CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIG-22-004 ; CERN-EP-2024-313
Search for a heavy pseudoscalar Higgs boson decaying to a 125 GeV Higgs boson and a Z boson in final states with two tau and two light leptons in proton-proton collisions at $ \sqrt{s} = $ 13 TeV
Submitted to J. High Energy Phys.
Abstract: A search for a heavy pseudoscalar Higgs boson, A, decaying to a 125 GeV Higgs boson h and a Z boson is presented. The h boson is identified via its decay to a pair of tau leptons, while the Z boson is identified via its decay to a pair of electrons or muons. The search targets the production of the A boson via the gluon-gluon fusion process, $ \mathrm{g}\mathrm{g}\to\mathrm{A} $, and in association with bottom quarks, $ \mathrm{b}\overline{\mathrm{b}}\mathrm{A} $. The analysis uses a data sample corresponding to an integrated luminosity of 138 fb$ ^{-1} $ collected with the CMS detector at the CERN LHC in proton-proton collisions at a centre-of-mass energy of $ \sqrt{s} = $ 13 TeV. Constraints are set on the product of the cross sections of the A production mechanisms and the $ \mathrm{A}\to\mathrm{Z}\mathrm{h} $ decay branching fraction. The observed (expected) upper limit at 95% confidence level ranges from 0.049 (0.060) pb to 1.02 (0.79) pb for the $ \mathrm{g}\mathrm{g}\to\mathrm{A} $ process and from 0.053 (0.059) pb to 0.79 (0.61) pb for the $ \mathrm{b}\overline{\mathrm{b}}\mathrm{A} $ process in the probed range of the A boson mass, $ m_{\mathrm{A}} $, from 225 GeV to 1 TeV. The results of the search are used to constrain parameters within the $ {\text{M}_{\text{h,EFT}}^{\text{125}}} $ benchmark scenario of the minimal supersymmetric extension of the standard model. Values of $ \tan\beta $ below 2.2 are excluded in this scenario at 95% confidence level for all $ m_{\mathrm{A}} $ values in the range from 225 to 350 GeV.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Feynman diagrams representing the production of the pseudoscalar A boson via gluon-gluon $ m_{\mathrm{A}}-\tan\beta $ fusion (left) and associated production with a bottom quark-antiquark pair (right). In each case, the A boson decays to an SM-like h boson and a Z boson.

png pdf
Figure 1-a:
Feynman diagrams representing the production of the pseudoscalar A boson via gluon-gluon $ m_{\mathrm{A}}-\tan\beta $ fusion (left) and associated production with a bottom quark-antiquark pair (right). In each case, the A boson decays to an SM-like h boson and a Z boson.

png pdf
Figure 1-b:
Feynman diagrams representing the production of the pseudoscalar A boson via gluon-gluon $ m_{\mathrm{A}}-\tan\beta $ fusion (left) and associated production with a bottom quark-antiquark pair (right). In each case, the A boson decays to an SM-like h boson and a Z boson.

png pdf
Figure 2:
The distribution of the reconstructed mass of the $ \mathrm{h}\to\tau\tau $ candidate (left plot) and of the $ \mathrm{A}\to\mathrm{Z}\mathrm{h}\to(\ell\ell)(\tau\tau) $ candidate (right plot) in a 2018 simulated sample of $ \mathrm{g}\mathrm{g}\to\mathrm{A} $ events with $ m_{\mathrm{A}}= $ 300 GeV. Several methods of mass reconstruction are compared: 1) using only the visible decay products of $ \tau $ lepton ($ m_{\tau\tau}^{\text{vis}} $ in the left plot and $ m_{\ell\ell\tau\tau}^{\text{vis}} $ in the right plot, blue histograms), 2) using the FastMTT algorithm to correct for missing momentum carried away by neutrinos in the $ \tau $ lepton decays ($ m_{\tau\tau}^{\text{corr}} $ in the left plot and $ m_{\ell\ell\tau\tau}^{\text{corr}} $ in the right plot, orange histograms), and 3) using the FastMTT algorithm with a mass constraint of 125 GeV for the $ \mathrm{h}\to\tau\tau $ candidate ($ m_{\ell\ell\tau\tau}^{\text{cons}} $ in the right plot, green histogram).

png pdf
Figure 2-a:
The distribution of the reconstructed mass of the $ \mathrm{h}\to\tau\tau $ candidate (left plot) and of the $ \mathrm{A}\to\mathrm{Z}\mathrm{h}\to(\ell\ell)(\tau\tau) $ candidate (right plot) in a 2018 simulated sample of $ \mathrm{g}\mathrm{g}\to\mathrm{A} $ events with $ m_{\mathrm{A}}= $ 300 GeV. Several methods of mass reconstruction are compared: 1) using only the visible decay products of $ \tau $ lepton ($ m_{\tau\tau}^{\text{vis}} $ in the left plot and $ m_{\ell\ell\tau\tau}^{\text{vis}} $ in the right plot, blue histograms), 2) using the FastMTT algorithm to correct for missing momentum carried away by neutrinos in the $ \tau $ lepton decays ($ m_{\tau\tau}^{\text{corr}} $ in the left plot and $ m_{\ell\ell\tau\tau}^{\text{corr}} $ in the right plot, orange histograms), and 3) using the FastMTT algorithm with a mass constraint of 125 GeV for the $ \mathrm{h}\to\tau\tau $ candidate ($ m_{\ell\ell\tau\tau}^{\text{cons}} $ in the right plot, green histogram).

