CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIG-23-014 ; CERN-EP-2025-067
Measurements of inclusive and differential Higgs boson production cross sections at $ \sqrt{s} = $ 13.6 TeV in the $ \mathrm{H}\to\gamma\gamma $ decay channel
JHEP 09 (2025) 070
Abstract: Inclusive and differential cross sections for Higgs boson production in proton-proton collisions at a centre-of-mass energy of 13.6 TeV are measured using data collected with the CMS detector at the LHC in 2022, corresponding to an integrated luminosity of 34.7 fb$ ^{-1} $. Events with the diphoton final state are selected, and the measured inclusive fiducial cross section is $ \sigma_{\text{fid}}= $ 74 $ \pm $ 11 (stat) $ ^{+5}_{-4} $ (syst) fb, in agreement with the standard model prediction of 67.8 $ \pm $ 3.8 fb. Differential cross sections are measured as functions of several observables: the Higgs boson transverse momentum and rapidity, the number of associated jets, and the transverse momentum of the leading jet in the event. Within the uncertainties, the differential cross sections agree with the standard model predictions.
Figures & Tables Summary Additional Figures References CMS Publications
Figures

png pdf
Figure 1:
Normalized distributions of the photon identification BDT scores for prompt (blue) and non-prompt (orange) photons from $ \gamma$ + jet simulated events. The shaded region indicates the photons that are rejected by the photon preselection requirement of $ {>} - $0.9.

png pdf
Figure 2:
Data-to-simulation comparison for $ \sigma_{E} $ (upper left), $ H/E $ (upper right), the photon identification BDT score in EB (lower left) and EE (lower right) for electrons from $ \mathrm{Z} \to \mathrm{e}\mathrm{e} $ decays reconstructed as photons. The uncorrected distributions are shown in blue and the corrected distributions from the normalizing flow are shown in green. The error bars in the ratio panels include the statistical uncertainty from the data and the uncertainty from the limited number of simulated events. For the distributions of the photon identification BDT score, the shaded region corresponds to photons with a BDT score $ {<} $ 0.25, which are excluded by the selection applied in the cross section measurements. For the $ \sigma_{E} $ distribution, the last bin contains the overflow.

png pdf
Figure 2-a:
Data-to-simulation comparison for $ \sigma_{E} $ (upper left), $ H/E $ (upper right), the photon identification BDT score in EB (lower left) and EE (lower right) for electrons from $ \mathrm{Z} \to \mathrm{e}\mathrm{e} $ decays reconstructed as photons. The uncorrected distributions are shown in blue and the corrected distributions from the normalizing flow are shown in green. The error bars in the ratio panels include the statistical uncertainty from the data and the uncertainty from the limited number of simulated events. For the distributions of the photon identification BDT score, the shaded region corresponds to photons with a BDT score $ {<} $ 0.25, which are excluded by the selection applied in the cross section measurements. For the $ \sigma_{E} $ distribution, the last bin contains the overflow.

png pdf
Figure 2-b:
Data-to-simulation comparison for $ \sigma_{E} $ (upper left), $ H/E $ (upper right), the photon identification BDT score in EB (lower left) and EE (lower right) for electrons from $ \mathrm{Z} \to \mathrm{e}\mathrm{e} $ decays reconstructed as photons. The uncorrected distributions are shown in blue and the corrected distributions from the normalizing flow are shown in green. The error bars in the ratio panels include the statistical uncertainty from the data and the uncertainty from the limited number of simulated events. For the distributions of the photon identification BDT score, the shaded region corresponds to photons with a BDT score $ {<} $ 0.25, which are excluded by the selection applied in the cross section measurements. For the $ \sigma_{E} $ distribution, the last bin contains the overflow.

png pdf
Figure 2-c:
Data-to-simulation comparison for $ \sigma_{E} $ (upper left), $ H/E $ (upper right), the photon identification BDT score in EB (lower left) and EE (lower right) for electrons from $ \mathrm{Z} \to \mathrm{e}\mathrm{e} $ decays reconstructed as photons. The uncorrected distributions are shown in blue and the corrected distributions from the normalizing flow are shown in green. The error bars in the ratio panels include the statistical uncertainty from the data and the uncertainty from the limited number of simulated events. For the distributions of the photon identification BDT score, the shaded region corresponds to photons with a BDT score $ {<} $ 0.25, which are excluded by the selection applied in the cross section measurements. For the $ \sigma_{E} $ distribution, the last bin contains the overflow.

png pdf
Figure 2-d:
Data-to-simulation comparison for $ \sigma_{E} $ (upper left), $ H/E $ (upper right), the photon identification BDT score in EB (lower left) and EE (lower right) for electrons from $ \mathrm{Z} \to \mathrm{e}\mathrm{e} $ decays reconstructed as photons. The uncorrected distributions are shown in blue and the corrected distributions from the normalizing flow are shown in green. The error bars in the ratio panels include the statistical uncertainty from the data and the uncertainty from the limited number of simulated events. For the distributions of the photon identification BDT score, the shaded region corresponds to photons with a BDT score $ {<} $ 0.25, which are excluded by the selection applied in the cross section measurements. For the $ \sigma_{E} $ distribution, the last bin contains the overflow.

