CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-TOP-20-007
Search for flavor-changing neutral current interactions of the top quark and the Higgs boson in the diphoton decay channel in proton-proton collisions at $\sqrt{s}= $ 13 TeV
Abstract: Proton-proton interactions resulting in the prodution of a Higgs boson with subsequent decay into two photons are studied in a search for the signature of flavor-changing neutral current interactions of top quarks and Higgs bosons. The analysis is based on data collected at a center-of-mass energy $\sqrt{s}= $ 13 TeV by the CMS detector at the LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. Multivariate machine learning techniques are used to separate signal and standard model background processes. No significant excess above the background prediction is observed, and upper limits on the $\mathrm{t} \to \mathrm{Hq}$ branching fractions are derived through a binned fit to the diphoton invariant mass spectrum. The observed (expected) 95% confidence level upper limits are found to be 1.9 $\times$ 10$^{-4}$ (3.1 $\times$ 10$^{-4}$) for $\mathcal B(\mathrm{t} \to \mathrm{Hu})$ and 7.3 $\times$ 10$^{-4}$ (5.1 $\times$ 10$^{-4}$) for $\mathcal B(\mathrm{t} \to \mathrm{Hc})$.
Figures Summary References CMS Publications
Figures

png pdf
Figure 1:
Representative Feynman diagrams for the considered FCNC production modes: associated production of a top quark with the Higgs boson (left) and ${\mathrm{t} {}\mathrm{\bar{t}}}$ production with the decay of the top quark to a Higgs boson and an up or charm quark (right). The FCNC vertex in each process is denoted with a red circle.

png pdf
Figure 2:
Distributions of BDT-NRB (left) and BDT-SMH (right) output used for the event categorization targeting ${\mathrm{t} \to \mathrm{H} \mathrm{u}}$ FCNC interactions in the hadronic channel. The "Other'' category includes contributions from ${{\mathrm{t} {}\mathrm{\bar{t}}} \mathrm{Z}}$, ${{\mathrm{t} {}\mathrm{\bar{t}}} \mathrm{W}}$, ${\mathrm{W} \mathrm{W}}$, ${\mathrm{W} \mathrm{Z}}$, ${\mathrm{Z} \mathrm{Z}}$, and $\mathrm{t}$ + $\gamma $ + jets. Category boundaries are indicated with dotted lines. Events in the grey shaded region are not considered in the analysis. The lower panels show the ratio of the data to the MC predictions. Statistical and total (statistical $\oplus $ systematic) background uncertainties are represented by the black and red shaded bands, respectively. No systematic uncertainty is considered for the ($\gamma$) + jets sample of events from data.

png pdf
Figure 2-a:
Distributions of BDT-NRB (left) and BDT-SMH (right) output used for the event categorization targeting ${\mathrm{t} \to \mathrm{H} \mathrm{u}}$ FCNC interactions in the hadronic channel. The "Other'' category includes contributions from ${{\mathrm{t} {}\mathrm{\bar{t}}} \mathrm{Z}}$, ${{\mathrm{t} {}\mathrm{\bar{t}}} \mathrm{W}}$, ${\mathrm{W} \mathrm{W}}$, ${\mathrm{W} \mathrm{Z}}$, ${\mathrm{Z} \mathrm{Z}}$, and $\mathrm{t}$ + $\gamma $ + jets. Category boundaries are indicated with dotted lines. Events in the grey shaded region are not considered in the analysis. The lower panels show the ratio of the data to the MC predictions. Statistical and total (statistical $\oplus $ systematic) background uncertainties are represented by the black and red shaded bands, respectively. No systematic uncertainty is considered for the ($\gamma$) + jets sample of events from data.

png pdf
Figure 2-b:
Distributions of BDT-NRB (left) and BDT-SMH (right) output used for the event categorization targeting ${\mathrm{t} \to \mathrm{H} \mathrm{u}}$ FCNC interactions in the hadronic channel. The "Other'' category includes contributions from ${{\mathrm{t} {}\mathrm{\bar{t}}} \mathrm{Z}}$, ${{\mathrm{t} {}\mathrm{\bar{t}}} \mathrm{W}}$, ${\mathrm{W} \mathrm{W}}$, ${\mathrm{W} \mathrm{Z}}$, ${\mathrm{Z} \mathrm{Z}}$, and $\mathrm{t}$ + $\gamma $ + jets. Category boundaries are indicated with dotted lines. Events in the grey shaded region are not considered in the analysis. The lower panels show the ratio of the data to the MC predictions. Statistical and total (statistical $\oplus $ systematic) background uncertainties are represented by the black and red shaded bands, respectively. No systematic uncertainty is considered for the ($\gamma$) + jets sample of events from data.

