CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-HIG-23-005
Search for rare decays of the Higgs boson into a photon and a $ \rho $, $ \phi $ or $ \mathrm{K}^{*0} $ meson
Abstract: Higgs boson decays into a photon and a $ \rho^0 $(770), $ \phi $, or $ \mathrm{K}^{*0} $(892) meson are searched for using proton-proton collision data collected by the CMS experiment at the LHC at $ \sqrt{s}= $ 13 TeV. Events are selected in which the mesons decay into pairs of charged pions, pairs of charged kaons, and charged kaon-pion pairs respectively. Depending on the Higgs boson production mode, different triggering and reconstruction techniques are adopted. The analysed data sets correspond to an integrated luminosity varying between 39.5 and 138 fb$ ^{-1} $, depending on the targeted final state. By combining these analysis categories, no significant excess above the background expectations is observed. Upper limits at the 95% confidence level on the Higgs boson branching fractions into $ \rho^0\gamma $, $ \phi\gamma $, and $ \mathrm{K}^{*0}\gamma $ are determined to be 3.74 $ \times$ 10$^{-4} $, 2.97 $ \times$ 10$^{-4} $, and 1.71 $ \times$ 10$^{-4} $, respectively. These results constitute the most stringent experimental limits to date.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Feynman diagrams showing the different Higgs boson decay mechanisms into a photon and a light meson (upper: $ \phi $ meson; lower: $ \mathrm{K^{\ast}(892)}^0 $ meson). The crossed circle in the top right diagram denotes the off-shell $ \mathrm{H} \to \gamma\gamma^* $ amplitude, which in the SM arises first at one-loop order.

png pdf
Figure 2:
Di-track mass distribution in selected events in data, for the ggH category of the analysis, $ \rho^0\gamma $ (upper left), $ \phi\gamma $ (upper right) and $ \mathrm{K^{\ast}(892)}^0\gamma $ (lower) decays. Vertical dashed lines represent the signal mass region borders.

png pdf
Figure 2-a:
Di-track mass distribution in selected events in data, for the ggH category of the analysis, $ \rho^0\gamma $ (upper left), $ \phi\gamma $ (upper right) and $ \mathrm{K^{\ast}(892)}^0\gamma $ (lower) decays. Vertical dashed lines represent the signal mass region borders.

png pdf
Figure 2-b:
Di-track mass distribution in selected events in data, for the ggH category of the analysis, $ \rho^0\gamma $ (upper left), $ \phi\gamma $ (upper right) and $ \mathrm{K^{\ast}(892)}^0\gamma $ (lower) decays. Vertical dashed lines represent the signal mass region borders.

png pdf
Figure 2-c:
Di-track mass distribution in selected events in data, for the ggH category of the analysis, $ \rho^0\gamma $ (upper left), $ \phi\gamma $ (upper right) and $ \mathrm{K^{\ast}(892)}^0\gamma $ (lower) decays. Vertical dashed lines represent the signal mass region borders.

png pdf
Figure 3:
Post-fit $ m_{\mathrm{M}\gamma} $ distributions in data and the background model for ggH cat0 (upper left) and VBF high-$ p_{\mathrm{T}}^\gamma $/cat0 (upper right) of the $ \mathrm{H}\to\rho^0\gamma $ search, ggH cat0 (middle left) and the VH category (middle right) of the $ \mathrm{H}\to\phi\gamma $ search, ggH cat0 (lower left) and the VBF low-$ p_{\mathrm{T}}^\gamma $/cat0 (lower right) of the $ \mathrm{H}\to\mathrm{K^{\ast}(892)}^0\gamma $ search. The signal simulation is shown normalized at a branching fraction corresponding to the expected upper limit. Signal and background fit components, as well as 1- and 2-$ \sigma $ fit uncertainty bands are also shown.

