CMS-PAS-HIG-17-024 | ||
Search for the exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two b quarks and two $\tau$ leptons | ||
CMS Collaboration | ||
February 2018 | ||
Abstract: A search for the exotic decay of the Higgs boson to a pair of light pseudoscalar bosons is performed in the final state with two b jets and two $\tau$ leptons. The motivation lies in models beyond the standard model (SM), such as two-Higgs- models extended with a complex scalar singlet, which include the next-to-minimal supersymmetric SM (NMSSM). The results are based on an integrated luminosity of 35.9 fb$^{-1}$, accumulated by the CMS experiment at the LHC in 2016 at 13 TeV center-of-mass energy. Masses of the pseudoscalar boson between 15 and 60 GeV are probed, and upper limits as low as 23% are set on the branching fraction of the Higgs boson to two light pseudoscalar bosons in the NMSSM, assuming that the production cross section of the Higgs boson is the one predicted in the SM. No mass constraint is set on the b jet pair, making this search sensitive to Higgs boson decays to two scalars with different masses. | ||
Links:
CDS record (PDF) ;
inSPIRE record ;
CADI line (restricted) ;
These preliminary results are superseded in this paper, PLB 785 (2018) 462. The superseded preliminary plots can be found here. |
Figures | |
png pdf |
Figure 1:
Predicted $\mathcal{B}(aa\rightarrow bb {\tau} {\tau})$ for $m_{\mathrm{a}}= $ 40 GeV in the different models of 2HDM+S, for various values of $\tan \beta $. The picture is essentially the same for all $ m_{\mathrm{a}} $ hypotheses considered in this paper. The branching fractions are computed following the formulae in Ref. [15]. |
png pdf |
Figure 2:
Visible invariant mass of the leptons and the leading b jet, $ {m_{{\mathrm{b}} {\tau} {\tau}}^{\mathrm{vis}}} $, after the baseline selection, in the $ {{\mu}} {{\tau}_{\rm h}} $ final state. |
png pdf |
Figure 3:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {\mathrm{e}} {{\mu}}$ channel. The "Others" contribution includes events from single top quark, diboson, SM Higgs boson, and $ {\mathrm{W}}+\textrm {jets}$ productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit. |
png pdf |
Figure 3-a:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {\mathrm{e}} {{\mu}}$ channel. The "Others" contribution includes events from single top quark, diboson, SM Higgs boson, and $ {\mathrm{W}}+\textrm {jets}$ productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit. |
png pdf |
Figure 3-b:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {\mathrm{e}} {{\mu}}$ channel. The "Others" contribution includes events from single top quark, diboson, SM Higgs boson, and $ {\mathrm{W}}+\textrm {jets}$ productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit. |
png pdf |
Figure 3-c:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {\mathrm{e}} {{\mu}}$ channel. The "Others" contribution includes events from single top quark, diboson, SM Higgs boson, and $ {\mathrm{W}}+\textrm {jets}$ productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit. |
png pdf |
Figure 3-d:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {\mathrm{e}} {{\mu}}$ channel. The "Others" contribution includes events from single top quark, diboson, SM Higgs boson, and $ {\mathrm{W}}+\textrm {jets}$ productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit. |
png pdf |
Figure 4:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {\mathrm{e}} {{\tau}_{\rm h}} $ channel. The "jet$\rightarrow {{\tau}_{\rm h}} $" contribution includes all events with a jet misidentified as a $ {{\tau}_{\rm h}} $ candidate, whereas the other contributions only include events where the reconstructed $ {{\tau}_{\rm h}} $ corresponds to a $ {{\tau}_{\rm h}} $, a muon, or an electron, at generated level. The "Others" contribution includes events from single top quark, diboson, and SM Higgs boson productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit. |
png pdf |
Figure 4-a:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {\mathrm{e}} {{\tau}_{\rm h}} $ channel. The "jet$\rightarrow {{\tau}_{\rm h}} $" contribution includes all events with a jet misidentified as a $ {{\tau}_{\rm h}} $ candidate, whereas the other contributions only include events where the reconstructed $ {{\tau}_{\rm h}} $ corresponds to a $ {{\tau}_{\rm h}} $, a muon, or an electron, at generated level. The "Others" contribution includes events from single top quark, diboson, and SM Higgs boson productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit. |