png pdf
Figure 2-b:
The distribution of the reconstructed mass of the $ \mathrm{h}\to\tau\tau $ candidate (left plot) and of the $ \mathrm{A}\to\mathrm{Z}\mathrm{h}\to(\ell\ell)(\tau\tau) $ candidate (right plot) in a 2018 simulated sample of $ \mathrm{g}\mathrm{g}\to\mathrm{A} $ events with $ m_{\mathrm{A}}= $ 300 GeV. Several methods of mass reconstruction are compared: 1) using only the visible decay products of $ \tau $ lepton ($ m_{\tau\tau}^{\text{vis}} $ in the left plot and $ m_{\ell\ell\tau\tau}^{\text{vis}} $ in the right plot, blue histograms), 2) using the FastMTT algorithm to correct for missing momentum carried away by neutrinos in the $ \tau $ lepton decays ($ m_{\tau\tau}^{\text{corr}} $ in the left plot and $ m_{\ell\ell\tau\tau}^{\text{corr}} $ in the right plot, orange histograms), and 3) using the FastMTT algorithm with a mass constraint of 125 GeV for the $ \mathrm{h}\to\tau\tau $ candidate ($ m_{\ell\ell\tau\tau}^{\text{cons}} $ in the right plot, green histogram).

png pdf
Figure 3:
The reconstructed four-lepton mass, $ m_{\ell\ell\tau\tau}^{\text{cons}} $, in the no b-tag (left plot) and b-tag (right plot) categories. Background distributions are shown after performing a maximum likelihood fit to data under a background-only hypothesis. Signal samples corresponding to the $ \mathrm{g}\mathrm{g}\to\mathrm{A} $ and $ \mathrm{b}\overline{\mathrm{b}}\mathrm{A} $ production modes of a pseudoscalar Higgs boson with a mass of $ m_{\mathrm{A}} $ = 350 GeV, are overlaid to illustrate the expected signal contribution. Signal yields are computed by setting $ \sigma{\mathcal{B}}(\mathrm{A}\to\mathrm{Z}\mathrm{h}) $ to a benchmark value of 1 pb for both $ \mathrm{g}\mathrm{g}\to\mathrm{A} $ and $ \mathrm{b}\overline{\mathrm{b}}\mathrm{A} $ processes. Hatched bands indicate uncertainties in the total background. Contents of each bin along with the corresponding uncertainties are divided by the bin width.

png pdf
Figure 3-a:
The reconstructed four-lepton mass, $ m_{\ell\ell\tau\tau}^{\text{cons}} $, in the no b-tag (left plot) and b-tag (right plot) categories. Background distributions are shown after performing a maximum likelihood fit to data under a background-only hypothesis. Signal samples corresponding to the $ \mathrm{g}\mathrm{g}\to\mathrm{A} $ and $ \mathrm{b}\overline{\mathrm{b}}\mathrm{A} $ production modes of a pseudoscalar Higgs boson with a mass of $ m_{\mathrm{A}} $ = 350 GeV, are overlaid to illustrate the expected signal contribution. Signal yields are computed by setting $ \sigma{\mathcal{B}}(\mathrm{A}\to\mathrm{Z}\mathrm{h}) $ to a benchmark value of 1 pb for both $ \mathrm{g}\mathrm{g}\to\mathrm{A} $ and $ \mathrm{b}\overline{\mathrm{b}}\mathrm{A} $ processes. Hatched bands indicate uncertainties in the total background. Contents of each bin along with the corresponding uncertainties are divided by the bin width.

png pdf
Figure 3-b:
The reconstructed four-lepton mass, $ m_{\ell\ell\tau\tau}^{\text{cons}} $, in the no b-tag (left plot) and b-tag (right plot) categories. Background distributions are shown after performing a maximum likelihood fit to data under a background-only hypothesis. Signal samples corresponding to the $ \mathrm{g}\mathrm{g}\to\mathrm{A} $ and $ \mathrm{b}\overline{\mathrm{b}}\mathrm{A} $ production modes of a pseudoscalar Higgs boson with a mass of $ m_{\mathrm{A}} $ = 350 GeV, are overlaid to illustrate the expected signal contribution. Signal yields are computed by setting $ \sigma{\mathcal{B}}(\mathrm{A}\to\mathrm{Z}\mathrm{h}) $ to a benchmark value of 1 pb for both $ \mathrm{g}\mathrm{g}\to\mathrm{A} $ and $ \mathrm{b}\overline{\mathrm{b}}\mathrm{A} $ processes. Hatched bands indicate uncertainties in the total background. Contents of each bin along with the corresponding uncertainties are divided by the bin width.