png pdf
Figure 3:
Data-to-simulation comparison of the per-event decorrelated mass-resolution estimator $ \sigma_m/m $ using $ \mathrm{Z} \to \mathrm{e}\mathrm{e} $ events. Both electrons are reconstructed as photons and categorized either both in the EB (left) or at least one in the EE (right). The uncertainty band in the lower panel represents the systematic uncertainty based on the residual mismodelling of $ \sigma_E/E $ (5%). The error bars on the markers in the lower panels include the statistical uncertainty from data and the uncertainty from a limited number of simulated events. The last bin contains the overflow.

png pdf
Figure 3-a:
Data-to-simulation comparison of the per-event decorrelated mass-resolution estimator $ \sigma_m/m $ using $ \mathrm{Z} \to \mathrm{e}\mathrm{e} $ events. Both electrons are reconstructed as photons and categorized either both in the EB (left) or at least one in the EE (right). The uncertainty band in the lower panel represents the systematic uncertainty based on the residual mismodelling of $ \sigma_E/E $ (5%). The error bars on the markers in the lower panels include the statistical uncertainty from data and the uncertainty from a limited number of simulated events. The last bin contains the overflow.

png pdf
Figure 3-b:
Data-to-simulation comparison of the per-event decorrelated mass-resolution estimator $ \sigma_m/m $ using $ \mathrm{Z} \to \mathrm{e}\mathrm{e} $ events. Both electrons are reconstructed as photons and categorized either both in the EB (left) or at least one in the EE (right). The uncertainty band in the lower panel represents the systematic uncertainty based on the residual mismodelling of $ \sigma_E/E $ (5%). The error bars on the markers in the lower panels include the statistical uncertainty from data and the uncertainty from a limited number of simulated events. The last bin contains the overflow.

png pdf
Figure 4:
Combined parametrized signal shapes per category and for the sum of all categories for the measurement of the inclusive cross section. The open squares denote the expectation from the simulation and the blue lines show the parametric models that describe the simulations. The uncertainty bars for the expectation from the simulation due to the limited number of simulated events are smaller than the marker size. The normalization of the histograms corresponds to the expected number of events, taking into account the cross sections of the considered production modes, the efficiency of the selection, and the integrated luminosity of 34.7 fb$ ^{-1} $. The effective mass resolution $ \sigma_{\text{eff}} $ (defined as half of the width of the smallest interval containing 68.3% of the area of the distribution) for each combined signal model is indicated in the grey area.

png pdf
Figure 4-a:
Combined parametrized signal shapes per category and for the sum of all categories for the measurement of the inclusive cross section. The open squares denote the expectation from the simulation and the blue lines show the parametric models that describe the simulations. The uncertainty bars for the expectation from the simulation due to the limited number of simulated events are smaller than the marker size. The normalization of the histograms corresponds to the expected number of events, taking into account the cross sections of the considered production modes, the efficiency of the selection, and the integrated luminosity of 34.7 fb$ ^{-1} $. The effective mass resolution $ \sigma_{\text{eff}} $ (defined as half of the width of the smallest interval containing 68.3% of the area of the distribution) for each combined signal model is indicated in the grey area.

png pdf
Figure 4-b:
Combined parametrized signal shapes per category and for the sum of all categories for the measurement of the inclusive cross section. The open squares denote the expectation from the simulation and the blue lines show the parametric models that describe the simulations. The uncertainty bars for the expectation from the simulation due to the limited number of simulated events are smaller than the marker size. The normalization of the histograms corresponds to the expected number of events, taking into account the cross sections of the considered production modes, the efficiency of the selection, and the integrated luminosity of 34.7 fb$ ^{-1} $. The effective mass resolution $ \sigma_{\text{eff}} $ (defined as half of the width of the smallest interval containing 68.3% of the area of the distribution) for each combined signal model is indicated in the grey area.

png pdf
Figure 4-c:
Combined parametrized signal shapes per category and for the sum of all categories for the measurement of the inclusive cross section. The open squares denote the expectation from the simulation and the blue lines show the parametric models that describe the simulations. The uncertainty bars for the expectation from the simulation due to the limited number of simulated events are smaller than the marker size. The normalization of the histograms corresponds to the expected number of events, taking into account the cross sections of the considered production modes, the efficiency of the selection, and the integrated luminosity of 34.7 fb$ ^{-1} $. The effective mass resolution $ \sigma_{\text{eff}} $ (defined as half of the width of the smallest interval containing 68.3% of the area of the distribution) for each combined signal model is indicated in the grey area.