png pdf |
Figure 4-b:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {\mathrm{e}} {{\tau}_{\rm h}} $ channel. The "jet$\rightarrow {{\tau}_{\rm h}} $" contribution includes all events with a jet misidentified as a $ {{\tau}_{\rm h}} $ candidate, whereas the other contributions only include events where the reconstructed $ {{\tau}_{\rm h}} $ corresponds to a $ {{\tau}_{\rm h}} $, a muon, or an electron, at generated level. The "Others" contribution includes events from single top quark, diboson, and SM Higgs boson productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit. |
png pdf |
Figure 4-c:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {\mathrm{e}} {{\tau}_{\rm h}} $ channel. The "jet$\rightarrow {{\tau}_{\rm h}} $" contribution includes all events with a jet misidentified as a $ {{\tau}_{\rm h}} $ candidate, whereas the other contributions only include events where the reconstructed $ {{\tau}_{\rm h}} $ corresponds to a $ {{\tau}_{\rm h}} $, a muon, or an electron, at generated level. The "Others" contribution includes events from single top quark, diboson, and SM Higgs boson productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit. |
png pdf |
Figure 4-d:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {\mathrm{e}} {{\tau}_{\rm h}} $ channel. The "jet$\rightarrow {{\tau}_{\rm h}} $" contribution includes all events with a jet misidentified as a $ {{\tau}_{\rm h}} $ candidate, whereas the other contributions only include events where the reconstructed $ {{\tau}_{\rm h}} $ corresponds to a $ {{\tau}_{\rm h}} $, a muon, or an electron, at generated level. The "Others" contribution includes events from single top quark, diboson, and SM Higgs boson productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit. |
png pdf |
Figure 5:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {{\mu}} {{\tau}_{\rm h}} $ channel. The "jet$\rightarrow {{\tau}_{\rm h}} $" contribution includes all events with a jet misidentified as a $ {{\tau}_{\rm h}} $ candidate, whereas the other contributions only include events where the reconstructed $ {{\tau}_{\rm h}} $ corresponds to a $ {{\tau}_{\rm h}} $, a muon, or an electron, at generated level. The "Others" contribution includes events from single top quark, diboson, and SM Higgs boson productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit. |
png pdf |
Figure 5-a:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {{\mu}} {{\tau}_{\rm h}} $ channel. The "jet$\rightarrow {{\tau}_{\rm h}} $" contribution includes all events with a jet misidentified as a $ {{\tau}_{\rm h}} $ candidate, whereas the other contributions only include events where the reconstructed $ {{\tau}_{\rm h}} $ corresponds to a $ {{\tau}_{\rm h}} $, a muon, or an electron, at generated level. The "Others" contribution includes events from single top quark, diboson, and SM Higgs boson productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit. |
png pdf |
Figure 5-b:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {{\mu}} {{\tau}_{\rm h}} $ channel. The "jet$\rightarrow {{\tau}_{\rm h}} $" contribution includes all events with a jet misidentified as a $ {{\tau}_{\rm h}} $ candidate, whereas the other contributions only include events where the reconstructed $ {{\tau}_{\rm h}} $ corresponds to a $ {{\tau}_{\rm h}} $, a muon, or an electron, at generated level. The "Others" contribution includes events from single top quark, diboson, and SM Higgs boson productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit. |
png pdf |
Figure 5-c:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {{\mu}} {{\tau}_{\rm h}} $ channel. The "jet$\rightarrow {{\tau}_{\rm h}} $" contribution includes all events with a jet misidentified as a $ {{\tau}_{\rm h}} $ candidate, whereas the other contributions only include events where the reconstructed $ {{\tau}_{\rm h}} $ corresponds to a $ {{\tau}_{\rm h}} $, a muon, or an electron, at generated level. The "Others" contribution includes events from single top quark, diboson, and SM Higgs boson productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit. |
