CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-HIG-23-011
Search for $ \gamma $H production in pp collisions at $ \sqrt{s} = $ 13 TeV and constraintson the Yukawa couplings of light quarks to the Higgs boson using data from the CMS detector
Abstract: A search for $ \gamma $H production is performed with the data from the CMS experiment at the LHC corresponding to an integrated luminosity of 138 fb$ ^{-1} $ at a proton-proton center-of-mass collision energy of 13 TeV. The analysis focuses on the topology of a boosted Higgs boson recoiling against a high-energy photon. The final states of H$ \to{\text b}\bar{\text b} $ and 4 $ \ell $ are analyzed. This study examines effective HZ$ \gamma $ and H$ \gamma\gamma $ anomalous couplings within the context of Effective Field Theory. In this approach, the production cross section for $ \gamma $H is constrained to be $ \sigma_{\gamma\mathrm{H}} < $ 15.7 fb at 95% CL. Additionally, simultaneous constraints on four anomalous couplings involving HZ$ \gamma $ and H$ \gamma\gamma $ are provided. The production rate for H$ \to4\ell $ is also examined to assess potential enhancements in the Yukawa couplings between light quarks and the Higgs boson. Assuming the standard model Yukawa couplings for the bottom and top quarks, the following simultaneous constraints are obtained: $ \kappa_\mathrm{u}=$ (0.0 $ \pm $ 1.5 ) $\times$ 10$^{3} $, $ \kappa_\mathrm{d}=$ (0.0 $ \pm $ 7.1) $\times$ 10$^{2} $, $ \kappa_\mathrm{s}= $ 0$ ^{+33}_{-34} $, and $ \kappa_\mathrm{c}= $ 0.0$ ^{+2.7}_{-3.0} $, ruling out the hypothesis that up-type and down-type quarks in the first or second generation have the same Yukawa couplings as those in the third generation, with a CL greater than 95%.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Feynman diagrams describing $ \gamma\mathrm{H} $ production at the LHC via a loop-generated $ \mathrm{H}\gamma\gamma $ or $ \mathrm{H}\mathrm{Z}\gamma $ interaction (left), with the dot representing an effective point-like coupling, and through H boson production in $ \mathrm{q}\overline{\mathrm{q}} $ annihilation with photon radiation (right). The diagrams highlight the couplings of interest.

png pdf
Figure 2:
The spectrum of the photon transverse momentum in $ \gamma\mathrm{H} $ production, as generated by the leading-order diagrams shown in Figs. 1 and 3. The four distributions correspond to production resulting from couplings $ \kappa_\mathrm{q} $, $ c_{z\gamma} $ ($ \tilde{c}_{z\gamma} $), $ c_{\gamma\gamma} $ ($ \tilde{c}_{\gamma\gamma} $), and $ c_{\mathrm{q}\gamma} $.

png pdf
Figure 3:
Feynman diagrams describing the $ \mathrm{q}\overline{\mathrm{q}} $ annihilation with production of $ \gamma\mathrm{H} $ through a point-like EFT operator (left) and with photon production (right).

png pdf
Figure 4:
Feynman diagrams describing the H boson production at LHC through direct $ \mathrm{q}\overline{\mathrm{q}} $ annihilation (left) and gluon fusion production (right).

png pdf
Figure 5:
Distributions of events for $ {\mathcal{D}}_{\text{bkg}} $ observable in the $ \gamma $-tagged (left) and Untagged (right) categories of the $ \mathrm{H}\to 4\ell $ candidate events. Observed events (black markers) and expectation from MC simulation (ZZ/Z$ \gamma^* $) or data-driven ($ \mathrm{Z}+\mathrm{X} $) background estimates (solid histograms) are shown. The $ \gamma\mathrm{H} $ signal contribution is shown with an open histogram for a hypothetical cross section of $ \sigma_{\gamma\mathrm{H}}\times{\cal B}(\mathrm{H}\to4\ell)= $ 1\,fb for either the $ c_{\gamma\gamma} $ (solid) and $ c_{z\gamma} $ (dashed) coupling hypothesis.

png pdf
Figure 5-a:
Distributions of events for $ {\mathcal{D}}_{\text{bkg}} $ observable in the $ \gamma $-tagged (left) and Untagged (right) categories of the $ \mathrm{H}\to 4\ell $ candidate events. Observed events (black markers) and expectation from MC simulation (ZZ/Z$ \gamma^* $) or data-driven ($ \mathrm{Z}+\mathrm{X} $) background estimates (solid histograms) are shown. The $ \gamma\mathrm{H} $ signal contribution is shown with an open histogram for a hypothetical cross section of $ \sigma_{\gamma\mathrm{H}}\times{\cal B}(\mathrm{H}\to4\ell)= $ 1\,fb for either the $ c_{\gamma\gamma} $ (solid) and $ c_{z\gamma} $ (dashed) coupling hypothesis.