png pdf
Figure 3:
Invariant mass distribution for the selected events (black points), along with signal and background models for the categories targeting ${\mathrm{t} \to \mathrm{H} \mathrm{u}}$ FCNC interactions (left) and ${\mathrm{t} \to \mathrm{H} \mathrm{c}}$ FCNC interactions (right). The signal model is normalized to the expected 95% CL upper limit on ${\mathcal B(\mathrm{t} \to \mathrm{H} \mathrm{q})}$. Events are weighted by the $ S / (S + B) $ of their respective categories. Note that the background model includes ${\mathrm{H} \to \gamma \gamma}$ events from SM processes. The lower panels show the same information, but with the background model subtracted from each quantity.

png pdf
Figure 3-a:
Invariant mass distribution for the selected events (black points), along with signal and background models for the categories targeting ${\mathrm{t} \to \mathrm{H} \mathrm{u}}$ FCNC interactions (left) and ${\mathrm{t} \to \mathrm{H} \mathrm{c}}$ FCNC interactions (right). The signal model is normalized to the expected 95% CL upper limit on ${\mathcal B(\mathrm{t} \to \mathrm{H} \mathrm{q})}$. Events are weighted by the $ S / (S + B) $ of their respective categories. Note that the background model includes ${\mathrm{H} \to \gamma \gamma}$ events from SM processes. The lower panels show the same information, but with the background model subtracted from each quantity.

png pdf
Figure 3-b:
Invariant mass distribution for the selected events (black points), along with signal and background models for the categories targeting ${\mathrm{t} \to \mathrm{H} \mathrm{u}}$ FCNC interactions (left) and ${\mathrm{t} \to \mathrm{H} \mathrm{c}}$ FCNC interactions (right). The signal model is normalized to the expected 95% CL upper limit on ${\mathcal B(\mathrm{t} \to \mathrm{H} \mathrm{q})}$. Events are weighted by the $ S / (S + B) $ of their respective categories. Note that the background model includes ${\mathrm{H} \to \gamma \gamma}$ events from SM processes. The lower panels show the same information, but with the background model subtracted from each quantity.

png pdf
Figure 4:
Expected and observed 95% CL upper limits on ${\mathcal B(\mathrm{t} \to \mathrm{H} \mathrm{u})}$ vs. ${\mathcal B(\mathrm{t} \to \mathrm{H} \mathrm{c})}$ (left) and $\kappa _{\mathrm{H} \mathrm{u} \mathrm{t}}$ vs. $\kappa _{\mathrm{H} \mathrm{c} \mathrm{t}}$ (right).

png pdf
Figure 4-a:
Expected and observed 95% CL upper limits on ${\mathcal B(\mathrm{t} \to \mathrm{H} \mathrm{u})}$ vs. ${\mathcal B(\mathrm{t} \to \mathrm{H} \mathrm{c})}$ (left) and $\kappa _{\mathrm{H} \mathrm{u} \mathrm{t}}$ vs. $\kappa _{\mathrm{H} \mathrm{c} \mathrm{t}}$ (right).