png pdf |
Figure 5-d:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {{\mu}} {{\tau}_{\rm h}} $ channel. The "jet$\rightarrow {{\tau}_{\rm h}} $" contribution includes all events with a jet misidentified as a $ {{\tau}_{\rm h}} $ candidate, whereas the other contributions only include events where the reconstructed $ {{\tau}_{\rm h}} $ corresponds to a $ {{\tau}_{\rm h}} $, a muon, or an electron, at generated level. The "Others" contribution includes events from single top quark, diboson, and SM Higgs boson productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit. |
png pdf |
Figure 6:
Expected and observed 95% CL limits on $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}} \mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})$ in%. The $ {\mathrm{e}} {{\mu}}$ results are shown in the top left panel, $ {\mathrm{e}} {{\tau}_{\rm h}} $ in the top right, $ {{\mu}} {{\tau}_{\rm h}} $ in the bottom left, and the combination in the bottom right. The inner (green) band and the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis. |
png pdf |
Figure 6-a:
Expected and observed 95% CL limits on $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}} \mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})$ in%. The $ {\mathrm{e}} {{\mu}}$ results are shown in the top left panel, $ {\mathrm{e}} {{\tau}_{\rm h}} $ in the top right, $ {{\mu}} {{\tau}_{\rm h}} $ in the bottom left, and the combination in the bottom right. The inner (green) band and the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis. |
png pdf |
Figure 6-b:
Expected and observed 95% CL limits on $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}} \mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})$ in%. The $ {\mathrm{e}} {{\mu}}$ results are shown in the top left panel, $ {\mathrm{e}} {{\tau}_{\rm h}} $ in the top right, $ {{\mu}} {{\tau}_{\rm h}} $ in the bottom left, and the combination in the bottom right. The inner (green) band and the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis. |
png pdf |
Figure 6-c:
Expected and observed 95% CL limits on $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}} \mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})$ in%. The $ {\mathrm{e}} {{\mu}}$ results are shown in the top left panel, $ {\mathrm{e}} {{\tau}_{\rm h}} $ in the top right, $ {{\mu}} {{\tau}_{\rm h}} $ in the bottom left, and the combination in the bottom right. The inner (green) band and the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis. |
png pdf |
Figure 6-d:
Expected and observed 95% CL limits on $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}} \mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})$ in%. The $ {\mathrm{e}} {{\mu}}$ results are shown in the top left panel, $ {\mathrm{e}} {{\tau}_{\rm h}} $ in the top right, $ {{\mu}} {{\tau}_{\rm h}} $ in the bottom left, and the combination in the bottom right. The inner (green) band and the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis. |
png pdf |
Figure 7:
Observed 95% CL on $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}}\mathcal{B}({{\mathrm{h}}} \rightarrow {\mathrm{a}} {\mathrm{a}})$ in 2HDM+S of type III (left), and type IV (right). The contours corresponding to a 95% CL exclusion of $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}}\mathcal{B}({{\mathrm{h}}} \rightarrow {\mathrm{a}} {\mathrm{a}})= $ 1.00 and 0.34 are drawn with dashed lines. The number 34% corresponds to the limit on the branching fraction of the Higgs boson to BSM particles at the 95% CL obtained with data collected at a center-of-mass energy of 8 TeV by the CMS and ATLAS experiments [10]. |
png pdf |
Figure 7-a:
Observed 95% CL on $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}}\mathcal{B}({{\mathrm{h}}} \rightarrow {\mathrm{a}} {\mathrm{a}})$ in 2HDM+S of type III (left), and type IV (right). The contours corresponding to a 95% CL exclusion of $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}}\mathcal{B}({{\mathrm{h}}} \rightarrow {\mathrm{a}} {\mathrm{a}})= $ 1.00 and 0.34 are drawn with dashed lines. The number 34% corresponds to the limit on the branching fraction of the Higgs boson to BSM particles at the 95% CL obtained with data collected at a center-of-mass energy of 8 TeV by the CMS and ATLAS experiments [10]. |