png pdf
Figure 5-b:
Distributions of events for $ {\mathcal{D}}_{\text{bkg}} $ observable in the $ \gamma $-tagged (left) and Untagged (right) categories of the $ \mathrm{H}\to 4\ell $ candidate events. Observed events (black markers) and expectation from MC simulation (ZZ/Z$ \gamma^* $) or data-driven ($ \mathrm{Z}+\mathrm{X} $) background estimates (solid histograms) are shown. The $ \gamma\mathrm{H} $ signal contribution is shown with an open histogram for a hypothetical cross section of $ \sigma_{\gamma\mathrm{H}}\times{\cal B}(\mathrm{H}\to4\ell)= $ 1\,fb for either the $ c_{\gamma\gamma} $ (solid) and $ c_{z\gamma} $ (dashed) coupling hypothesis.

png pdf
Figure 6:
The $ M_{\textrm{PNet}} $ distributions for the number of observed events (black markers) compared with the estimated backgrounds (filled histograms) in the $ \mathrm{b} \overline{\mathrm{b}} $ channel. Fail (upper), medium (middle) and tight (lower) regions of the $ \gamma $-tagged (left) and Untagged (right) categories are shown. The two $ p_{\mathrm{T}} $ regions of the $ \gamma $-tagged category are combined in this figure. The signal contribution is shown with an open histogram for a hypothetical cross section of $ \sigma_{\gamma\mathrm{H}}\times{\cal B}(\mathrm{H}\to\mathrm{b} \overline{\mathrm{b}})= $ 10\,fb for either the $ c_{\gamma\gamma} $ (solid) and $ c_{z\gamma} $ (dashed) coupling hypothesis.

png pdf
Figure 6-a:
The $ M_{\textrm{PNet}} $ distributions for the number of observed events (black markers) compared with the estimated backgrounds (filled histograms) in the $ \mathrm{b} \overline{\mathrm{b}} $ channel. Fail (upper), medium (middle) and tight (lower) regions of the $ \gamma $-tagged (left) and Untagged (right) categories are shown. The two $ p_{\mathrm{T}} $ regions of the $ \gamma $-tagged category are combined in this figure. The signal contribution is shown with an open histogram for a hypothetical cross section of $ \sigma_{\gamma\mathrm{H}}\times{\cal B}(\mathrm{H}\to\mathrm{b} \overline{\mathrm{b}})= $ 10\,fb for either the $ c_{\gamma\gamma} $ (solid) and $ c_{z\gamma} $ (dashed) coupling hypothesis.

png pdf
Figure 6-b:
The $ M_{\textrm{PNet}} $ distributions for the number of observed events (black markers) compared with the estimated backgrounds (filled histograms) in the $ \mathrm{b} \overline{\mathrm{b}} $ channel. Fail (upper), medium (middle) and tight (lower) regions of the $ \gamma $-tagged (left) and Untagged (right) categories are shown. The two $ p_{\mathrm{T}} $ regions of the $ \gamma $-tagged category are combined in this figure. The signal contribution is shown with an open histogram for a hypothetical cross section of $ \sigma_{\gamma\mathrm{H}}\times{\cal B}(\mathrm{H}\to\mathrm{b} \overline{\mathrm{b}})= $ 10\,fb for either the $ c_{\gamma\gamma} $ (solid) and $ c_{z\gamma} $ (dashed) coupling hypothesis.

png pdf
Figure 6-c:
The $ M_{\textrm{PNet}} $ distributions for the number of observed events (black markers) compared with the estimated backgrounds (filled histograms) in the $ \mathrm{b} \overline{\mathrm{b}} $ channel. Fail (upper), medium (middle) and tight (lower) regions of the $ \gamma $-tagged (left) and Untagged (right) categories are shown. The two $ p_{\mathrm{T}} $ regions of the $ \gamma $-tagged category are combined in this figure. The signal contribution is shown with an open histogram for a hypothetical cross section of $ \sigma_{\gamma\mathrm{H}}\times{\cal B}(\mathrm{H}\to\mathrm{b} \overline{\mathrm{b}})= $ 10\,fb for either the $ c_{\gamma\gamma} $ (solid) and $ c_{z\gamma} $ (dashed) coupling hypothesis.

png pdf
Figure 6-d:
The $ M_{\textrm{PNet}} $ distributions for the number of observed events (black markers) compared with the estimated backgrounds (filled histograms) in the $ \mathrm{b} \overline{\mathrm{b}} $ channel. Fail (upper), medium (middle) and tight (lower) regions of the $ \gamma $-tagged (left) and Untagged (right) categories are shown. The two $ p_{\mathrm{T}} $ regions of the $ \gamma $-tagged category are combined in this figure. The signal contribution is shown with an open histogram for a hypothetical cross section of $ \sigma_{\gamma\mathrm{H}}\times{\cal B}(\mathrm{H}\to\mathrm{b} \overline{\mathrm{b}})= $ 10\,fb for either the $ c_{\gamma\gamma} $ (solid) and $ c_{z\gamma} $ (dashed) coupling hypothesis.