png pdf
Figure 4-d:
Combined parametrized signal shapes per category and for the sum of all categories for the measurement of the inclusive cross section. The open squares denote the expectation from the simulation and the blue lines show the parametric models that describe the simulations. The uncertainty bars for the expectation from the simulation due to the limited number of simulated events are smaller than the marker size. The normalization of the histograms corresponds to the expected number of events, taking into account the cross sections of the considered production modes, the efficiency of the selection, and the integrated luminosity of 34.7 fb$ ^{-1} $. The effective mass resolution $ \sigma_{\text{eff}} $ (defined as half of the width of the smallest interval containing 68.3% of the area of the distribution) for each combined signal model is indicated in the grey area.

png pdf
Figure 5:
Likelihood scans for the inclusive fiducial cross section measurement. The black line corresponds to considering both the statistical and systematic uncertainties. The blue dash-dotted line corresponds to considering only the statistical uncertainty, including the discrete profiling method for the background modelling uncertainty. The theoretical prediction from MadGraph-5_aMC@NLO, including the NNLOPS reweighting for the ggH component, is shown in red. The shaded theory uncertainty band includes the uncertainties in the renormalization and factorization scales, in the parton distribution functions, in $ \alpha_\mathrm{S} $, in the $ \mathcal{B}(\mathrm{H}\to\gamma\gamma) $, and in the fiducial acceptance.

png pdf
Figure 6:
Diphoton invariant mass distribution in the inclusive fiducial measurement, weighted by $ S/(S+B) $ for the different mass-resolution categories. The distribution is shown together with the signal$ + $background fit (red line) and the background-only component (dashed line). In the lower panel, the signal component is shown, estimated by subtracting the background component from the signal$ + $background fit. The green (yellow) bands indicate the $ \pm1\sigma $ ($ \pm2\sigma $) uncertainties in the background component. They are derived from pseudoexperiments using the best-fit background function from the signal+background fit.

png pdf
Figure 7:
Differential fiducial cross sections for $ p_{\mathrm{T}}^{\mathrm{H}} $ (left) and the corresponding correlation matrix (right). The measured cross section in each bin is divided by the corresponding bin width. The coloured lines denote the predictions from different event generation setups, explained in the legend and in the text. The dashed boxes show the uncertainties in theoretical predictions on both the ggH and $ \mathrm{x\mathrm{H}} $ components. The $ p $-value is calculated for the nominal SM prediction, which is MadGraph-5_aMC@NLO with NNLOPS (MG5_aMC@NLO + NNLOPS) reweighting. The lower panel in the left plot shows the ratio to the nominal SM prediction. The last bin extends to infinity and the normalization of the bin is indicated in the plot.

png pdf
Figure 7-a:
Differential fiducial cross sections for $ p_{\mathrm{T}}^{\mathrm{H}} $ (left) and the corresponding correlation matrix (right). The measured cross section in each bin is divided by the corresponding bin width. The coloured lines denote the predictions from different event generation setups, explained in the legend and in the text. The dashed boxes show the uncertainties in theoretical predictions on both the ggH and $ \mathrm{x\mathrm{H}} $ components. The $ p $-value is calculated for the nominal SM prediction, which is MadGraph-5_aMC@NLO with NNLOPS (MG5_aMC@NLO + NNLOPS) reweighting. The lower panel in the left plot shows the ratio to the nominal SM prediction. The last bin extends to infinity and the normalization of the bin is indicated in the plot.

png pdf
Figure 7-b:
Differential fiducial cross sections for $ p_{\mathrm{T}}^{\mathrm{H}} $ (left) and the corresponding correlation matrix (right). The measured cross section in each bin is divided by the corresponding bin width. The coloured lines denote the predictions from different event generation setups, explained in the legend and in the text. The dashed boxes show the uncertainties in theoretical predictions on both the ggH and $ \mathrm{x\mathrm{H}} $ components. The $ p $-value is calculated for the nominal SM prediction, which is MadGraph-5_aMC@NLO with NNLOPS (MG5_aMC@NLO + NNLOPS) reweighting. The lower panel in the left plot shows the ratio to the nominal SM prediction. The last bin extends to infinity and the normalization of the bin is indicated in the plot.

png pdf
Figure 8:
Differential fiducial cross sections for $ |y^\mathrm{H}| $ (left) and the corresponding correlation matrix (right). Other details as for the caption of Fig. 7. In this case, the last bin does not extend to infinity, but it is limited to 2.5.

png pdf
Figure 8-a:
Differential fiducial cross sections for $ |y^\mathrm{H}| $ (left) and the corresponding correlation matrix (right). Other details as for the caption of Fig. 7. In this case, the last bin does not extend to infinity, but it is limited to 2.5.

png pdf
Figure 8-b:
Differential fiducial cross sections for $ |y^\mathrm{H}| $ (left) and the corresponding correlation matrix (right). Other details as for the caption of Fig. 7. In this case, the last bin does not extend to infinity, but it is limited to 2.5.