png pdf |
Figure 7-b:
Observed 95% CL on $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}}\mathcal{B}({{\mathrm{h}}} \rightarrow {\mathrm{a}} {\mathrm{a}})$ in 2HDM+S of type III (left), and type IV (right). The contours corresponding to a 95% CL exclusion of $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}}\mathcal{B}({{\mathrm{h}}} \rightarrow {\mathrm{a}} {\mathrm{a}})= $ 1.00 and 0.34 are drawn with dashed lines. The number 34% corresponds to the limit on the branching fraction of the Higgs boson to BSM particles at the 95% CL obtained with data collected at a center-of-mass energy of 8 TeV by the CMS and ATLAS experiments [10]. |
png pdf |
Figure 8:
Observed 95% CL on $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}}\mathcal{B}({{\mathrm{h}}} \rightarrow {\mathrm{a}} {\mathrm{a}})$ for various scenarios of 2HDM+S. |
Tables | |
png pdf |
Table 1:
Baseline selection criteria on the objects selected in the various final states. The numbers given for the $ p_{\mathrm{T}} $ thresholds of the electron and muon in the $ {\mathrm{e}} {{\mu}}$ correspond to a combination of asymmetric electron-plus-muon triggers. The $ p_{\mathrm{T}} $ threshold for the $ {{\tau}_{\rm h}} $ candidates is the result of an optimization of the expected exclusion limits of the signal. |
png pdf |
Table 2:
Optimized selection and categorization in the various final states. |
Summary |
The first search for exotic decays of the Higgs boson to pairs of light bosons with two b quark jets and two $\tau$ leptons in the final state, has been performed with data collected at 13 TeV center-of-mass energy in 2016. This decay channel has a large branching fraction in many models where the couplings to fermions are proportional to the fermion mass, and can be triggered in the dominant gluon fusion production mode because of the presence of light leptons from leptonic $\tau$ decays. No excess of events is found on top of the expected standard model background. Upper limits are set on $\mathcal{B}({{\mathrm{h}}} \rightarrow {\mathrm{a}} {\mathrm{a}} )$ assuming particular scenarios of two Higgs doublet models augmented with a scalar singlet (2HDM+S); they are, by several factors, the most stringent limits in 2HDM+S type II for 15 $ < {m_{{\mathrm{a}} }} < $ 62.5 GeV at the LHC so far. |
References | ||||
1 | F. Englert and R. Brout | Broken symmetry and the mass of gauge vector mesons | PRL 13 (1964) 321 | |
2 | P. W. Higgs | Broken symmetries, massless particles and gauge fields | PL12 (1964) 132 | |
3 | P. W. Higgs | Broken symmetries and the masses of gauge bosons | PRL 13 (1964) 508 | |
4 | G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble | Global conservation laws and massless particles | PRL 13 (1964) 585 | |
5 | P. W. Higgs | Spontaneous symmetry breakdown without massless bosons | PR145 (1966) 1156 | |
6 | T. W. B. Kibble | Symmetry Breaking in Non-Abelian Gauge Theories | PR155 (1967) 1554 | |
7 | ATLAS Collaboration | Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC | PLB 716 (2012) | 1207.7214 |
8 | CMS Collaboration | Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC | PLB 716 (2012) | CMS-HIG-12-028 1207.7235 |
9 | CMS Collaboration | Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV | JHEP 06 (2013) 081 | CMS-HIG-12-036 1303.4571 |
10 | ATLAS and CMS Collaborations | Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $ \sqrt{s}= $ 7 and 8 TeV | JHEP 08 (2016) 045 | 1606.02266 |
11 | ATLAS and CMS Collaborations | Combined measurement of the Higgs boson mass in $ pp $ collisions at $ \sqrt{s}= $ 7 and 8 TeV with the ATLAS and CMS experiments | PRL 114 (2015) 191803 | 1503.07589 |
12 | R. Dermisek and J. F. Gunion | Escaping the large fine tuning and little hierarchy problems in the next to minimal supersymmetric model and $ h \rightarrow aa $ decays | PRL 95 (2005) 041801 | hep-ph/0502105 |
13 | R. Dermisek and J. F. Gunion | The NMSSM close to the R-symmetry limit and naturalness in $ h \rightarrow aa $ decays for $ m_a < 2 m_b $ | PRD 75 (2007) 075019 | hep-ph/0611142 |
14 | S. Chang, R. Dermisek, J. F. Gunion, and N. Weiner | Nonstandard Higgs boson decays | Ann. Rev. Nucl. Part. Sci. 58 (2008) 75 | 0801.4554 |
15 | D. Curtin et al. | Exotic decays of the 125 GeV Higgs boson | PRD 90 (2014) 075004 | 1312.4992 |