png pdf
Figure 6-e:
The $ M_{\textrm{PNet}} $ distributions for the number of observed events (black markers) compared with the estimated backgrounds (filled histograms) in the $ \mathrm{b} \overline{\mathrm{b}} $ channel. Fail (upper), medium (middle) and tight (lower) regions of the $ \gamma $-tagged (left) and Untagged (right) categories are shown. The two $ p_{\mathrm{T}} $ regions of the $ \gamma $-tagged category are combined in this figure. The signal contribution is shown with an open histogram for a hypothetical cross section of $ \sigma_{\gamma\mathrm{H}}\times{\cal B}(\mathrm{H}\to\mathrm{b} \overline{\mathrm{b}})= $ 10\,fb for either the $ c_{\gamma\gamma} $ (solid) and $ c_{z\gamma} $ (dashed) coupling hypothesis.

png pdf
Figure 6-f:
The $ M_{\textrm{PNet}} $ distributions for the number of observed events (black markers) compared with the estimated backgrounds (filled histograms) in the $ \mathrm{b} \overline{\mathrm{b}} $ channel. Fail (upper), medium (middle) and tight (lower) regions of the $ \gamma $-tagged (left) and Untagged (right) categories are shown. The two $ p_{\mathrm{T}} $ regions of the $ \gamma $-tagged category are combined in this figure. The signal contribution is shown with an open histogram for a hypothetical cross section of $ \sigma_{\gamma\mathrm{H}}\times{\cal B}(\mathrm{H}\to\mathrm{b} \overline{\mathrm{b}})= $ 10\,fb for either the $ c_{\gamma\gamma} $ (solid) and $ c_{z\gamma} $ (dashed) coupling hypothesis.

png pdf
Figure 7:
Constraints on $ \sigma_{\gamma H} $ from the combination of the $ \mathrm{H}\to\mathrm{b} \overline{\mathrm{b}} $ and 4 $ \ell $ channels. The results are shown with only $ c_{\gamma\gamma} $ and $ \tilde{c}_{\gamma\gamma} $ floating in the fit (blue) and with all four couplings allowed to float (black). Observed (solid) and expected (dashed) likelihood scans are shown. The dashed horizontal lines show the 68% and 95% CL exclusion regions.

png pdf
Figure 8:
Constraints on the square of $ c_{\gamma\gamma} $ (or $ \tilde{c}_{\gamma\gamma} $) and $ c_{z\gamma} $ (or $ \tilde{c}_{z\gamma} $) from the combination of the $ \mathrm{H}\to\mathrm{b} \overline{\mathrm{b}} $ and 4 $ \ell $ channels. The other couplings are either fixed to the null SM expectation (blue) or are left floating in the fit (red). Observed (solid) and expected (dashed) likelihood scans are shown. The dashed horizontal lines show the 68% and 95% CL exclusion regions.

png pdf
Figure 8-a:
Constraints on the square of $ c_{\gamma\gamma} $ (or $ \tilde{c}_{\gamma\gamma} $) and $ c_{z\gamma} $ (or $ \tilde{c}_{z\gamma} $) from the combination of the $ \mathrm{H}\to\mathrm{b} \overline{\mathrm{b}} $ and 4 $ \ell $ channels. The other couplings are either fixed to the null SM expectation (blue) or are left floating in the fit (red). Observed (solid) and expected (dashed) likelihood scans are shown. The dashed horizontal lines show the 68% and 95% CL exclusion regions.

png pdf
Figure 8-b:
Constraints on the square of $ c_{\gamma\gamma} $ (or $ \tilde{c}_{\gamma\gamma} $) and $ c_{z\gamma} $ (or $ \tilde{c}_{z\gamma} $) from the combination of the $ \mathrm{H}\to\mathrm{b} \overline{\mathrm{b}} $ and 4 $ \ell $ channels. The other couplings are either fixed to the null SM expectation (blue) or are left floating in the fit (red). Observed (solid) and expected (dashed) likelihood scans are shown. The dashed horizontal lines show the 68% and 95% CL exclusion regions.

png pdf
Figure 9:
Constraints on $ \kappa_{\mathrm{u}} $, $ \kappa_{\mathrm{d}} $, $ \kappa_{\mathrm{s}} $, and $ \kappa_{\mathrm{c}} $ are shown using the $ \mathrm{H}\to4\ell $ channel. In scenario one (black), all couplings except the one being shown are fixed at their SM values. In scenario two (blue), the Yukawa couplings for the three other light quarks are left unconstrained, and BSM contributions are allowed: $ \kappa_{\mathrm{Z}\mathrm{Z}}^2\le $ 1 and $ \Gamma^\textrm{BSM}_\mathrm{H}\ge $ 0. Both observed (solid) and expected (dashed) constraints are presented. The dashed horizontal lines indicate the 68% and 95% CL exclusion regions.