png pdf
Figure 4:
The expected and observed upper limits at 95% CL on the production cross section times branching fraction of the $ \mathrm{A}\to\mathrm{Z}\mathrm{h} $ decay for $ \mathrm{g}\mathrm{g}\to\mathrm{A} $ (left plot) and $ \mathrm{b}\overline{\mathrm{b}}\mathrm{A} $ (right plot) processes as functions of $ m_{\mathrm{A}} $. The limits for the $ \mathrm{g}\mathrm{g}\to\mathrm{A} $ ($ \mathrm{b}\overline{\mathrm{b}}\mathrm{A} $) process are derived with the rate of other process fixed to zero. The branching fraction of the $ \mathrm{h}\to\tau\tau $ decay is set to the value predicted in the SM, $ {\mathcal{B}}(\mathrm{h}\to\tau\tau)= $ 0.062 [53].

png pdf
Figure 4-a:
The expected and observed upper limits at 95% CL on the production cross section times branching fraction of the $ \mathrm{A}\to\mathrm{Z}\mathrm{h} $ decay for $ \mathrm{g}\mathrm{g}\to\mathrm{A} $ (left plot) and $ \mathrm{b}\overline{\mathrm{b}}\mathrm{A} $ (right plot) processes as functions of $ m_{\mathrm{A}} $. The limits for the $ \mathrm{g}\mathrm{g}\to\mathrm{A} $ ($ \mathrm{b}\overline{\mathrm{b}}\mathrm{A} $) process are derived with the rate of other process fixed to zero. The branching fraction of the $ \mathrm{h}\to\tau\tau $ decay is set to the value predicted in the SM, $ {\mathcal{B}}(\mathrm{h}\to\tau\tau)= $ 0.062 [53].

png pdf
Figure 4-b:
The expected and observed upper limits at 95% CL on the production cross section times branching fraction of the $ \mathrm{A}\to\mathrm{Z}\mathrm{h} $ decay for $ \mathrm{g}\mathrm{g}\to\mathrm{A} $ (left plot) and $ \mathrm{b}\overline{\mathrm{b}}\mathrm{A} $ (right plot) processes as functions of $ m_{\mathrm{A}} $. The limits for the $ \mathrm{g}\mathrm{g}\to\mathrm{A} $ ($ \mathrm{b}\overline{\mathrm{b}}\mathrm{A} $) process are derived with the rate of other process fixed to zero. The branching fraction of the $ \mathrm{h}\to\tau\tau $ decay is set to the value predicted in the SM, $ {\mathcal{B}}(\mathrm{h}\to\tau\tau)= $ 0.062 [53].

png pdf
Figure 5:
Two-dimensional constraints on the cross section times branching fraction for the two production mechanisms. The confidence level intervals are derived for mass hypotheses of $ m_\mathrm{A}= $ 250 (upper left plot), 300 (upper right plot), 350 (lower left plot), and 400 GeV (lower right plot). The branching fraction of the $ \mathrm{h}\to\tau\tau $ decay is set to the value predicted in the SM, $ {\mathcal{B}}(\mathrm{h}\to\tau\tau)= $ 0.062 [53]. Computation of the best fit point and determination of the observed and expected 68% and 95% CL contours are described in the text.

png pdf
Figure 5-a:
Two-dimensional constraints on the cross section times branching fraction for the two production mechanisms. The confidence level intervals are derived for mass hypotheses of $ m_\mathrm{A}= $ 250 (upper left plot), 300 (upper right plot), 350 (lower left plot), and 400 GeV (lower right plot). The branching fraction of the $ \mathrm{h}\to\tau\tau $ decay is set to the value predicted in the SM, $ {\mathcal{B}}(\mathrm{h}\to\tau\tau)= $ 0.062 [53]. Computation of the best fit point and determination of the observed and expected 68% and 95% CL contours are described in the text.

png pdf
Figure 5-b:
Two-dimensional constraints on the cross section times branching fraction for the two production mechanisms. The confidence level intervals are derived for mass hypotheses of $ m_\mathrm{A}= $ 250 (upper left plot), 300 (upper right plot), 350 (lower left plot), and 400 GeV (lower right plot). The branching fraction of the $ \mathrm{h}\to\tau\tau $ decay is set to the value predicted in the SM, $ {\mathcal{B}}(\mathrm{h}\to\tau\tau)= $ 0.062 [53]. Computation of the best fit point and determination of the observed and expected 68% and 95% CL contours are described in the text.