png pdf
Figure 3-a:
Post-fit $ m_{\mathrm{M}\gamma} $ distributions in data and the background model for ggH cat0 (upper left) and VBF high-$ p_{\mathrm{T}}^\gamma $/cat0 (upper right) of the $ \mathrm{H}\to\rho^0\gamma $ search, ggH cat0 (middle left) and the VH category (middle right) of the $ \mathrm{H}\to\phi\gamma $ search, ggH cat0 (lower left) and the VBF low-$ p_{\mathrm{T}}^\gamma $/cat0 (lower right) of the $ \mathrm{H}\to\mathrm{K^{\ast}(892)}^0\gamma $ search. The signal simulation is shown normalized at a branching fraction corresponding to the expected upper limit. Signal and background fit components, as well as 1- and 2-$ \sigma $ fit uncertainty bands are also shown.

png pdf
Figure 3-b:
Post-fit $ m_{\mathrm{M}\gamma} $ distributions in data and the background model for ggH cat0 (upper left) and VBF high-$ p_{\mathrm{T}}^\gamma $/cat0 (upper right) of the $ \mathrm{H}\to\rho^0\gamma $ search, ggH cat0 (middle left) and the VH category (middle right) of the $ \mathrm{H}\to\phi\gamma $ search, ggH cat0 (lower left) and the VBF low-$ p_{\mathrm{T}}^\gamma $/cat0 (lower right) of the $ \mathrm{H}\to\mathrm{K^{\ast}(892)}^0\gamma $ search. The signal simulation is shown normalized at a branching fraction corresponding to the expected upper limit. Signal and background fit components, as well as 1- and 2-$ \sigma $ fit uncertainty bands are also shown.

png pdf
Figure 3-c:
Post-fit $ m_{\mathrm{M}\gamma} $ distributions in data and the background model for ggH cat0 (upper left) and VBF high-$ p_{\mathrm{T}}^\gamma $/cat0 (upper right) of the $ \mathrm{H}\to\rho^0\gamma $ search, ggH cat0 (middle left) and the VH category (middle right) of the $ \mathrm{H}\to\phi\gamma $ search, ggH cat0 (lower left) and the VBF low-$ p_{\mathrm{T}}^\gamma $/cat0 (lower right) of the $ \mathrm{H}\to\mathrm{K^{\ast}(892)}^0\gamma $ search. The signal simulation is shown normalized at a branching fraction corresponding to the expected upper limit. Signal and background fit components, as well as 1- and 2-$ \sigma $ fit uncertainty bands are also shown.

png pdf
Figure 3-d:
Post-fit $ m_{\mathrm{M}\gamma} $ distributions in data and the background model for ggH cat0 (upper left) and VBF high-$ p_{\mathrm{T}}^\gamma $/cat0 (upper right) of the $ \mathrm{H}\to\rho^0\gamma $ search, ggH cat0 (middle left) and the VH category (middle right) of the $ \mathrm{H}\to\phi\gamma $ search, ggH cat0 (lower left) and the VBF low-$ p_{\mathrm{T}}^\gamma $/cat0 (lower right) of the $ \mathrm{H}\to\mathrm{K^{\ast}(892)}^0\gamma $ search. The signal simulation is shown normalized at a branching fraction corresponding to the expected upper limit. Signal and background fit components, as well as 1- and 2-$ \sigma $ fit uncertainty bands are also shown.

png pdf
Figure 3-e:
Post-fit $ m_{\mathrm{M}\gamma} $ distributions in data and the background model for ggH cat0 (upper left) and VBF high-$ p_{\mathrm{T}}^\gamma $/cat0 (upper right) of the $ \mathrm{H}\to\rho^0\gamma $ search, ggH cat0 (middle left) and the VH category (middle right) of the $ \mathrm{H}\to\phi\gamma $ search, ggH cat0 (lower left) and the VBF low-$ p_{\mathrm{T}}^\gamma $/cat0 (lower right) of the $ \mathrm{H}\to\mathrm{K^{\ast}(892)}^0\gamma $ search. The signal simulation is shown normalized at a branching fraction corresponding to the expected upper limit. Signal and background fit components, as well as 1- and 2-$ \sigma $ fit uncertainty bands are also shown.