16 | CMS Collaboration | Search for neutral mssm higgs bosons decaying to a pair of tau leptons in pp colllisions | JHEP 10 (2014) 160 | CMS-HIG-13-021 1408.3316 |
17 | CMS Collaboration | Search for neutral MSSM Higgs bosons decaying into a pair of bottom quarks | JHEP 11 (2015) 071 | CMS-HIG-14-017 1506.08329 |
18 | CMS Collaboration | Search for neutral MSSM Higgs bosons decaying to $ \mu^{+} \mu^{-} $ in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV | PLB 752 (2016) 221 | CMS-HIG-13-024 1508.01437 |
19 | CMS Collaboration | Search for a charged Higgs boson in pp collisions at $ \sqrt{s}= $ 8 TeV | JHEP 11 (2015) 018 | CMS-HIG-14-023 1508.07774 |
20 | CMS Collaboration | Search for Higgs boson pair production in events with two bottom quarks and two tau leptons in proton-proton collisions at sqrt(s) = 13 TeV | CMS-HIG-17-002 1707.02909 |
|
21 | CMS Collaboration | Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A decaying to Zh, in the final states with $ h \to \tau \tau $ | PLB 755 (2016) 217 | CMS-HIG-14-034 1510.01181 |
22 | S. Heinemeyer, O. Stal, and G. Weiglein | Interpreting the LHC Higgs search results in the MSSM | PLB 710 (2012) 201 | 1112.3026 |
23 | G. C. Branco et al. | Theory and phenomenology of two-Higgs-doublet models | Phys. Rep. 516 (2012) 1 | 1106.0034 |
24 | S. Ramos-Sanchez | The mu-problem, the nmssm and string theory | Fortsch.Phys.58:748-752,2010 58 (2010) 748--752 | 1003.1307 |
25 | CMS Collaboration | Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at $ \sqrt{s}= $ 8 TeV | JHEP 10 (2017) 076 | CMS-HIG-16-015 1701.02032 |
26 | CMS Collaboration | Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into $ \tau $ leptons in pp collisions at $ \sqrt{s}= $ 8 TeV | JHEP 01 (2016) 079 | CMS-HIG-14-019 1510.06534 |
27 | CMS Collaboration | A search for pair production of new light bosons decaying into muons | PLB 752 (2016) 146 | CMS-HIG-13-010 1506.00424 |
28 | ATLAS Collaboration | Search for the Higgs boson produced in association with a $ W $ boson and decaying to four $ b $-quarks via two spin-zero particles in $ pp $ collisions at 13 TeV with the ATLAS detector | EPJC 76 (2016) 605 | 1606.08391 |
29 | ATLAS Collaboration | Search for new light gauge bosons in Higgs boson decays to four-lepton final states in $ pp $ collisions at $ \sqrt{s}= $ 8 TeV with the ATLAS detector at the LHC | PRD 92 (2015) 092001 | 1505.07645 |
30 | ATLAS Collaboration | Search for Higgs boson decays to beyond-the-Standard-Model light bosons in four-lepton events with the ATLAS detector at $ \sqrt{s}= $ 13 TeV | 1802.03388 | |
31 | ATLAS Collaboration | Search for new phenomena in events with at least three photons collected in $ pp $ collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS detector | EPJC 76 (2016) 210 | 1509.05051 |
32 | ATLAS Collaboration | Search for Higgs bosons decaying to $ aa $ in the $ \mu\mu\tau\tau $ final state in $ pp $ collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS experiment | PRD 92 (2015) 052002 | 1505.01609 |
33 | CMS Collaboration | The CMS trigger system | JINST 12 (2017) P01020 | CMS-TRG-12-001 1609.02366 |
34 | CMS Collaboration | The CMS experiment at the CERN LHC | JINST 3 (2008) S08004 | CMS-00-001 |
35 | J. Alwall et al. | The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations | JHEP 07 (2014) 079 | 1405.0301 |
36 | J. Alwall et al. | Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions | EPJC 53 (2008) 473 | 0706.2569 |
37 | P. Nason | A new method for combining NLO QCD with shower Monte Carlo algorithms | JHEP 11 (2004) 040 | hep-ph/0409146 |
38 | S. Frixione, P. Nason, and C. Oleari | Matching NLO QCD computations with parton shower simulations: the POWHEG method | JHEP 11 (2007) 070 | 0709.2092 |
39 | S. Alioli, P. Nason, C. Oleari, and E. Re | A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX | JHEP 06 (2010) 043 | 1002.2581 |
40 | S. Alioli et al. | Jet pair production in POWHEG | JHEP 04 (2011) 081 | 1012.3380 |
41 | S. Alioli, P. Nason, C. Oleari, and E. Re | NLO Higgs boson production via gluon fusion matched with shower in POWHEG | JHEP 04 (2009) 002 | 0812.0578 |
42 | G. Luisoni, P. Nason, C. Oleari, and F. Tramontano | $ HW^{\pm}/HZ + 0 $ and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO | JHEP 10 (2013) 083 | 1306.2542 |