png pdf
Figure 4-b:
Expected and observed 95% CL upper limits on ${\mathcal B(\mathrm{t} \to \mathrm{H} \mathrm{u})}$ vs. ${\mathcal B(\mathrm{t} \to \mathrm{H} \mathrm{c})}$ (left) and $\kappa _{\mathrm{H} \mathrm{u} \mathrm{t}}$ vs. $\kappa _{\mathrm{H} \mathrm{c} \mathrm{t}}$ (right).
Summary
In conclusion, we have presented a search for FCNC interactions of the top quark and the Higgs boson, considering both the associated production of a single top quark with a Higgs boson via a light-flavor quark and the decay of a top quark to a Higgs boson and light-flavor quark in ${\mathrm{t} {}\mathrm{\bar{t}}}$ production. No significant excess above the background prediction is observed and limits on the ${\mathrm{t} \to \mathrm{H} \mathrm{q}}$ branching fractions are derived. The observed (expected) 95% CL upper limits on $\mathcal B(\mathrm{t} \to \mathrm{Hu})$ and $\mathcal B(\mathrm{t} \to \mathrm{Hc})$ of 1.9 $\times$ 10$^{-4}$ (3.1 $\times$ 10$^{-4}$) and 7.3 $\times$ 10$^{-4}$ (5.1 $\times$ 10$^{-4}$), respectively.
References
1 S. Glashow, J. Iliopoulos, and L. Maiani Weak interactions with lepton-hadron symmetry PRD 2 (1970) 1285
2 M. Kobayashi and T. Maskawa CP violation in the renormalizable theory of weak interaction Prog. Theor. Phys. 49 (1973) 652
3 G. Eilam, J. Hewett, and A. Soni Rare decays of the top quark in the standard and two Higgs doublet models PRD 44 (1991) 1473, . [Erratum: Phys. Rev. D 59, 039901 (1999)]
4 B. Mele, S. Petrarca, and A. Soddu A new evaluation of the decay width in the standard model PLB 435 (1998) 401
5 J. Aguilar-Saavedra Top flavor-changing neutral interactions: theoretical expectations and experimental detection Acta Phys. Polon. B 35 (2004) 2695 hep-ph/0409342
6 C. Zhang and F. Maltoni Top-quark decay into Higgs boson and a light quark at next-to-leading order in QCD PRD 88 (2013) 054005 1305.7386
7 ATLAS Collaboration Search for top-quark decays $ \mathrm{t} \to \mathrm{H}\mathrm{q} $ with 36 fb$ ^{-1} $ of $ {\mathrm{p}}{\mathrm{p}} $ collision data at $ \sqrt{s}= $ 13 TeV with the ATLAS detector JHEP 05 (2019) 123 1812.11568
8 A. Azatov, M. Toharia, and L. Zhu Higgs mediated flavor changing neutral currents in warped extra dimensions PRD 80 (2009) 035016
9 A. Azatov, G. Panico, G. Perez, and Y. Soreq On the flavor structure of natural composite higgs models $ \& $ top flavor violation JHEP 12 (2014) 082
10 S. Bejar, J. Guasch, and J. Sola Loop induced flavor changing neutral decays of the top quark in a general two Higgs doublet model NPB 600 (2001) 21 hep-ph/0011091
11 J. Guasch and J. Sola FCNC top quark decays in the MSSM: a door to SUSY physics in high luminosity colliders? Nuclear Physics B 562 (1999) 3
12 J. J. Cao et al. Supersymmetry-induced flavor-changing neutral-current top-quark processes at the CERN Large Hadron Collider PRD 75 (2007) 075021
13 J. Cao et al. SUSY induced top quark FCNC decay $ \mathrm{t} \to \mathrm{c}\mathrm{H} $ after Run I of LHC EPJC 74 (2014) 3058
14 G. Eilam et al. Top-quark rare decay $ \mathrm{t} \to \mathrm{c}\mathrm{H} $ in R-parity-violating SUSY PLB 510 (2001) 227
15 J. Aguilar-Saavedra Effects of mixing with quark singlets PRD 67 (2003) 035003 hep-ph/0210112
16 W. Buchmuller and D. Wyler Effective lagrangian analysis of new interactions and flavor conservation NPB 268 (1986) 621
17 B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek Dimension-six terms in the standard model lagrangian JHEP 10 (2010) 085 1008.4884
18 ATLAS Collaboration Search for top quark decays $ \mathrm{t} \to \mathrm{q}\mathrm{H} $, with $ \mathrm{H} \to \gamma\gamma $, in $ \sqrt{s}=13 TeV {\mathrm{p}}{\mathrm{p}} $ collisions using the ATLAS detector JHEP 10 (2017) 129 1707.01404
19 ATLAS Collaboration Search for flavor-changing neutral currents in top quark decays $ \mathrm{t} \to \mathrm{H}\mathrm{c} $ and $ \mathrm{t} \to \mathrm{H}\mathrm{u} $ in multilepton final states in proton-proton collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector PRD 98 (2018) 032002 1805.03483
20 CMS Collaboration Search for the flavor-changing neutral current interactions of the top quark and the Higgs boson which decays into a pair of b quarks at $ \sqrt{s}= $ 13 TeV JHEP 06 (2018) 102 CMS-TOP-17-003
1712.02399
21 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
22 T. Sjostrand et al. An introduction to PYTHIA 8.2 CPC 191 (2015) 159 1410.3012
23 CMS Collaboration Event generator tunes obtained from underlying event and multiparton scattering measurements EPJC 76 (2016) 155 CMS-GEN-14-001
1512.00815
24 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
25 A. Alloul et al. FeynRules 2.0 - A complete toolbox for tree-level phenomenology CPC 185 (2014) 2250 1310.1921
26 C. Degrande et al. UFO - The Universal FeynRules Output CPC 183 (2012) 1201 1108.2040
27 J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions EPJC 53 (2008) 473 0706.2569