png pdf
Figure 3-f:
Post-fit $ m_{\mathrm{M}\gamma} $ distributions in data and the background model for ggH cat0 (upper left) and VBF high-$ p_{\mathrm{T}}^\gamma $/cat0 (upper right) of the $ \mathrm{H}\to\rho^0\gamma $ search, ggH cat0 (middle left) and the VH category (middle right) of the $ \mathrm{H}\to\phi\gamma $ search, ggH cat0 (lower left) and the VBF low-$ p_{\mathrm{T}}^\gamma $/cat0 (lower right) of the $ \mathrm{H}\to\mathrm{K^{\ast}(892)}^0\gamma $ search. The signal simulation is shown normalized at a branching fraction corresponding to the expected upper limit. Signal and background fit components, as well as 1- and 2-$ \sigma $ fit uncertainty bands are also shown.

png pdf
Figure 4:
Expected and observed upper limits on $ \mathcal{B}(\mathrm{H}\to\rho^0\gamma) $ (upper left), $ \mathcal{B}(\mathrm{H}\to\phi\gamma) $ (upper right), and $ \mathcal{B}(\mathrm{H}\to\mathrm{K^{\ast}(892)}^0\gamma) $ (lower) split by analysis categories and combined. Green and yellow bands correspond to 1 and 2$ \sigma $ confidence intervals in the expected upper limits.

png pdf
Figure 4-a:
Expected and observed upper limits on $ \mathcal{B}(\mathrm{H}\to\rho^0\gamma) $ (upper left), $ \mathcal{B}(\mathrm{H}\to\phi\gamma) $ (upper right), and $ \mathcal{B}(\mathrm{H}\to\mathrm{K^{\ast}(892)}^0\gamma) $ (lower) split by analysis categories and combined. Green and yellow bands correspond to 1 and 2$ \sigma $ confidence intervals in the expected upper limits.

png pdf
Figure 4-b:
Expected and observed upper limits on $ \mathcal{B}(\mathrm{H}\to\rho^0\gamma) $ (upper left), $ \mathcal{B}(\mathrm{H}\to\phi\gamma) $ (upper right), and $ \mathcal{B}(\mathrm{H}\to\mathrm{K^{\ast}(892)}^0\gamma) $ (lower) split by analysis categories and combined. Green and yellow bands correspond to 1 and 2$ \sigma $ confidence intervals in the expected upper limits.

png pdf
Figure 4-c:
Expected and observed upper limits on $ \mathcal{B}(\mathrm{H}\to\rho^0\gamma) $ (upper left), $ \mathcal{B}(\mathrm{H}\to\phi\gamma) $ (upper right), and $ \mathcal{B}(\mathrm{H}\to\mathrm{K^{\ast}(892)}^0\gamma) $ (lower) split by analysis categories and combined. Green and yellow bands correspond to 1 and 2$ \sigma $ confidence intervals in the expected upper limits.
Tables

png pdf
Table 1:
Invariant mass of the di-track system for signal and sideband regions.

png pdf
Table 2:
Summary of selections used in the analysis.