png pdf
Figure 9-a:
Constraints on $ \kappa_{\mathrm{u}} $, $ \kappa_{\mathrm{d}} $, $ \kappa_{\mathrm{s}} $, and $ \kappa_{\mathrm{c}} $ are shown using the $ \mathrm{H}\to4\ell $ channel. In scenario one (black), all couplings except the one being shown are fixed at their SM values. In scenario two (blue), the Yukawa couplings for the three other light quarks are left unconstrained, and BSM contributions are allowed: $ \kappa_{\mathrm{Z}\mathrm{Z}}^2\le $ 1 and $ \Gamma^\textrm{BSM}_\mathrm{H}\ge $ 0. Both observed (solid) and expected (dashed) constraints are presented. The dashed horizontal lines indicate the 68% and 95% CL exclusion regions.

png pdf
Figure 9-b:
Constraints on $ \kappa_{\mathrm{u}} $, $ \kappa_{\mathrm{d}} $, $ \kappa_{\mathrm{s}} $, and $ \kappa_{\mathrm{c}} $ are shown using the $ \mathrm{H}\to4\ell $ channel. In scenario one (black), all couplings except the one being shown are fixed at their SM values. In scenario two (blue), the Yukawa couplings for the three other light quarks are left unconstrained, and BSM contributions are allowed: $ \kappa_{\mathrm{Z}\mathrm{Z}}^2\le $ 1 and $ \Gamma^\textrm{BSM}_\mathrm{H}\ge $ 0. Both observed (solid) and expected (dashed) constraints are presented. The dashed horizontal lines indicate the 68% and 95% CL exclusion regions.

png pdf
Figure 9-c:
Constraints on $ \kappa_{\mathrm{u}} $, $ \kappa_{\mathrm{d}} $, $ \kappa_{\mathrm{s}} $, and $ \kappa_{\mathrm{c}} $ are shown using the $ \mathrm{H}\to4\ell $ channel. In scenario one (black), all couplings except the one being shown are fixed at their SM values. In scenario two (blue), the Yukawa couplings for the three other light quarks are left unconstrained, and BSM contributions are allowed: $ \kappa_{\mathrm{Z}\mathrm{Z}}^2\le $ 1 and $ \Gamma^\textrm{BSM}_\mathrm{H}\ge $ 0. Both observed (solid) and expected (dashed) constraints are presented. The dashed horizontal lines indicate the 68% and 95% CL exclusion regions.

png pdf
Figure 9-d:
Constraints on $ \kappa_{\mathrm{u}} $, $ \kappa_{\mathrm{d}} $, $ \kappa_{\mathrm{s}} $, and $ \kappa_{\mathrm{c}} $ are shown using the $ \mathrm{H}\to4\ell $ channel. In scenario one (black), all couplings except the one being shown are fixed at their SM values. In scenario two (blue), the Yukawa couplings for the three other light quarks are left unconstrained, and BSM contributions are allowed: $ \kappa_{\mathrm{Z}\mathrm{Z}}^2\le $ 1 and $ \Gamma^\textrm{BSM}_\mathrm{H}\ge $ 0. Both observed (solid) and expected (dashed) constraints are presented. The dashed horizontal lines indicate the 68% and 95% CL exclusion regions.
Tables

png pdf
Table 1:
Observed and expected constraints on the $ \gamma\mathrm{H} $ cross section $ \sigma_{\gamma\mathrm{H}} $ and on the $ c_{\gamma\gamma} $, $ c_{z\gamma} $, $ \tilde{c}_{\gamma\gamma} $, $ \tilde{c}_{z\gamma} $ couplings using the $ \mathrm{H}\to\mathrm{b} \overline{\mathrm{b}} $ and 4 $ \ell $ channels combined. The third row shows constraints on cross section multiplied by the $ \mathrm{H}\to4\ell $ branching fraction using the $ \mathrm{H}\to4\ell $ channel only. The 68% (central value with uncertainties) and 95% (upper limit or allowed intervals) CL exclusion regions are shown.

png pdf
Table 2:
Central values of the input and derived parameters used in calculations involving Eqs. (4) and (5). The list of partons ($ p $) comprises gluons ($ \mathrm{g} $) and five quark flavors ($ \mathrm{q} $). All cross sections $ \sigma_i $ are computed for the inclusive on-shell H boson production using the SM values for all couplings, except for the specific coupling $ \kappa_{\mathrm{q}} $ that is explicitly mentioned.

