $ R $-parity violation PRD 85 (2012) 095009 1111.1239
2 Super-Kamiokande Collaboration Neutron-antineutron oscillation search using a 0.37 megaton-years exposure of super-kamiokande PRD 103 (2021) 012008 2012.02607
3 CMS Collaboration Search for $ R $-parity violating supersymmetry in pp collisions at $ \sqrt{s}= $ 13 TeV using b jets in a final state with a single lepton, many jets, and high sum of large-radius jet masses Physics Letters B 783 (2018) 114 CMS-SUS-16-040
1712.08920
4 CMS Collaboration Searches for $ R $-parity-violating supersymmetry in pp collisions at $ \sqrt{s} = $ 8 TeV in final states with 0-4 leptons PRD 94 (2016) 112009 CMS-SUS-14-003
1606.08076
5 ATLAS Collaboration Search for $ R $-parity-violating supersymmetry in a final state containing leptons and many jets with the ATLAS experiment using $ \sqrt{s} = $ 13 TeV proton-proton collision data EPJC 81 (2021) 1023 2106.09609
6 A. Hook, E. Izaguirre, M. Lisanti, and J. G. Wacker High Multiplicity Searches at the LHC Using Jet Masses PRD 85 (2012) 055029 1202.0558
7 T. Cohen, E. Izaguirre, M. Lisanti, and H. K. Lou Jet Substructure by Accident JHEP 03 (2013) 161 1212.1456
8 S. El Hedri, A. Hook, M. Jankowiak, and J. G. Wacker Learning How to Count: A High Multiplicity Search for the LHC JHEP 08 (2013) 136 1302.1870
9 ATLAS Collaboration Search for massive supersymmetric particles decaying to many jets using the ATLAS detector in pp collisions at $ \sqrt{s} = $ 8 TeV PRD 91 (2015) 112016 1502.05686
10 ATLAS Collaboration Search for new phenomena in final states with large jet multiplicities and missing transverse momentum at $ \sqrt{s}= $ 8 TeV proton-proton collisions using the ATLAS experiment JHEP 10 (2013) 130 1308.1841
11 CMS Collaboration Search for supersymmetry in pp collisions at $ \sqrt{s}= $ 13 TeV in the single-lepton final state using the sum of masses of large-radius jets JHEP 08 (2016) 122 CMS-SUS-15-007
1605.04608
12 CMS Collaboration Search for supersymmetry in pp collisions at $ \sqrt{s} = $ 13 TeV in the single-lepton final state using the sum of masses of large-radius jets PRL 119 (2017) 151802 CMS-SUS-16-037
1705.04673
13 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s}= $ 13 TeV in 2015 and 2016 at CMS The European Physical Journal C 81 (2021) 800 CMS-LUM-17-003
2104.01927
14 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s}= $ 13 TeV CMS Physics Analysis Summary , CERN, Geneva, 2018
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
15 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s}= $ 13 TeV CMS Physics Analysis Summary , CERN, Geneva, 2018
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
16 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
17 CMS Collaboration Development of the CMS detector for the CERN LHC Run 3 JINST 19 (2024) P05064 CMS-PRF-21-001
2309.05466
18 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
19 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
20 CMS Collaboration Performance of the CMS high-level trigger during LHC run 2 JINST 19 (2024) P11021 CMS-TRG-19-001
2410.17038
21 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) P05014 CMS-EGM-17-001
2012.06888
22 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
23 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
24 CMS-HCAL Collaboration Design, performance and calibration of the CMS forward calorimeter wedges EPJC 53 (2008) 139
25 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
26 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
27 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
28 E. Re Single-top Wt-channel production matched with parton showers using the POWHEG method EPJC 71 (2011) 1547 1009.2450
29 S. Alioli, P. Nason, C. Oleari, and E. Re NLO single-top production matched with shower in POWHEG:s- and t-channel contributions JHEP 09 (2009) 111 0907.4076
30 T. Sjöstrand, S. Mrenna, and P. Z. Skands A Brief Introduction to PYTHIA 8.1 Comput. Phys. Commun. 178 (2008) 852 0710.3820
31 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
32 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
33 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST (2017) P10003 CMS-PRF-14-001
1706.04965
34 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorith JHEP 04 (2008) 063 0802.1189
35 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
36 M. Cacciari and G. P. Salam Pileup subtraction using jet areas PLB 659 (2008) 119 0707.1378
37 CMS Collaboration Determination of jet energy calibration and transverse momentum resolution in CMS JINST 6 (2011) P11002 CMS-JME-10-011
1107.4277
38 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
39 CMS Collaboration Search for direct pair production of supersymmetric top quarks decaying to all-hadronic final states in pp collisions at $ \sqrt{s} = $ 8 TeV The European Physical Journal C 76 (2016) 460 CMS-SUS-13-023
1603.00765
40 ATLAS Collaboration Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at $ \sqrt{s}= $ 8 TeV with the ATLAS detector JHEP 09 (2014) 015 1406.1122
41 CMS Collaboration Measurement of the cross section for $ t\bar{t} $ production with additional jets and b jets in pp collisions at $ \sqrt{s} = $ 13 TeV JHEP 07 (2020) 125 CMS-TOP-18-002
2003.06467
42 A. L. Read Presentation of search results: The CL$ _{\text{s}} $ technique JPG 28 (2002) 2693
43 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435 hep-ex/9902006
44 CMS Collaboration The CMS statistical analysis and combination tool: COMBINE Comput. Softw. Big Sci. 8 (2024) 19 CMS-CAT-23-001
2404.06614
45 W. Beenakker et al. NNLL-fast 2.0: Coloured sparticle production at the LHC run 3 with $ \sqrt{s} $ = 13.6 TeV SciPost Phys. Core 7 (2024) 072 2404.18837
Compact Muon Solenoid
LHC, CERN