png pdf
Figure 5-c:
Two-dimensional constraints on the cross section times branching fraction for the two production mechanisms. The confidence level intervals are derived for mass hypotheses of $ m_\mathrm{A}= $ 250 (upper left plot), 300 (upper right plot), 350 (lower left plot), and 400 GeV (lower right plot). The branching fraction of the $ \mathrm{h}\to\tau\tau $ decay is set to the value predicted in the SM, $ {\mathcal{B}}(\mathrm{h}\to\tau\tau)= $ 0.062 [53]. Computation of the best fit point and determination of the observed and expected 68% and 95% CL contours are described in the text.

png pdf
Figure 5-d:
Two-dimensional constraints on the cross section times branching fraction for the two production mechanisms. The confidence level intervals are derived for mass hypotheses of $ m_\mathrm{A}= $ 250 (upper left plot), 300 (upper right plot), 350 (lower left plot), and 400 GeV (lower right plot). The branching fraction of the $ \mathrm{h}\to\tau\tau $ decay is set to the value predicted in the SM, $ {\mathcal{B}}(\mathrm{h}\to\tau\tau)= $ 0.062 [53]. Computation of the best fit point and determination of the observed and expected 68% and 95% CL contours are described in the text.

png pdf
Figure 6:
Same as Fig. 5 but for mass hypotheses of $ m_{\mathrm{A}}= $ 500 (upper left plot), 600 (upper right plot), 800 (lower left plot) and 1000 GeV (lower right plot). The branching fraction of the $ \mathrm{h}\to\tau\tau $ decay is set to the value predicted in the SM, $ {\mathcal{B}}(\mathrm{h}\to\tau\tau)= $ 0.062 [53]. Computation of the best-fit point and determination of the observed and expected 68% and 95% CL contours are described in the text.

png pdf
Figure 6-a:
Same as Fig. 5 but for mass hypotheses of $ m_{\mathrm{A}}= $ 500 (upper left plot), 600 (upper right plot), 800 (lower left plot) and 1000 GeV (lower right plot). The branching fraction of the $ \mathrm{h}\to\tau\tau $ decay is set to the value predicted in the SM, $ {\mathcal{B}}(\mathrm{h}\to\tau\tau)= $ 0.062 [53]. Computation of the best-fit point and determination of the observed and expected 68% and 95% CL contours are described in the text.

png pdf
Figure 6-b:
Same as Fig. 5 but for mass hypotheses of $ m_{\mathrm{A}}= $ 500 (upper left plot), 600 (upper right plot), 800 (lower left plot) and 1000 GeV (lower right plot). The branching fraction of the $ \mathrm{h}\to\tau\tau $ decay is set to the value predicted in the SM, $ {\mathcal{B}}(\mathrm{h}\to\tau\tau)= $ 0.062 [53]. Computation of the best-fit point and determination of the observed and expected 68% and 95% CL contours are described in the text.

png pdf
Figure 6-c:
Same as Fig. 5 but for mass hypotheses of $ m_{\mathrm{A}}= $ 500 (upper left plot), 600 (upper right plot), 800 (lower left plot) and 1000 GeV (lower right plot). The branching fraction of the $ \mathrm{h}\to\tau\tau $ decay is set to the value predicted in the SM, $ {\mathcal{B}}(\mathrm{h}\to\tau\tau)= $ 0.062 [53]. Computation of the best-fit point and determination of the observed and expected 68% and 95% CL contours are described in the text.

png pdf
Figure 6-d:
Same as Fig. 5 but for mass hypotheses of $ m_{\mathrm{A}}= $ 500 (upper left plot), 600 (upper right plot), 800 (lower left plot) and 1000 GeV (lower right plot). The branching fraction of the $ \mathrm{h}\to\tau\tau $ decay is set to the value predicted in the SM, $ {\mathcal{B}}(\mathrm{h}\to\tau\tau)= $ 0.062 [53]. Computation of the best-fit point and determination of the observed and expected 68% and 95% CL contours are described in the text.

png pdf
Figure 7:
Lower 95% CL limit on $ \tan\beta $ as a function of $ m_{\mathrm{A}} $ in the $ \text{M}_{\text{h,EFT}}^{\text{125}} $ MSSM scenario. Values below the black solid line are excluded at 95% CL.
Tables

png pdf
Table 1:
Efficiencies for the identification of $ \tau_\mathrm{h} $ decays and corresponding misidentification rates (given in parentheses) for the working points of $ D_{\mathrm{e}} $, $ D_{\mu} $, and $ D_{\text{jet}} $, chosen for the $ \mathrm{h}\to\tau\tau $ selection, depending on the $ \tau\tau $ final state. The numbers are given as percentages. Efficiencies and misidentification rates are determined from dedicated studies [25].

png pdf
Table 2:
Dominant sources of systematic uncertainty are considered in this analysis. The symbol $ \dagger $ indicates uncertainties that affect both the shape and normalization of the final $ m_{\ell\ell\tau\tau}^\mathrm{cons} $ distributions. Uncertainties without $ \dagger $ affect only normalization. The magnitude column indicates an approximation of the associated change in normalization. The uncertainties in each group are listed in descending order of their impact on the analysis sensitivity.