png pdf
Figure 9:
Differential fiducial cross sections for $ N_{\text{Jets}} $ (left) and the corresponding correlation matrix (right). Other details as for the caption of Fig. 7.

png pdf
Figure 9-a:
Differential fiducial cross sections for $ N_{\text{Jets}} $ (left) and the corresponding correlation matrix (right). Other details as for the caption of Fig. 7.

png pdf
Figure 9-b:
Differential fiducial cross sections for $ N_{\text{Jets}} $ (left) and the corresponding correlation matrix (right). Other details as for the caption of Fig. 7.

png pdf
Figure 10:
Differential fiducial cross sections for $ p_{\mathrm{T}}^{\mathrm{j}_1} $ (left) and the corresponding correlation matrix (right). Other details as for the caption of Fig. 7.

png pdf
Figure 10-a:
Differential fiducial cross sections for $ p_{\mathrm{T}}^{\mathrm{j}_1} $ (left) and the corresponding correlation matrix (right). Other details as for the caption of Fig. 7.

png pdf
Figure 10-b:
Differential fiducial cross sections for $ p_{\mathrm{T}}^{\mathrm{j}_1} $ (left) and the corresponding correlation matrix (right). Other details as for the caption of Fig. 7.
Tables

png pdf
Table 1:
Bin boundaries for the differential cross section measurement. The first $ p_{\mathrm{T}}^{\mathrm{j}_1} $ bin corresponds to events without jets. For the $ N_{\text{Jets}} $ binning, the right boundary should be considered as not included in the bin, i.e., [lower, upper).

png pdf
Table 2:
Magnitude of the systematic uncertainties (Impact) in the inclusive fiducial cross section measurement. The magnitude of the uncertainty from the photon energy scale and resolution is extracted by performing a fit with the corresponding group of nuisance parameters frozen to their best-fit values. The obtained confidence interval is then subtracted in quadrature from the total confidence interval from the fit where all nuisance parameters are profiled. The magnitudes of the other sources of systematic uncertainty are obtained by varying the corresponding nuisance parameter by one standard deviation, keeping the other nuisance parameters at their best-fit values.
Summary
The fiducial inclusive cross section for Higgs boson production in proton-proton collisions has been measured at a centre-of-mass energy of 13.6 TeV using the $ \mathrm{H}\to\gamma\gamma $ decay channel. The data were collected with the CMS detector at the LHC and correspond to an integrated luminosity of 34.7 fb$ ^{-1} $. A new normalizing-flow-based method is applied to correct the imperfect modelling of reconstructed photon variables in the simulation and to reduce the associated systematic uncertainties. The fiducial phase space is defined at the particle level and requires two isolated photons within the pseudorapidity $ |\eta| < $ 2.5 and not within 1.4442 $ < |\eta| < $ 1.5660. These photons must fulfil a requirement on the geometric mean of their transverse momenta scaled by their invariant mass, $ \sqrt{\smash[b]{p_{\mathrm{T}}^{\gamma_1} p_{\mathrm{T}}^{\gamma_2}}} / m_{\gamma\gamma} > 1/ $ 3, which improves the perturbative convergence of the theoretical predictions, as well as the requirement $ p_{\mathrm{T}}^{\gamma_2} / m_{\gamma\gamma} > 1/ $ 4. The measured inclusive fiducial cross section is $ \sigma_{\text{fid}} = $ 74 $ \pm $ 11 (stat) $ ^{+5}_{-4} $ (syst) fb and is in agreement with the standard-model (SM) expectation of 67.8 $ \pm $ 3.8 fb. Differential cross sections are measured as functions of the Higgs boson transverse momentum, rapidity, the number of associated jets, and the transverse momentum of the leading jet in the event. Within the uncertainties, the differential cross sections agree with the SM predictions.
Additional Figures

png pdf
Additional Figure 1:
Comparison between data (black points) and simulation (green) for the invariant mass distribution of electron pairs from Drell-Yan production reconstructed as photons. Both reconstructed photons are in the barrel region $ \lvert \eta \rvert < $ 1.4442 of the electromagnetic calorimeter. The transverse momentum of the leading (subleading) photon is required to be larger than 35 (25) GeV and loose identification criteria are applied. Scale calibrations and resolution corrections are applied to the photons in data and simulation, respectively. The error bands in the ratio panel include the uncertainty from the limited number of simulated events (blue) and the uncertainty in the energy scale and resolution of the photons (black). The statistical uncertainty on the data is smaller than the marker size.

png pdf
Additional Figure 2:
Comparison between data (black points) and simulation (green) for the invariant mass distribution of electron pairs from Drell-Yan production reconstructed as photons. At least one of the two reconstructed photons is in the endcap region 1.566 $ < \lvert \eta \rvert < $ 2.5 of the electromagnetic calorimeter. The transverse momentum of the leading (subleading) photon is required to be larger than 35 (25) GeV and loose identification criteria are applied. Scale calibrations and resolution corrections are applied to photons in data and simulation, respectively. The error bands in the ratio panel include the uncertainty from the limited number of simulated events (blue) and the uncertainty in the energy scale and resolution of the photons (black). The statistical uncertainty on the data is smaller than the marker size.