png pdf
Table 3:
Observed and expected constraints on the $ \kappa_{\mathrm{u}} $, $ \kappa_{\mathrm{d}} $, $ \kappa_{\mathrm{s}} $, and $ \kappa_{\mathrm{c}} $ couplings are shown using the $ \mathrm{H}\to4\ell $ channel. In one scenario, all couplings except the one being shown are fixed at their SM values. In the other scenario, the Yukawa couplings for the three other light quarks are left unconstrained, and BSM contributions are allowed. The 68% CL (central value with error bars) and 95% CL (bracketed range or upper limit) exclusion regions are displayed.

png pdf
Table 4:
Observed and expected constraints on the $ \bar\kappa_{\mathrm{u}} $, $ \bar\kappa_{\mathrm{d}} $, $ \bar\kappa_{\mathrm{s}} $, and $ \bar\kappa_{\mathrm{c}} $ defined as $ \bar\kappa_{\mathrm{q}}=\kappa_{\mathrm{q}}m_{\mathrm{q}}/m_{\mathrm{b}} $, following the same conventions as outlined in Table 3.
Summary
A search for $ \gamma\mathrm{H} $ production is performed with the data from the CMS experiment at the LHC corresponding to an integrated luminosity of 138 fb$ ^{-1} $ at a proton-proton center-of-mass collision energy of 13 TeV. The analysis focuses on the topology of a boosted Higgs boson recoiling against a high-energy photon. The final states of $ \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}} $ and 4 $ \ell $ are analyzed. This study examines effective $ \mathrm{H}\mathrm{Z}\gamma $ and $ \mathrm{H}\gamma\gamma $ anomalous couplings within the context of Effective Field Theory. In this approach, the production cross section for $ \gamma\mathrm{H} $ is constrained to be $ \sigma_{\gamma\mathrm{H}} < $ 15.7 fb at 95% CL. Additionally, simultaneous constraints on four anomalous couplings involving $ \mathrm{H}\mathrm{Z}\gamma $ and $ \mathrm{H}\gamma\gamma $ are provided. The production rate for $ \mathrm{H}\to4\ell $ is also examined to assess potential enhancements in the Yukawa couplings between light quarks and the Higgs boson. This includes examining modifications to both direct quark-antiquark annihilation and gluon fusion loop processes. Assuming the standard model Yukawa couplings for the bottom and top quarks, the following simultaneous constraints are obtained: $ \kappa_{\mathrm{u}}=$ (0.0 $ \pm $ 1.5) $\times$ 10$^{3} $, $ \kappa_{\mathrm{d}}=$ (0.0 $ \pm $ 7.1) $\times$ 10$^{2} $, $ \kappa_{\mathrm{s}}= $ 0$ ^{+33}_{-34} $, and $ \kappa_{\mathrm{c}}= $ 0.0$ ^{+2.7}_{-3.0} $, ruling out the hypothesis that up-type and down-type quarks in the first or second generation have the same Yukawa couplings as those in the third generation, with a CL greater than 95%.
References
1 ATLAS Collaboration Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s}= $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 S. L. Glashow Partial-symmetries of weak interactions NP 22 (1961) 579
5 F. Englert and R. Brout Broken symmetry and the mass of gauge vector mesons PRL 13 (1964) 321
6 P. W. Higgs Broken symmetries, massless particles and gauge fields PL 12 (1964) 132
7 P. W. Higgs Broken symmetries and the masses of gauge bosons PRL 13 (1964) 508
8 G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble Global conservation laws and massless particles PRL 13 (1964) 585
9 S. Weinberg A model of leptons PRL 19 (1967) 1264
10 A. Salam Weak and electromagnetic interactions in Elementary particle physics: relativistic groups and analyticity, N. Svartholm, ed., Almqvist & Wiksell, Stockholm, Proceedings of the eighth Nobel symposium, 1968
11 CMS Collaboration On the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs PRL 110 (2013) 081803 CMS-HIG-12-041
1212.6639
12 CMS Collaboration Measurement of the properties of a Higgs boson in the four-lepton final state PRD 89 (2014) 092007 CMS-HIG-13-002
1312.5353
13 CMS Collaboration Constraints on the spin-parity and anomalous $ \mathrm{H}\mathrm{V}\mathrm{V} $ couplings of the Higgs boson in proton collisions at 7 and 8 TeV PRD 92 (2015) 012004 CMS-HIG-14-018
1411.3441
14 CMS Collaboration Limits on the Higgs boson lifetime and width from its decay to four charged leptons PRD 92 (2015) 072010 CMS-HIG-14-036
1507.06656
15 CMS Collaboration Combined search for anomalous pseudoscalar $ \mathrm{H}\mathrm{V}\mathrm{V} $ couplings in VH ($ \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}} $) production and $ \mathrm{H}\to\mathrm{VV} $ decay PLB 759 (2016) 672 CMS-HIG-14-035
1602.04305