png pdf
Table 3:
Expected and observed yields in the final selected sample. The $ \mathrm{Z}\to\mathrm{e}\mathrm{e} $ and $ \mathrm{Z}\to\mu\mu $ samples and all three data-taking periods are combined for the final results. Numbers are reported individually for no b-tag and b-tag categories and three analyzed di-$ \tau $ decay modes: $ \mathrm{e}\tau_\mathrm{h} $, $ \mu\tau_\mathrm{h} $, and $ \tau_\mathrm{h}\tau_\mathrm{h} $, combining $ \mathrm{Z}\to \mathrm{ee},\mu\mu $ channels and three data-taking years. Background yields and related uncertainties are obtained after performing a maximum likelihood fit to the data under a background-only hypothesis. Signal yields are computed for representative chosen mass hypotheses of $ m_{\mathrm{A}} $ = 250, 350, 500, and 800 GeV, by setting $ \sigma{\mathcal{B}}(\mathrm{A}\to\mathrm{Z}\mathrm{h}) $ to a benchmark value of 1 pb for both the $ \mathrm{g}\mathrm{g}\to\mathrm{A} $ and $ \mathrm{b}\overline{\mathrm{b}}\mathrm{A} $ processes.
Summary
A search is presented for the decay of a heavy pseudoscalar boson A to a Z boson and 125 GeV Higgs boson, h, in final states with two $ \tau $ leptons and two light leptons ($ \mathrm{e}\mathrm{e} $, $ \mu\mu $). The study is based on proton-proton collision data collected by the CMS experiment at $ \sqrt{s}= $ 13 TeV, corresponding to an integrated luminosity of 138 fb$ ^{-1} $. The analysis probes the gluon-gluon fusion process, $ \mathrm{g}\mathrm{g}\to\mathrm{A} $, and bottom quark associated production, $ \mathrm{b}\overline{\mathrm{b}}\mathrm{A} $. No evidence for a signal is found in the data. Upper limits at 95% confidence level are derived on the product of the cross section and branching fraction of the $ \mathrm{A}\to\mathrm{Z}\mathrm{h} $ decay under the assumption that the scalar state h has the properties of the 125 GeV SM Higgs boson. Observed limits range from 0.049 (0.053) pb at $ m_{\mathrm{A}}= $ 1 TeV to 1.02 (0.79) pb at $ m_{\mathrm{A}}= $ 250 GeV for the $ \mathrm{g}\mathrm{g}\to\mathrm{A} $ ($ \mathrm{b}\overline{\mathrm{b}}\mathrm{A} $) process. The results of the search are also interpreted in terms of constraints on $ \tan\beta $ as a function of $ m_{\mathrm{A}} $ within the $ \text{M}_{\text{h,EFT}}^{\text{125}} $ MSSM benchmark scenario. Values of $ \tan\beta $ below 2.2 are excluded at 95% CL in the mass range of 225 $ < m_{\mathrm{A}} < $ 350 GeV. The present analysis supersedes the previous search for the $ \mathrm{A}\to\mathrm{Z}\mathrm{h} $ decay carried out by the CMS Collaboration in the $ (\mathrm{Z}\to\nu\overline{\nu}/\ell\ell)(\mathrm{h}\to\mathrm{b}\overline{\mathrm{b}}) $ and $ (\mathrm{Z}\to\ell\ell)(\mathrm{h}\to\tau\tau) $ channels (where $ \ell=\mathrm{e},\mu $) [22,20] on proton-proton collision data collected at $ \sqrt{s}= $ 13 TeV and corresponding to an integrated luminosity of 36 fb$ ^{-1} $.
References
1 ATLAS Collaboration Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 ATLAS Collaboration A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery Nature 607 (2022) 52 2207.00092
5 CMS Collaboration A portrait of the Higgs boson by the CMS experiment ten years after the discovery. Nature 607 (2022) 60 CMS-HIG-22-001
2207.00043
6 ATLAS and CMS Collaborations Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $ \sqrt{s}= $ 7 and 8 TeV JHEP 08 (2016) 045 1606.02266
7 CMS Collaboration Combined measurements of Higgs boson couplings in proton-proton collisions at $ \sqrt{s}= $ 13 TeV EPJC 79 (2019) 421 CMS-HIG-17-031
1809.10733
8 ATLAS Collaboration Combined measurements of Higgs boson production and decay using up to 80 fb$ ^{-1} $ of proton-proton collision data at $ \sqrt{s}= $ 13 TeV collected with the ATLAS experiment PRD 101 (2020) 012002 1909.02845
9 CMS Collaboration Measurements of the Higgs boson width and anomalous $ \mathrm{H}\mathrm{V}\mathrm{V} $ couplings from on-shell and off-shell production in the four-lepton final state PRD 99 (2019) 112003 CMS-HIG-18-002
1901.00174
10 CMS Collaboration A measurement of the Higgs boson mass in the diphoton decay channel PLB 805 (2020) 135425 CMS-HIG-19-004
2002.06398
11 T. D. Lee A theory of spontaneous T violation PRD 8 (1973) 1226
12 G. C. Branco et al. Theory and phenomenology of two-Higgs-doublet models Phys. Rept. 516 (2012) 1 1106.0034
13 L. Fromme, S. J. Huber, and M. Seniuch Baryogenesis in the two-Higgs doublet model JHEP 11 (2006) 038 hep-ph/0605242