png pdf
Table 3:
Exclusion limits at 95% CL on the branching fractions of the H boson decays. Observed and median expected limits with the upper and lower bounds in the expected 68% CL intervals are reported.
Summary
A search was presented for Higgs boson decays into a photon and a $ \rho^0 $(770), $ \phi $(1020), or $ \mathrm{K^{\ast}}^0 $(892) meson, using proton-proton collision data collected by the CMS experiment at the LHC at $ \sqrt{s}= $ 13 TeV. Events are selected in which the mesons decay into pairs of charged pions, pairs of charged kaons, and charged kaon-pion pairs respectively. Depending on the Higgs boson production mode, different signal triggering and reconstruction techniques are adopted. The analysed data sets correspond to an integrated luminosity varying between 39.5 and 138 fb$ ^{-1} $, depending on the targeted final state. By combining all of them, no significant excess above the background expectations is observed. Upper limits at the 95% confidence level on the Higgs boson branching fractions into $ \rho^0\gamma $, $ \phi\gamma $, and $ \mathrm{K^{\ast}(892)}^0\gamma $ are determined to be 3.74 $ \times 10^{-4} $, 2.97 $ \times 10^{-4} $, and 1.71 $ \times 10^{-4} $, respectively. These results constitute the most stringent experimental limits to date on the $ \rho^0\gamma $ and $ \phi\gamma $ decay channels.
References
1 ATLAS Collaboration Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 ATLAS Collaboration Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector PLB 784 (2018) 173 1806.00425
5 CMS Collaboration Observation of $ \mathrm{t\overline{t}} $H production PRL 120 (2018) 231801 CMS-HIG-17-035
1804.02610
6 ATLAS Collaboration Measurements of Higgs boson production cross-sections in the $ H\to\tau^{+}\tau^{-} $ decay channel in pp collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector JHEP 08 (2022) 175 2201.08269
7 CMS Collaboration Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of $ \tau $ leptons in pp collisions at $ \sqrt{s} = $ 13 TeV PRL 128 (2022) CMS-HIG-20-015
2107.11486
8 ATLAS Collaboration Measurements of $ WH $ and $ ZH $ production in the $ H \rightarrow b\bar{b} $ decay channel in $ pp $ collisions at 13 TeV with the ATLAS detector EPJC 81 (2021) 178 2007.02873
9 CMS Collaboration Observation of the Higgs boson decay to bottom quarks PRL 121 (2018) 121801 CMS-HIG-18-016
1808.08242
10 ATLAS Collaboration Direct constraint on the Higgs-charm coupling from a search for Higgs boson decays into charm quarks with the ATLAS detector EPJC 82 (2022) 717 2201.11428
11 CMS Collaboration Search for higgs boson decay to a charm quark-antiquark pair in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PRL 131 (2023) CMS-HIG-21-008
2205.05550
12 CMS Collaboration Search for Higgs boson decays into Z and J/$ \psi $ and for Higgs and Z boson decays into J/$ \psi $ or $ \Upsilon $ pairs in pp collisions at $ \sqrt{s} = $ 13 TeV PLB 842 (2023) 137534 CMS-HIG-20-008
2206.03525
13 ATLAS Collaboration Searches for exclusive Higgs and $ Z $ boson decays into a vector quarkonium state and a photon using 139 fb$ ^{-1} $ of ATLAS $ \sqrt{s}= $ 13 TeV proton-proton collision data EPJC 83 (2023) 2208.03122
14 CMS Collaboration Search for rare decays of Z and Higgs bosons to J$ /\psi $ and a photon in proton-proton collisions at $ \sqrt{s} = $ 13 TeV EPJC 79 (2019) CMS-SMP-17-012
1810.10056
15 CMS Collaboration Evidence for Higgs boson decay to a pair of muons JHEP 01 (2021) 148 CMS-HIG-19-006
2009.04363
16 ATLAS Collaboration A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS detector PLB 812 (2021) 135980 2007.07830
17 CMS Collaboration Search for decays of the 125 GeV Higgs boson into a Z boson and a $ \rho $ or $ \phi $ meson JHEP 11 (2020) 039 CMS-HIG-19-012
2007.05122
18 ATLAS Collaboration Erratum to: Search for exclusive Higgs and $ Z $ boson decays to $ \phi\gamma $ and $ \rho\gamma $ with the ATLAS detector JHEP 12 (2023) 127 1712.02758
19 ATLAS Collaboration Search for exclusive Higgs and $ Z $ boson decays to $ \omega\gamma $ and Higgs boson decays to $ K^{*}\gamma $ with the ATLAS detector PLB 847 (2023) 2301.09938
20 ATLAS Collaboration Searches for exclusive Higgs boson decays into $ D^*\gamma $ and $ Z $ boson decays into $ D^0\gamma $ and $ K^0_s\gamma $ in $ pp $ collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector Phys. Lett. B. 847 (2024) 2402.18731