png pdf
Additional Figure 3:
Data-simulation comparison for $ \sigma_{E} $ for photons from $ Z \to \mu \mu \gamma $ decays. The uncorrected distribution is shown in blue and the corrected distribution from the normalizing flow are shown in green. The error bars in the ratio panel include the statistical uncertainty from the data and the uncertainty from the limited number of simulated events. The bars in the ratio panel are offset for visibility only. The last bin contains the overflow.

png pdf
Additional Figure 4:
Data-simulation comparison for $ H/E $ for photons from $ Z \to \mu \mu \gamma $ decays. The uncorrected distribution is shown in blue and the corrected distribution from the normalizing flow are shown in green. The error bars in the ratio panel include the statistical uncertainty from the data and the uncertainty from the limited number of simulated events. The bars in the ratio panel are offset for visibility only.

png pdf
Additional Figure 5:
Data-simulation comparison for the photon identification BDT score in EB for photons from $ Z \to \mu \mu \gamma $ decays. The uncorrected distribution is shown in blue and the corrected distribution from the normalizing flow are shown in green. The error bars in the ratio panel include the statistical uncertainty from the data and the uncertainty from the limited number of simulated events. The bars in the ratio panel are offset for visibility only. The shaded region indicates photons that would not pass the selection used in the cross section measurements, for which a requirement of $ > $ 0.25 is applied.

png pdf
Additional Figure 6:
Data-simulation comparison for the photon identification BDT score in EE for photons from $ Z \to \mu \mu \gamma $ decays. The uncorrected distribution is shown in blue and the corrected distribution from the normalizing flow are shown in green. The error bars in the ratio panel include the statistical uncertainty from the data and the uncertainty from the limited number of simulated events. The bars in the ratio panel are offset for visibility only. The shaded region indicates photons that would not pass the selection used in the cross section measurements, for which a requirement of $ > $ 0.25 is applied.

png pdf
Additional Figure 7:
Diphoton invariant mass distribution in the inclusive fiducial measurement when combining the three mass resolution categories. The \mgg\ histogram is shown together with the signal+background fit (red line) and the background-only component (dashed line). In the lower panel, the signal component is shown, estimated by subtracting the background component from the signal+background fit. The green (yellow) bands indicate the $ \pm1\sigma $ ($ \pm2\sigma $) uncertainties in the background component. They are derived from pseudoexperiments using the best-fit background function from the signal+background fit.

png pdf
Additional Figure 8:
Values of the Higgs boson production cross section $ \sigma(\rm pp\rightarrow \mathrm{H} + X) $ measured in the $ \mathrm{H}\rightarrow\gamma\gamma $ and $ \mathrm{H}\rightarrow \mathrm{Z} \mathrm{Z} $ final states as a function of the pp centre-of-mass energy. The fiducial cross sections measured in this analysis and other CMS publications [9,11,16,13] are extrapolated to the entire phase space without considering extrapolation uncertainties. The point at $ \sqrt{s}= $ 7 TeV for the $ \mathrm{H}\rightarrow\gamma\gamma $ channel is obtained from the signal strength modifier measured in Ref. [107], which is scaled to the theoretical cross section removing theoretical uncertainties. The theoretical predictions with the corresponding uncertainties are taken from Ref. [7].