14 P. Fayet Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino NPB 90 (1975) 104
15 P. Fayet Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions PLB 69 (1977) 489
16 H. E. Haber and G. L. Kane The search for Supersymmetry: probing physics beyond the Standard Model Phys. Rept. 117 (1985) 75
17 H. Bahl, S. Liebler, and T. Stefaniak MSSM Higgs benchmark scenarios for Run 2 and beyond: the low $ \tan\beta $ region EPJC 79 (2019) 279 1901.05933
18 ATLAS Collaboration Search for a CP-odd Higgs boson decaying to Zh in pp collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS detector PLB 744 (2015) 163 1502.04478
19 CMS Collaboration Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A decaying to Zh, in the final states with $ h \to \tau \tau $ PLB 755 (2016) 217 CMS-HIG-14-034
1510.01181
20 CMS Collaboration Search for a heavy pseudoscalar Higgs boson decaying into a 125 GeV Higgs boson and a Z boson in final states with two tau and two light leptons at $ \sqrt{s}= $ 13 TeV JHEP 03 (2020) 065 CMS-HIG-18-023
1910.11634
21 ATLAS Collaboration Search for heavy resonances decaying into a $ W $ or $ Z $ boson and a Higgs boson in final states with leptons and $ b $-jets in 36 fb$ ^{-1} $ of $ \sqrt s = $ 13 TeV $ pp $ collisions with the ATLAS detector JHEP 03 (2018) 174 1712.06518
22 CMS Collaboration Search for a heavy pseudoscalar boson decaying to a Z and a Higgs boson at $ \sqrt{s} = $ 13 TeV EPJC 79 (2019) 564 CMS-HIG-18-005
1903.00941
23 ATLAS Collaboration Search for heavy resonances decaying into a $ Z $ or $ W $ boson and a Higgs boson in final states with leptons and $ b $-jets in 139 $ $fb$ ^{-1} $ of $ pp $ collisions at $ \sqrt{s}=13 $TeV with the ATLAS detector JHEP 06 (2023) 016 2207.00230
24 L. Bianchini et al. Reconstruction of the Higgs mass in events with Higgs bosons decaying into a pair of $ \tau $ leptons using matrix element techniques NIM A 862 (2017) 54 1603.05910
25 CMS Collaboration Identification of hadronic tau lepton decays using a deep neural network JINST 17 (2022) P07023 CMS-TAU-20-001
2201.08458
26 E. Bols et al. Jet flavour classification using DeepJet JINST 15 (2020) P12012 2008.10519
27 CMS Collaboration HEPData record for this analysis link
28 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
29 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
30 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
31 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
32 CMS Collaboration Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015
CDS
33 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) P05014 CMS-EGM-17-001
2012.06888
34 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
35 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
36 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
37 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
38 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
39 CMS Collaboration Performance of the DeepJet b tagging algorithm using 41.9 $ \mathrm{fb^{-1}} $ of data from proton-proton collisions at 13 TeV with Phase 1 CMS detector CMS Detector Performance Summary CMS-DP-2020-021, 2018
CDS
40 CMS Collaboration Performance of reconstruction and identification of $ \tau $ leptons decaying to hadrons and $ \nu_\tau $ in pp collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P10005 CMS-TAU-16-003
1809.02816
41 CMS Collaboration Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s} = $ 13 TeV using the CMS detector JINST 14 (2019) P07004 CMS-JME-17-001
1903.06078
42 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
43 P. Artoisenet, R. Frederix, O. Mattelaer, and R. Rietkerk Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations JHEP 03 (2013) 015 1212.3460
44 J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions EPJC 53 (2008) 473 0706.2569
45 S. P. Martin A Supersymmetry primer Adv. Ser. Direct. HEP 21 (2010) 1 hep-ph/9709356
46 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
47 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
48 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
49 G. Luisoni, P. Nason, C. Oleari, and F. Tramontano $ \text{HW}^{\pm} $/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO JHEP 10 (2013) 083 1306.2542
50 F. Granata, J. M. Lindert, C. Oleari, and S. Pozzorini NLO QCD+EW predictions for HV and HV+jet production including parton-shower effects JHEP 09 (2017) 012 1706.03522