28 M. Czakon and A. Mitov Top++: A program for the calculation of the top-pair cross-section at hadron colliders CPC 185 (2014) 2930 1112.5675
29 J. Gao, C. S. Li, and H. X. Zhu Top quark decay at next-to-next-to leading order in QCD PRL 110 (2013) 042001 1210.2808
30 N. Kidonakis NNLL threshold resummation for top-pair and single-top production Phys. Part. Nucl. 45 (2014) 714 1210.7813
31 M. Czakon, D. Heymes, and A. Mitov High-precision differential predictions for top-quark pairs at the LHC PRL 116 (2016) 082003 1511.00549
32 M. Czakon et al. Top-pair production at the LHC through NNLO QCD and NLO EW JHEP 10 (2017) 186 1705.04105
33 S. Catani et al. Top-quark pair production at the LHC: fully differential QCD predictions at NNLO JHEP 07 (2019) 100 1906.06535
34 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 4. deciphering the nature of the Higgs sector CERN (2016) 1610.07922
35 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
36 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the $ POWHEG $ method JHEP 11 (2007) 070 0709.2092
37 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the $ POWHEG $ BOX JHEP 06 (2010) 043 1002.2581
38 H. B. Hartanto, B. Jager, L. Reina, and D. Wackeroth Higgs boson production in association with top quarks in the $ POWHEG $ BOX PRD 91 (2015) 094003 1501.04498
39 E. Bothmann et al. Event generation with SHERPA 2.2 SciPost Phys. 7 (2019) 34 1905.09127
40 \GEANTfour Collaboration GEANT4--a simulation toolkit NIMA 506 (2003) 250
41 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
42 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ {k_{\mathrm{T}}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
43 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
44 CMS Collaboration Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s} = $ 13 TeV using the CMS detector JINST 14 (2019) P07004 CMS-JME-17-001
1903.06078
45 CMS Collaboration Technical proposal for the phase-II upgrade of the Compact Muon Solenoid CMS-PAS-TDR-15-002 CMS-PAS-TDR-15-002
46 CMS Collaboration Identification of heavy-flavor jets with the CMS detector in $ {\mathrm{p}}{\mathrm{p}} $ collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
47 E. Bols et al. Jet flavour classification using DeepJet JINST 15 (2020) P12012 2008.10519
48 CMS Collaboration Performance of the DeepJet b tagging algorithm using 41.9/fb of data from proton-proton collisions at 13 TeV with Phase 1 CMS detector CDS
49 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
50 CMS Collaboration Measurements of Higgs boson properties in the diphoton decay channel in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 11 (2018) 185 CMS-HIG-16-040
1804.02716
51 CMS Collaboration Measurement of the inclusive $ \mathrm{W} $ and $ \mathrm{Z} $ production cross sections in pp collisions at $ \sqrt{s}= $ 7 TeV JHEP 10 (2011) 132 CMS-EWK-10-005
1107.4789
52 E. Spyromitros-Xioufis, W. Groves, G. Tsoumakas, and I. Vlahavas Multi-target regression via input space expansion: treating targets as inputs Mach Learn 104 (2016) 55 1211.6581
53 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
54 T. Chen and C. Guestrin XGBoost: A scalable tree boosting system in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, p. 785 ACM, New York, NY, USA
55 CMS Collaboration Measurements of $ \mathrm{t\bar{t}}\mathrm{H} $ production and the CP structure of the Yukawa interaction between the Higgs boson and top quark in the diphoton decay channel PRL 125 (2020) 061801 CMS-HIG-19-013
2003.10866
56 M. J. Oreglia PhD thesis, Stanford University, 1980 SLAC Report SLAC-R-236
57 CMS Collaboration A measurement of the Higgs boson mass in the diphoton decay channel CMS-PAS-HIG-19-004 CMS-PAS-HIG-19-004
58 P. D. Dauncey, M. Kenzie, N. Wardle, and G. J. Davies Handling uncertainties in background shapes JINST 10 (2015) P04015 1408.6865
59 M. Botje et al. The PDF4LHC Working Group Interim Recommendations 1101.0538
60 S. Alekhin et al. The PDF4LHC Working Group Interim Report 1101.0536
61 A. Martin, W. Stirling, R. Thorne, and G. Watt Uncertainties on alpha(S) in global PDF analyses and implications for predicted hadronic cross sections EPJC 64 (2009) 653 0905.3531
62 J. Gao et al. CT10 next-to-next-to-leading order global analysis of QCD PRD 89 (2014) 033009 1302.6246
63 R. D. Ball et al. Parton distributions with LHC data NPB 867 (2013) 244 1207.1303
64 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS Submitted to EPJC CMS-LUM-17-003
2104.01927
65 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV CMS-PAS-LUM-17-004 CMS-PAS-LUM-17-004
66 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV CMS-PAS-LUM-18-002 CMS-PAS-LUM-18-002
67 T. Junk Confidence level computation for combining searches with small statistics NIMA 434 (1999) 435 hep-ex/9902006
68 A. L. Read Presentation of search results: the CLs technique J Phys. G Nucl. Part. Phys. 28 (2002) 2693
69 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
Compact Muon Solenoid
LHC, CERN