43 | T. Sjostrand et al. | An introduction to PYTHIA 8.2 | CPC 191 (2015) 159 | 1410.3012 |
44 | CMS Collaboration | Event generator tunes obtained from underlying event and multiparton scattering measurements | EPJC 76 (2016) 155 | CMS-GEN-14-001 1512.00815 |
45 | M. Czakon, P. Fiedler, and A. Mitov | Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through O($ \alpha_S^4 $) | PRL 110 (2013) 252004 | 1303.6254 |
46 | M. Czakon and A. Mitov | Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders | CPC 185 (2014) 2930 | 1112.5675 |
47 | S. Alekhin et al. | The PDF4LHC Working Group Interim Report | 1101.0536 | |
48 | M. Botje et al. | The PDF4LHC Working Group Interim Recommendations | 1101.0538 | |
49 | H.-L. Lai et al. | New parton distributions for collider physics | PRD 82 (2010) 074024 | 1007.2241 |
50 | J. Gao et al. | CT10 next-to-next-to-leading order global analysis of QCD | PRD 89 (2014) 033009 | 1302.6246 |
51 | NNPDF Collaboration | Parton distributions with LHC data | NPB 867 (2013) 244 | 1207.1303 |
52 | GEANT4 Collaboration | GEANT4 --- a simulation toolkit | NIMA 506 (2003) 250 | |
53 | CMS Collaboration | Particle-flow reconstruction and global event description with the CMS detector | Submitted to J. Instrum | CMS-PRF-14-001 1706.04965 |
54 | M. Cacciari, G. P. Salam, and G. Soyez | The anti-$ k_t $ jet clustering algorithm | JHEP 04 (2008) 063 | 0802.1189 |
55 | M. Cacciari, G. P. Salam, and G. Soyez | FastJet user manual | EPJC 72 (2012) 1896 | 1111.6097 |
56 | M. Cacciari and G. P. Salam | Dispelling the $ N^{3} $ myth for the $ k_t $ jet-finder | PLB 641 (2006) 57 | hep-ph/0512210 |
57 | CMS Collaboration | Determination of jet energy calibration and transverse momentum resolution in CMS | JINST 6 (2011) 11002 | CMS-JME-10-011 1107.4277 |
58 | CMS Collaboration | Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV | CMS-BTV-16-002 1712.07158 |
|
59 | CMS Collaboration | Reconstruction and identification of $ \tau $ lepton decays to hadrons and $ \nu_\tau $ at CMS | JINST 11 (2016) P01019 | CMS-TAU-14-001 1510.07488 |
60 | CMS Collaboration | Performance of reconstruction and identification of tau leptons in their decays to hadrons and tau neutrino in LHC Run-2 | CMS-PAS-TAU-16-002 | CMS-PAS-TAU-16-002 |
61 | CMS Collaboration | Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s} = $ 8 TeV | JINST 10 (2015) P06005 | CMS-EGM-13-001 1502.02701 |
62 | CMS Collaboration | Performance of CMS muon reconstruction in pp collision events at $ \sqrt{s}= $ 7 TeV | JINST 7 (2012) P10002 | CMS-MUO-10-004 1206.4071 |
63 | CMS Collaboration | Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions | JHEP 10 (2014) 160 | CMS-HIG-13-021 1408.3316 |
64 | J. S. Conway | Incorporating nuisance parameters in likelihoods for multisource spectra | in Proceedings of PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, p. 115 CERN-2011-006 | |
65 | CMS Collaboration | Performance of missing transverse momentum reconstruction algorithms in proton-proton collisions at $ \sqrt{s}= $ 8 TeV with the CMS detector | CMS-PAS-JME-12-002 | CMS-PAS-JME-12-002 |
66 | CMS Collaboration | Measurements of the pp$ \to $ZZ production cross section and the Z$ \to 4\ell $ branching fraction, and constraints on anomalous triple gauge couplings at $ \sqrt{s} = $ 13 TeV | Submitted to EPJC | CMS-SMP-16-017 1709.08601 |
67 | CMS Collaboration | Cross section measurement of $ t $-channel single top quark production in pp collisions at $ \sqrt s = $ 13 TeV | PLB 772 (2017) 752 | CMS-TOP-16-003 1610.00678 |
68 | CMS Collaboration | Measurements of the associated production of a Z boson and b jets in pp collisions at $ {\sqrt{s}} = $ 8 TeV | EPJC 77 (2017), no. 11, 751 | CMS-SMP-14-010 1611.06507 |
69 | D. de Florian et al. | Handbook of LHC Higgs cross sections: 4. deciphering the nature of the Higgs sector | CERN-2017-002-M | 1610.07922 |
70 | CMS Collaboration | CMS luminosity measurements for the 2016 data taking period | CMS-PAS-LUM-17-001 | CMS-PAS-LUM-17-001 |
71 | T. Junk | Confidence level computation for combining searches with small statistics | NIMA 434 (1999) 435 | hep-ex/9902006 |
72 | A. Djouadi | The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model | Phys. Rep. 457 (2008) 1 | hep-ph/0503172 |
Compact Muon Solenoid LHC, CERN |