51 H. B. Hartanto, B. Jager, L. Reina, and D. Wackeroth Higgs boson production in association with top quarks in the POWHEG BOX PRD 91 (2015) 094003 1501.04498
52 S. Bolognesi et al. On the spin and parity of a single-produced resonance at the LHC PRD 86 (2012) 095031 1208.4018
53 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector CERN Report CERN-2017-002-M, 2016
link
1610.07922
54 J. M. Campbell, R. K. Ellis, and C. Williams Vector boson pair production at the LHC JHEP 07 (2011) 018 1105.0020
55 P. Nason and G. Zanderighi $ W^+ W^- $, $ W Z $ and $ Z Z $ production in the POWHEG-BOX-V2 EPJC 74 (2014) 2702 1311.1365
56 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
57 S. Alioli, S.-O. Moch, and P. Uwer Hadronic top-quark pair-production with one jet and parton showering JHEP 01 (2012) 137 1110.5251
58 F. Caola et al. QCD corrections to vector boson pair production in gluon fusion including interference effects with off-shell Higgs at the LHC JHEP 07 (2016) 087 1605.04610
59 T. Gehrmann et al. $ W^+ W^- $ production at hadron colliders in next to next to leading order QCD PRL 113 (2014) 212001 1408.5243
60 K. Melnikov and F. Petriello Electroweak gauge boson production at hadron colliders through $ \mathcal{O}(\alpha_\text{s}^{2}) $ PRD 74 (2006) 114017 hep-ph/0609070
61 M. Czakon and A. Mitov Top++: A program for the calculation of the top-pair cross-section at hadron colliders Comput. Phys. Commun. 185 (2014) 2930 1112.5675
62 J. M. Campbell and R. K. Ellis $ t\bar{t} W^{\pm} $ production and decay at NLO JHEP 07 (2012) 052 1204.5678
63 M. V. Garzelli, A. Kardos, C. G. Papadopoulos, and Z. Trocsanyi $ t\bar{t} W^{\pm} $ and $ t\bar{t} Z $ hadroproduction at NLO accuracy in QCD with parton shower and hadronization effects JHEP 11 (2012) 056 1208.2665
64 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
65 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
66 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
67 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
68 R. D. Cousins Lectures on statistics in theory: Prelude to statistics in practice link 1807.05996
69 CMS Collaboration The CMS statistical analysis and combination tool: \textscCombine Comput. Softw. Big Sci. 8 (2024) 19 CMS-CAT-23-001
2404.06614
70 J. Butterworth et al. PDF4LHC recommendations for LHC Run II JPG 43 (2016) 023001 1510.03865
71 CMS Collaboration Measurement of the cross section for top quark pair production in association with a W or Z boson in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 08 (2018) 011 CMS-TOP-17-005
1711.02547
72 E. A. Bagnaschi et al. Benchmark scenarios for MSSM Higgs boson searches at the LHC CERN Report LHCHWG-2021-001, 2021
73 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
74 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} $ = 13 TeV CMS Physics Analysis Summary, 2018
link
CMS-PAS-LUM-17-004
75 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} $ = 13 TeV CMS Physics Analysis Summary, 2019
link
CMS-PAS-LUM-18-002
76 R. J. Barlow and C. Beeston Fitting using finite Monte Carlo samples Comput. Phys. Commun. 77 (1993) 219
77 J. S. Conway Incorporating nuisance parameters in likelihoods for multisource spectra in, 2011
PHYSTAT 201 (2011) 115
1103.0354
78 W. Verkerke and D. P. Kirkby The RooFit toolkit for data modeling in Statistical Problems in Particle Physics, Astrophysics and Cosmology, L. Lyons and M. Karagoz, eds., p.~MOLT007. . . eConf C0303241, 2003
Proc. PHYSTAT 200 (2003) 3
physics/0306116
79 L. Moneta et al. The RooStats project in Proc. ACAT 2010, 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research
Proc. ACAT 201 (2010) 057
1009.1003
80 CMS Collaboration Combined results of searches for the standard model Higgs boson in $ pp $ collisions at $ \sqrt{s}= $ 7 TeV PLB 710 (2012) 26 CMS-HIG-11-032
1202.1488
81 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435 hep-ex/9902006
82 A. L. Read Presentation of search results: The $ CL_s $ technique JPG 28 (2002) 2693
83 S. Heinemeyer, W. Hollik, and G. Weiglein FeynHiggs: A program for the calculation of the masses of the neutral CP-even Higgs bosons in the MSSM Comput. Phys. Commun. 124 (2000) 76 hep-ph/9812320
84 S. Heinemeyer, W. Hollik, and G. Weiglein The masses of the neutral CP-even Higgs bosons in the MSSM: Accurate analysis at the two-loop level EPJC 9 (1999) 343 hep-ph/9812472
85 G. Degrassi et al. Towards high-precision predictions for the MSSM Higgs sector EPJC 28 (2003) 133 hep-ph/0212020