16 CMS Collaboration Constraints on anomalous Higgs boson couplings using production and decay information in the four-lepton final state PLB 775 (2017) 1 CMS-HIG-17-011
1707.00541
17 CMS Collaboration Measurements of the Higgs boson width and anomalous HVV couplings from on-shell and off-shell production in the four-lepton final state PRD 99 (2019) 112003 CMS-HIG-18-002
1901.00174
18 CMS Collaboration Constraints on anomalous $ HVV $ couplings from the production of Higgs bosons decaying to $ \tau $ lepton pairs PRD 100 (2019) 112002 CMS-HIG-17-034
1903.06973
19 CMS Collaboration Constraints on anomalous Higgs boson couplings to vector bosons and fermions in its production and decay using the four-lepton final state PRD 104 (2021) 052004 CMS-HIG-19-009
2104.12152
20 CMS Collaboration Measurement of the Higgs boson width and evidence of its off-shell contributions to ZZ production Nature Phys. 18 (2022) 1329 CMS-HIG-21-013
2202.06923
21 CMS Collaboration Constraints on anomalous Higgs boson couplings to vector bosons and fermions from the production of Higgs bosons using the $\tau\tau$ final state PRD 108 (2023) 032013 CMS-HIG-20-007
2205.05120
22 ATLAS Collaboration Evidence for the spin-0 nature of the Higgs boson using ATLAS data PLB 726 (2013) 120 1307.1432
23 ATLAS Collaboration Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector EPJC 75 (2015) 476 1506.05669
24 ATLAS Collaboration Test of CP Invariance in vector-boson fusion production of the Higgs boson using the Optimal Observable method in the ditau decay channel with the ATLAS detector EPJC 76 (2016) 658 1602.04516
25 ATLAS Collaboration Measurement of inclusive and differential cross sections in the $ \mathrm{H} \rightarrow \mathrm{Z}\mathrm{Z}^{*} \rightarrow 4\ell $ decay channel in pp collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector JHEP 10 (2017) 132 1708.02810
26 ATLAS Collaboration Measurement of the Higgs boson coupling properties in the $ H\rightarrow ZZ^{*} \rightarrow 4\ell $ decay channel at $ \sqrt{s} $ = 13 TeV with the ATLAS detector JHEP 03 (2018) 095 1712.02304
27 ATLAS Collaboration Measurements of Higgs boson properties in the diphoton decay channel with 36 fb$ ^{-1} $ of pp collision data at $ \sqrt{s} = $ 13 TeV with the ATLAS detector PRD 98 (2018) 052005 1802.04146
28 ATLAS Collaboration Higgs boson production cross-section measurements and their EFT interpretation in the 4 $ \ell $ decay channel at $ \sqrt{s}= $ 13 TeV with the ATLAS detector EPJC 80 (2020) 957 2004.03447
29 ATLAS Collaboration Test of CP Invariance in Higgs Boson Vector-Boson-Fusion Production Using the H$ \rightarrow{\gamma}{\gamma} $ Channel with the ATLAS Detector PRL 131 (2023) 061802 2208.02338
30 ATLAS Collaboration Test of CP-invariance of the Higgs boson in vector-boson fusion production and its decay into four leptons JHEP 0 (2023) 5 2304.09612
31 D. de Florian et al. Handbook of LHC Higgs cross sections: 4. deciphering the nature of the Higgs sector CERN Report CERN-2017-002-M, 2016
link
1610.07922
32 ATLAS Collaboration Search for heavy resonances decaying to a photon and a hadronically decaying $ Z/W/H $ boson in $ pp $ collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector PRD 98 (2018) 032015 1805.01908
33 ATLAS Collaboration Search for heavy resonances decaying into a photon and a hadronically decaying Higgs boson in $ pp $ collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector PRL 125 (2020) 251802 2008.05928
34 A. Abbasabadi, D. Bowser-Chao, D. A. Dicus, and W. W. Repko Higgs - photon associated production at hadron colliders PRD 58 (1998) 057301 hep-ph/9706335
35 H. Khanpour, S. Khatibi, and M. M. Najafabadi Probing higgs boson couplings in H+$ \gamma $ production at the LHC PLB 773 (2017) 462 1702.05753
36 L. Shi, Z. Liang, B. Liu, and Z. He Constraining the anomalous Higgs boson coupling in $ H $+$ \gamma $ production Chin. Phys. C 43 (2019) 043001 1811.02261
37 J. Davis et al. Constraining anomalous Higgs boson couplings to virtual photons PRD 105 (2022) 096027 2109.13363
38 I. Brivio, Y. Jiang, and M. Trott The smeftsim package, theory and tools JHEP 70 (2017) 1709.06492
39 I. Brivio The smeftsim package, theory and tools JHEP 73 (2021) 2012.11343
40 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 1405.0301
41 A. Dedes et al. Feynman rules for the Standard Model Effective Field Theory in R$ _{\xi}$-gauges JHEP 06 (2017) 143 1704.03888
42 ATLAS Collaboration Drell-Yan Tails Beyond the Standard Model JHEP 03 (2023) 064