21 M. König and M. Neubert Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings JHEP 08 (2015) 012 1505.03870
22 A. L. Kagan et al. Exclusive Window onto Higgs Yukawa Couplings PRL 114 (2015) 1406.1722
23 G. Perez, Y. Soreq, E. Stamou, and K. Tobioka Prospects for measuring the Higgs boson coupling to light quarks PRD 93 (2016) 1505.06689
24 D. d'Enterria and V. D. Le Rare and exclusive few-body decays of the Higgs, Z, W bosons, and the top quark 2312.11211
25 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
26 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
27 CMS Collaboration Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P06005 CMS-EGM-13-001
1502.02701
28 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
29 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
30 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
31 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
32 S. Alioli, P. Nason, C. Oleari, and E. Re NLO Higgs boson production via gluon fusion matched with shower in POWHEG JHEP 04 (2009) 002 0812.0578
33 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
34 P. Nason and C. Oleari NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG JHEP 02 (2010) 037 0911.5299
35 G. Luisoni, P. Nason, C. Oleari, and F. Tramontano HW$ ^{\pm} $/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO JHEP 10 (2013) 083 1306.2542
36 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
37 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
38 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
39 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
40 D. J. Lange The EvtGen particle decay simulation package Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers. BEAUTY, Proceedings of the 7th Int. Conf. on B-Physics at Hadron Machines, 2001
link
41 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector CERN Report CERN-2017-002-M, 2016
link
1610.07922
42 Particle Data Group Collaboration Review of Particle Physics Prog. Theor. Exp. Phys. 2022 (2022) 083C01
43 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
44 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
45 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
46 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
47 CMS Collaboration Measurement of the inelastic proton-proton cross section at $ \sqrt{s}= $ 13 TeV JHEP 07 (2018) 161 CMS-FSQ-15-005
1802.02613
48 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) CMS-EGM-17-001
2012.06888
49 CMS Collaboration Measurements of inclusive W and Z cross sections in pp collisions at $ \sqrt{s}= $ 7 TeV JHEP 01 (2011) 080 CMS-EWK-10-002
1012.2466
50 CMS Collaboration Pileup mitigation at CMS in 13 TeV data JINST 15 (2020) P09018 CMS-JME-18-001
2003.00503
51 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) CMS-JME-13-004
1607.03663
52 E. Chabanat et al. Vertex reconstruction in CMS NIM A 549 (2005) 188
53 CMS Collaboration Performance of reconstruction and identification of $ \tau $ leptons decaying to hadrons and $ \nu_\tau $ in pp collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) CMS-TAU-16-003
1809.02816
54 A. Hoecker et al. TMVA - Toolkit for Multivariate Data Analysis link
55 T. Chen and C. Guestrin XGBoost: A scalable tree boosting system link 1603.02754
56 D. L. Rainwater, R. Szalapski, and D. Zeppenfeld Probing color singlet exchange in $ Z $ + two jet events at the CERN LHC PRD 54 (1996) 6680 hep-ph/9605444
57 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435 hep-ex/9902006
58 A. L. Read Presentation of search results: The CL$ _{\text{s}} $ technique JPG 28 (2002) 2693
59 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
60 P. D. Dauncey, M. Kenzie, N. Wardle, and G. J. Davies Handling uncertainties in background shapes: the discrete profiling method JINST 10 (2015) P04015 1408.6865
61 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
62 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2018
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
63 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2019
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
Compact Muon Solenoid
LHC, CERN