86 M. Frank et al. The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach JHEP 02 (2007) 047 hep-ph/0611326
87 T. Hahn et al. High-precision predictions for the light CP-even Higgs boson mass of the minimal supersymmetric standard model PRL 112 (2014) 141801 1312.4937
88 H. Bahl and W. Hollik Precise prediction for the light MSSM Higgs boson mass combining effective field theory and fixed-order calculations EPJC 76 (2016) 499 1608.01880
89 H. Bahl, S. Heinemeyer, W. Hollik, and G. Weiglein Reconciling EFT and hybrid calculations of the light MSSM Higgs-boson mass EPJC 78 (2018) 57 1706.00346
90 H. Bahl et al. Precision calculations in the MSSM Higgs-boson sector with FeynHiggs 2.14 Comput. Phys. Commun. 249 (2020) 107099 1811.09073
91 A. Djouadi, J. Kalinowski, M. Muehlleitner, and M. Spira HDECAY: Twenty$ {++} $ years after Comput. Phys. Commun. 238 (2019) 214 1801.09506
92 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 3. Higgs properties CERN Report CERN-2013-004, 2013
link
1307.1347
93 A. Denner et al. Standard model Higgs-boson branching ratios with uncertainties EPJC 71 (2011) 1753 1107.5909
94 R. V. Harlander, S. Liebler, and H. Mantler SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the standard model and the MSSM Comput. Phys. Commun. 184 (2013) 1605 1212.3249
95 R. V. Harlander, S. Liebler, and H. Mantler SusHi Bento: Beyond NNLO and the heavy-top limit Comput. Phys. Commun. 212 (2017) 239 1605.03190
96 M. Spira, A. Djouadi, D. Graudenz, and P. M. Zerwas Higgs boson production at the LHC NPB 453 (1995) 17 hep-ph/9504378
97 R. Harlander and P. Kant Higgs production and decay: analytic results at next-to-leading order QCD JHEP 12 (2005) 015 hep-ph/0509189
98 R. V. Harlander and W. B. Kilgore Next-to-next-to-leading order Higgs production at hadron colliders PRL 88 (2002) 201801 hep-ph/0201206
99 C. Anastasiou and K. Melnikov Higgs boson production at hadron colliders in NNLO QCD NPB 646 (2002) 220 hep-ph/0207004
100 V. Ravindran, J. Smith, and W. L. van Neerven NNLO corrections to the total cross-section for Higgs boson production in hadron-hadron collisions NPB 665 (2003) 325 hep-ph/0302135
101 R. V. Harlander and W. B. Kilgore Production of a pseudo-scalar Higgs boson at hadron colliders at next-to-next-to leading order JHEP 10 (2002) 017 hep-ph/0208096
102 C. Anastasiou and K. Melnikov Pseudoscalar Higgs boson production at hadron colliders in next-to-next-to-leading order QCD PRD 67 (2003) 037501 hep-ph/0208115
103 C. Anastasiou et al. Higgs boson gluon-fusion production beyond threshold in N$ ^{3} $LO QCD JHEP 03 (2015) 091 1411.3584
104 C. Anastasiou et al. Soft expansion of double-real-virtual corrections to Higgs production at N$ ^{3} $LO JHEP 08 (2015) 051 1505.04110
105 C. Anastasiou et al. High precision determination of the gluon fusion Higgs boson cross-section at the LHC JHEP 05 (2016) 058 1602.00695
106 U. Aglietti, R. Bonciani, G. Degrassi, and A. Vicini Two-loop light fermion contribution to Higgs production and decays PLB 595 (2004) 432 hep-ph/0404071
107 R. Bonciani, G. Degrassi, and A. Vicini On the generalized harmonic polylogarithms of one complex variable Comput. Phys. Commun. 182 (2011) 1253 1007.1891
108 M. Bonvini, A. S. Papanastasiou, and F. J. Tackmann Resummation and matching of b-quark mass effects in $ \mathrm{b}\overline{\mathrm{b}}\mathrm{H} $ production JHEP 11 (2015) 196 1508.03288
109 M. Bonvini, A. S. Papanastasiou, and F. J. Tackmann Matched predictions for the $ \mathrm{b}\overline{\mathrm{b}}\mathrm{H} $ cross section at the 13 TeV LHC JHEP 10 (2016) 053 1605.01733
110 S. Forte, D. Napoletano, and M. Ubiali Higgs production in bottom-quark fusion in a matched scheme PLB 751 (2015) 331 1508.01529
111 S. Forte, D. Napoletano, and M. Ubiali Higgs production in bottom-quark fusion: matching beyond leading order PLB 763 (2016) 190 1607.00389
112 R. V. Harlander and W. B. Kilgore Higgs boson production in bottom quark fusion at next-to-next-to leading order PRD 68 (2003) 013001 hep-ph/0304035
113 S. Dittmaier, M. Kr ä mer, and M. Spira Higgs radiation off bottom quarks at the Fermilab Tevatron and the CERN LHC PRD 70 (2004) 074010 hep-ph/0309204
114 S. Dawson, C. B. Jackson, L. Reina, and D. Wackeroth Exclusive Higgs boson production with bottom quarks at hadron colliders PRD 69 (2004) 074027 hep-ph/0311067
Compact Muon Solenoid
LHC, CERN