png pdf
Additional Figure 9:
Values of the fiducial inclusive Higgs boson production cross section measured in the $ \mathrm{H}\rightarrow\gamma\gamma $ final state. More information on the fiducial selections and the theoretical predictions are given in the indicated references.
References
1 ATLAS Collaboration Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 L. Evans and P. Bryant (editors) LHC machine JINST 3 (2008) S08001
5 ATLAS Collaboration A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery Nature 607 (2022) 52 2207.00092
6 CMS Collaboration A portrait of the Higgs boson by the CMS experiment ten years after the discovery. Nature 607 (2022) 60 CMS-HIG-22-001
2207.00043
7 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 4. deciphering the nature of the Higgs sector 1610.07922
8 ATLAS Collaboration Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at $ \sqrt{s}= $ 8 TeV with ATLAS JHEP 09 (2014) 112 1407.4222
9 CMS Collaboration Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at $ \sqrt{s} = $ 8 teV EPJC 76 (2016) 13 CMS-HIG-14-016
1508.07819
10 ATLAS Collaboration Measurements of the Higgs boson inclusive and differential fiducial cross-sections in the diphoton decay channel with pp collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector JHEP 08 (2022) 027 2202.00487
11 CMS Collaboration Measurement of the Higgs boson inclusive and differential fiducial production cross sections in the diphoton decay channel with pp collisions at $ \sqrt{s} = $ 13 TeV JHEP 07 (2023) 091 CMS-HIG-19-016
2208.12279
12 ATLAS Collaboration Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in pp collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS detector PLB 738 (2014) 234 1408.3226
13 CMS Collaboration Measurement of differential and integrated fiducial cross sections for higgs boson production in the four-lepton decay channel in pp collisions at $ \sqrt{s}= $ 7 and 8 TeV JHEP 04 (2016) 005 CMS-HIG-14-028
1512.08377
14 ATLAS Collaboration Measurements of the Higgs boson inclusive and differential fiducial cross sections in the 4$ \ell $ decay channel at $ \sqrt{s} = $ 13 TeV EPJC 80 (2020) 942 2004.03969
15 CMS Collaboration Measurements of inclusive and differential cross sections for the Higgs boson production and decay to four-leptons in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 08 (2023) 040 CMS-HIG-21-009
2305.07532
16 ATLAS Collaboration Measurement of fiducial differential cross sections of gluon-fusion production of higgs bosons decaying to $ \mathrm{W}\mathrm{W}^*\rightarrow \mathrm{e} \nu \mu \nu $ with the ATLAS detector at $ \sqrt{s}= $ 8 TeV JHEP 08 (2016) 104 1604.02997
17 CMS Collaboration Measurement of the transverse momentum spectrum of the Higgs boson produced in pp collisions at $ \sqrt{s}= $ 8 TeV using $ \mathrm{H} \to \mathrm{W} \mathrm{W} $ decays JHEP 03 (2017) 032 CMS-HIG-15-010
1606.01522
18 ATLAS Collaboration Measurements of differential cross sections of Higgs boson production through gluon fusion in the $ H\rightarrow WW^{*}\rightarrow e\nu \mu \nu $ final state at $ \sqrt{s} = $ 13 TeV with the ATLAS detector EPJC 83 (2023) 774 2301.06822
19 ATLAS Collaboration Fiducial and differential cross-section measurements for the vector-boson-fusion production of the Higgs boson in the $ \mathrm{H} \rightarrow \mathrm{W}\mathrm{W}^*\rightarrow \mathrm{e} \nu \mu \nu $ decay channel at 13 TeV with the ATLAS detector PRD 108 (2023) 072003 2304.03053
20 CMS Collaboration Measurement of the inclusive and differential Higgs boson production cross sections in the leptonic WW decay mode at $ \sqrt{s} = $ 13 TeV JHEP 03 (2021) 003 CMS-HIG-19-002
2007.01984
21 CMS Collaboration Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of $ \tau $ leptons in pp collisions at $ \sqrt{s} = $ 13 TeV PRL 128 (2022) 081805 CMS-HIG-20-015
2107.11486
22 ATLAS Collaboration Differential cross-section measurements of Higgs boson production in the $ \mathrm{H} \to \tau^{+} \tau^{+} $ decay channel in pp collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector JHEP 03 (2025) 010 2407.16320
23 ATLAS Collaboration Measurements of Higgs boson production by gluon-gluon fusion and vector-boson fusion using $ \mathrm{H} \rightarrow \mathrm{W}\mathrm{W}^*\rightarrow \mathrm{e} \nu \mu \nu $ decays in $ pp $ collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector PRD 108 (2023) 032005 2207.00338
24 ATLAS Collaboration Measurement of the total and differential Higgs boson production cross-sections at $ \sqrt{s} = $ 13 TeV with the ATLAS detector by combining the $ \mathrm{H} \to \mathrm{Z} \mathrm{Z}^{*}\to 4\ell $ and $ \mathrm{H} \to \gamma \gamma $ decay channels JHEP 05 (2023) 028 2207.08615
25 ATLAS Collaboration Measurement of the $ \mathrm{H} \rightarrow \gamma \gamma $ and $ \mathrm{H} \rightarrow \mathrm{Z} \mathrm{Z}^* \rightarrow 4 \ell $ cross-sections in pp collisions at $ \sqrt{s}= $ 13.6 TeV with the ATLAS detector EPJC 84 (2024) 78 2306.11379