43 A. L. Kagan et al. Exclusive Window onto Higgs Yukawa Couplings PRL 114 (2015) 101802 1406.1722
44 J. A. Aguilar-Saavedra, J. M. Cano, and J. M. No More light on Higgs flavor at the LHC: Higgs boson couplings to light quarks through $ h+\gamma $ production PRD 103 (2021) 095023 2008.12538
45 Y. Zhou Constraining the Higgs boson coupling to light quarks in the $ H\rightarrow ZZ $ final states PRD 93 (2016) 013019 1505.06369
46 Y. Zhou Probing Anomalous Couplings of the Higgs Boson to Weak Bosons and Fermions with Precision Calculations PhD thesis, Johns Hopkins University, CERN-THESIS-2019-007, 2019
link
47 E. Balzani, R. Gröber, and M. Vitti Light-quark Yukawa couplings from off-shell Higgs production JHEP 10 (2023) 027 2304.09772
48 F. Bishara, U. Haisch, P. F. Monni, and E. Re Constraining Light-Quark Yukawa Couplings from Higgs Distributions PRL 118 (2017) 121801 1606.09253
49 CMS Collaboration Measurement and interpretation of differential cross sections for Higgs boson production at $ \sqrt{s} = $ 13 TeV PLB 792 (2019) 369 CMS-HIG-17-028
1812.06504
50 ATLAS Collaboration Measurement of the total and differential Higgs boson production cross-sections at $ \sqrt{s} $ = 13 TeV with the ATLAS detector by combining the $ H\rightarrow ZZ \rightarrow 4\ell $ and $ H \rightarrow{\gamma}{\gamma} $ decay channels JHEP 05 (2023) 028 2207.08615
51 CMS Collaboration Measurements of inclusive and differential cross sections for the Higgs boson production and decay to four-leptons in proton-proton collisions at $ \sqrt{s} $ = 13 TeV JHEP 08 (2023) 040 CMS-HIG-21-009
2305.07532
52 G. T. Bodwin, F. Petriello, S. Stoynev, and M. Velasco Higgs boson decays to quarkonia and the $ H\bar{c}c $ coupling PRD 88 (2013) 053003 1306.5770
53 CMS Collaboration Search for Higgs Boson Decay to a Charm Quark-Antiquark Pair in Proton-Proton Collisions at $\sqrt{s}=$ 13 TeV PRL 131 (2023) 061801 CMS-HIG-21-008
2205.05550
54 ATLAS Collaboration Direct constraint on the Higgs-charm coupling from a search for Higgs boson decays into charm quarks with the ATLAS detector EPJC 82 (2022) 717 2201.11428
55 CMS Collaboration Search for Higgs boson production in association with a charm quark in the diphoton decay channel Technical Report, CERN, Geneva, 2024
link
56 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
57 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
58 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
59 CMS Collaboration Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015
CDS
60 CMS Collaboration Particle-flow reconstruction and global event description with the cms detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
61 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
62 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
63 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
64 GEANT4 Collaboration GEANT4 -- a simulation toolkit NIM A 506 (2003) 250
65 CMS Collaboration Measurement of the inelastic proton-proton cross section at $ \sqrt{s} = $ 13 TeV JHEP 07 (2018) 161 CMS-FSQ-15-005
1802.02613
66 NNPDF Collaboration Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO NPB 855 (2012) 153 1107.2652
67 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
68 Y. Gao et al. Spin determination of single-produced resonances at hadron colliders PRD 81 (2010) 075022 1001.3396
69 S. Bolognesi et al. Spin and parity of a single-produced resonance at the LHC PRD 86 (2012) 095031 1208.4018
70 I. Anderson et al. Constraining anomalous $ \mathrm{H}\mathrm{V}\mathrm{V} $ interactions at proton and lepton colliders PRD 89 (2014) 035007 1309.4819
71 A. V. Gritsan, R. Röntsch, M. Schulze, and M. Xiao Constraining anomalous Higgs boson couplings to the heavy flavor fermions using matrix element techniques PRD 94 (2016) 055023 1606.03107
72 A. V. Gritsan et al. New features in the JHU generator framework: constraining Higgs boson properties from on-shell and off-shell production Phys. Rev. D, 2020
link
2002.09888
73 J. M. Campbell and R. K. Ellis MCFM for the Tevatron and the LHC -206 10, 2010
Nucl. Phys. Proc. Suppl. 20 (2010) 5
1007.3492
74 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
75 E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM JHEP 02 (2012) 088 1111.2854
76 P. Nason and C. Oleari NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG JHEP 02 (2010) 037 0911.5299