26 CMS Collaboration Measurements of Higgs boson production cross section in the four-lepton final state in proton-proton collisions at $ \sqrt{s} = $ 13.6 TeV Accepted by JHEP, 2025 CMS-HIG-24-013
2501.14849
27 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
28 CMS Collaboration Development of the CMS detector for the CERN LHC Run 3 JINST 19 (2024) P05064 CMS-PRF-21-001
2309.05466
29 G. P. Salam and E. Slade Cuts for two-body decays at colliders JHEP 11 (2021) 220 2106.08329
30 CMS Collaboration Measurement of inclusive and differential Higgs boson production cross sections in the diphoton decay channel in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 01 (2019) 183 CMS-HIG-17-025
1807.03825
31 CMS Collaboration HEPData record for this analysis link
32 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
33 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
34 CMS Collaboration Performance of the CMS high-level trigger during LHC Run 2 JINST 19 (2024) P11021 CMS-TRG-19-001
2410.17038
35 CMS Collaboration Luminosity measurement in proton-proton collisions at 13.6 TeV in 2022 at CMS CMS Physics Analysis Summary, 2024
CMS-PAS-LUM-22-001
CMS-PAS-LUM-22-001
36 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) P05014 CMS-EGM-17-001
2012.06888
37 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
38 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
39 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
40 K. Hamilton, P. Nason, E. Re, and G. Zanderighi NNLOPS simulation of Higgs boson production JHEP 10 (2013) 222 1309.0017
41 K. Hamilton, P. Nason, and G. Zanderighi MINLO: Multi-scale improved NLO JHEP 10 (2012) 155 1206.3572
42 A. Kardos, P. Nason, and C. Oleari Three-jet production in POWHEG JHEP 04 (2014) 043 1402.4001
43 A. Karlberg et al. Ad interim recommendations for the Higgs boson production cross sections at $ \sqrt{s} = $ 13.6 TeV 2402.09955
44 C. Anastasiou et al. Higgs boson gluon-fusion production in QCD at three loops PRL 114 (2015) 212001 1503.06056
45 C. Anastasiou et al. High precision determination of the gluon fusion Higgs boson cross-section at the LHC JHEP 05 (2016) 58 1602.00695
46 M. Ciccolini, A. Denner, and S. Dittmaier Strong and electroweak corrections to the production of a Higgs boson+2 jets via weak interactions at the Large Hadron Collider PRL 99 (2007) 161803 0707.0381
47 M. Ciccolini, A. Denner, and S. Dittmaier Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC PRD 77 (2008) 013002 0710.4749
48 P. Bolzoni, F. Maltoni, S.-O. Moch, and M. Zaro Higgs production via vector-boson fusion at NNLO in QCD PRL 105 (2010) 011801 1003.4451
49 P. Bolzoni, F. Maltoni, S.-O. Moch, and M. Zaro Vector boson fusion at next-to-next-to-leading order in QCD: Standard model Higgs boson and beyond PRD 85 (2012) 035002 1109.3717
50 O. Brein, A. Djouadi, and R. Harlander NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders PLB 579 (2004) 149 hep-ph/0307206
51 M. L. Ciccolini, S. Dittmaier, and M. Kr ä mer Electroweak radiative corrections to associated WH and ZH production at hadron colliders PRD 68 (2003) 073003 hep-ph/0306234
52 W. Beenakker et al. Higgs radiation off top quarks at the Tevatron and the LHC PRL 87 (2001) 201805 hep-ph/0107081
53 W. Beenakker et al. NLO QCD corrections to $ {\mathrm{t}\overline{\mathrm{t}}} $H production in hadron collisions. NPB 653 (2003) 151 hep-ph/0211352
54 S. Dawson, L. H. Orr, L. Reina, and D. Wackeroth Associated top quark Higgs boson production at the LHC PRD 67 (2003) 071503 hep-ph/0211438
55 S. Dawson et al. Associated Higgs production with top quarks at the Large Hadron Collider: NLO QCD corrections PRD 68 (2003) 034022 hep-ph/0305087
56 Z. Yu et al. QCD NLO and EW NLO corrections to $ {\mathrm{t}\overline{\mathrm{t}}} $H production with top quark decays at hadron collider PLB 738 (2014) 1 1407.1110
57 S. S. Frixione et al. Weak corrections to Higgs hadroproduction in association with a top-quark pair JHEP 09 (2014) 65 1407.0823
58 F. Demartin, F. Maltoni, K. Mawatari, and M. Zaro Higgs production in association with a single top quark at the LHC EPJC 75 (2015) 267 1504.0611
59 F. Demartin et al. tWH associated production at the LHC EPJC 77 (2017) 34 1607.05862
60 A. Denner et al. Standard model Higgs-boson branching ratios with uncertainties EPJC 71 (2011) 1753 1107.5909
61 A. Djouadi, J. Kalinowski, M. Muehlleitner, and M. Spira HDECAY: Twenty$ _{++} $ years after Comput. Phys. Commun. 238 (2019) 214 1801.09506
62 A. Bredenstein, A. Denner, S. Dittmaier, and M. M. Weber Precise predictions for the Higgs-boson decay H $ \rightarrow $ WW/ZZ $ \rightarrow $ 4 leptons PRD 74 (2006) 013004 hep-ph/0604011