77 G. Luisoni, P. Nason, C. Oleari, and F. Tramontano $ \mathrm{H}\mathrm{W}^{\pm} /HZ$ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO JHEP 10 (2013) 083 1306.2542
78 H. B. Hartanto, B. Jager, L. Reina, and D. Wackeroth Higgs boson production in association with top quarks in the POWHEG BOX PRD 91 (2015) 094003 1501.04498
79 J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions EPJC 53 (2007) 473 0706.2569
80 R. Frederix and S. Frixione Merging meets matching in mc@nlo (December, ), 2012
Journal of High Energy Physics 201 (2012) 2
1209.6215
81 J. M. Lindert et al. Precise predictions for V+jets dark matter backgrounds EPJC 77 (2017) 1705.04664
82 A. Denner, S. Dittmaier, M. Hecht, and C. Pasold NLO QCD and electroweak corrections to Z+$ \gamma $ production with leptonic Z-boson decays Journal of High Energy Physics 02 (2016)
83 M. Grazzini, S. Kallweit, and D. Rathlev ZZ production at the LHC: fiducial cross sections and distributions in NNLO QCD PLB 750 (2015) 407 1507.06257
84 J. M. Campbell, R. K. Ellis, and C. Williams Vector boson pair production at the LHC JHEP 07 (2011) 018 1105.0020
85 J. M. Campbell, R. K. Ellis, and C. Williams Bounding the Higgs width at the LHC using full analytic results for $ \mathrm{g}\mathrm{g}\to \mathrm{e}^{-}\mathrm{e}^{+} \mu^{-} \mu^{+} $ JHEP 04 (2014) 060 1311.3589
86 J. M. Campbell and R. K. Ellis Higgs constraints from vector boson fusion and scattering JHEP 04 (2015) 030 1502.02990
87 CMS Collaboration Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at $ \sqrt{s}= $ 13 TeV JHEP 11 (2017) 047 CMS-HIG-16-041
1706.09936
88 CMS Collaboration Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton proton collisions at $ \sqrt{s} = $ 13 TeV EPJC 81 (2021) 488 CMS-HIG-19-001
2103.04956
89 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) CMS-EGM-17-001
2012.06888
90 CMS Collaboration Mass regression of highly-boosted jets using graph neural networks CMS Detector Performance Note CMS-DP-2021-017, 2021
CDS
91 CMS Collaboration Calibration of the mass-decorrelated ParticleNet tagger for boosted $ \mathrm{b}\overline{\mathrm{b}} $ and $ \mathrm{c}\overline{\mathrm{c}} $ jets using LHC Run 2 data CMS Detector Performance Note CMS-DP-2022-005, 2022
CDS
92 CMS Collaboration Search for nonresonant pair production of highly energetic higgs bosons decaying to bottom quarks PRL 13 (2023) 041803 2205.06667
93 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
94 H. Qu and L. Gouskos Jet tagging via particle clouds PRD 101 (2020) 056019 1902.08570
95 CMS Collaboration Performance of heavy-flavour jet identification in boosted topologies in proton-proton collisions at $ \sqrt{s} = $ 13 TeV technical report, CERN, Geneva, 2023
CDS
96 R. G. Lomax and D. L. Hahs-Vaughn Statistical concepts: a second course Taylor and Francis, 2012
97 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
98 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} $ = 13 TeV CMS Physics Analysis Summary, 2018
link
CMS-PAS-LUM-17-004
99 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} $ = 13 TeV CMS Physics Analysis Summary, 2019
link
CMS-PAS-LUM-18-002
100 CMS Collaboration The CMS statistical analysis and combination tool: Combine Submitted to Comput. Softw. Big Sci, 2024 CMS-CAT-23-001
2404.06614
101 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1007.1727
102 M. Spira QCD effects in Higgs physics Fortsch. Phys. 46 (1998) 203 hep-ph/9705337
103 G.-y. Huang and S. Zhou Precise Values of Running Quark and Lepton Masses in the Standard Model PRD 103 (2021) 016010 2009.04851
104 R. V. Harlander, S. Liebler, and H. Mantler SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM Comput. Phys. Commun. 184 (2013) 1605 1212.3249
105 R. V. Harlander Higgs production in heavy quark annihilation through next-to-next-to-leading order QCD EPJC 76 (2016) 252 1512.04901
106 LHC Higgs Cross Section Working Group Collaboration Handbook of LHC Higgs Cross Sections: 3. Higgs Properties 1307.1347
107 ATLAS Collaboration Evidence of off-shell Higgs boson production from ZZ leptonic decay channels and constraints on its total width with the ATLAS detector PLB 846 (2023) 138223 2304.01532
108 ATLAS Collaboration A detailed map of Higgs boson interactions by the atlas experiment ten years after the discovery Nature 607 (2022) 52 2207.00092
109 CMS Collaboration A portrait of the Higgs boson by the CMS experiment ten years after the discovery Nature 607 (2022) 60 CMS-HIG-22-001
2207.00043
Compact Muon Solenoid
LHC, CERN