63 A. Bredenstein, A. Denner, S. Dittmaier, and M. M. Weber Radiative corrections to the semileptonic and hadronic Higgs-boson decays H $ \rightarrow $WW/ZZ$ \rightarrow $ 4 fermions JHEP 02 (2007) 80 hep-ph/0611234
64 S. Boselli et al. Higgs boson decay into four leptons at NLOPS electroweak accuracy JHEP 06 (2015) 23 1503.07394
65 S. Actis, G. Passarino, C. Sturm, and S. Uccirati NNLO computational techniques: the cases $ \mathrm{H} \to \gamma \gamma $ and $ \mathrm{H} \to \mathrm{g} \mathrm{g} $ NPB 811 (2009) 182 0809.3667
66 Sherpa Collaboration Event generation with Sherpa 2.2 SciPost Phys. 7 (2019) 034 1905.09127
67 C. Bierlich et al. A comprehensive guide to the physics and usage of PYTHIA 8.3 SciPost Phys. Codeb. 2022 (2022) 8 2203.11601
68 CMS Collaboration Performance of the CMS muon trigger system in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 16 (2021) P07001 CMS-MUO-19-001
2102.04790
69 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
70 GEANT4 Collaboration GEANT4 -- a simulation toolkit NIM A 506 (2003) 250
71 CMS Collaboration Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015
CDS
72 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
73 CMS Collaboration Electron and photon reconstruction and identification performance at CMS in 2022 and 2023 CMS Detector Performance Note CMS-DP-2024-052, 2024
CDS
74 CMS Collaboration A measurement of the Higgs boson mass in the diphoton decay channel PLB 805 (2020) 135425 CMS-HIG-19-004
2002.06398
75 CMS Collaboration The CMS electromagnetic calorimeter project: Technical design report CMS Technical Design Report CERN-LHCC-97-033, CMS-TDR-4, 1997
CDS
76 T. Chen and C. Guestrin XGBoost: A scalable tree boosting system in nd ACM SIGKDD Int. Conf. Know. Discov. Data Min, 2016
Proc. 2 (2016) 785
77 CMS Collaboration Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P08010 CMS-EGM-14-001
1502.02702
78 CMS Collaboration Measurements of inclusive W and Z cross sections in pp collisions at $ \sqrt{s}= $ 7 TeV JHEP 01 (2011) 080 CMS-EWK-10-002
1012.2466
79 G. Papamakarios et al. Normalizing flows for probabilistic modeling and inference J. Mach. Learn. Res. 22 (2021) 1 1912.02762
80 C. Daumann et al. One flow to correct them all: Improving simulations in high-energy physics with a single normalising flow and a switch Comput. Softw. Big. Sci. 8 (2024) 15 2403.18582
81 G. Papamakarios, T. Pavlakou, and I. Murray Masked autoregressive flow for density estimation link 1705.07057
82 C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios Neural spline flows link 1906.04032
83 A. Paszke et al. \textscPyTorch: An imperative style, high-performance deep learning library in Proc. 33rd Conference on Neural Information Processing Systems (NeurIPS ): Vancouver, Canada, 2019
link
1912.01703
84 F. Rozet, F. Divo, and S. Schnake Zuko: Normalizing flows in PyTorch link
85 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
86 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
87 M. Cacciari, G. P. Salam, and G. Soyez Fastjet user manual EPJC 72 (2012) 1896 1111.6097
88 CMS Collaboration Pileup mitigation at CMS in 13 TeV data JINST 15 (2020) P09018 CMS-JME-18-001
2003.00503
89 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
90 CMS Collaboration Measurements of Higgs boson properties in the diphoton decay channel in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 11 (2018) 185 CMS-HIG-16-040
1804.02716
91 CMS Collaboration Measurements of Higgs boson production cross sections and couplings in the diphoton decay channel at $ \sqrt{\mathrm{s}} = $ 13 TeV JHEP 07 (2021) 027 CMS-HIG-19-015
2103.06956
92 CMS Collaboration The CMS statistical analysis and combination tool: \textscCombine Comput. Softw. Big Sci. 8 (2024) 19 CMS-CAT-23-001
2404.06614
93 J. Campbell, M. Carena, R. Harnik, and Z. Liu Interference in the $ \mathrm{g} \mathrm{g} \rightarrow \mathrm{h} \rightarrow \gamma \gamma $ on-shell rate and the Higgs boson total width PRL 119 (2017) 181801 1704.08259
94 P. D. Dauncey, M. Kenzie, N. Wardle, and G. J. Davies Handling uncertainties in background shapes: the discrete profiling method JINST 10 (2015) P04015 1408.6865
95 R. A. Fisher On the interpretation of $ \chi^2 $ from contingency tables, and the calculation of p J. R. Stat. Soc. 85 (1922) 87
96 R. J. Barlow and C. Beeston Fitting using finite Monte Carlo samples Comput. Phys. Commun. 77 (1993) 219
97 J. S. Conway Incorporating nuisance parameters in likelihoods for multisource spectra Proc. PHYSTAT 201 (2011) 115 1103.0354
98 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
99 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
100 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
101 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
102 E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM JHEP 02 (2012) 088 1111.2854
103 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
Compact Muon Solenoid
LHC, CERN