CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIG-23-005 ; CERN-EP-2024-252
Search for the Higgs boson decays to a $ \rho^{0} $, $ \phi $, or $ \mathrm{K}^{*0} $ meson and a photon in proton-proton collisions at $ \sqrt{s}= $ 13 TeV
Submitted to Phys. Lett. B
Abstract: Three rare decay processes of the Higgs boson to a $ \rho(770) $, $ \phi(1020) $, or $ \mathrm{K}^{*}(892)^{0} $ meson and a photon are searched for using $ \sqrt{s}= $ 13 TeV proton-proton collision data collected by the CMS experiment at the LHC. Events are selected assuming the mesons decay into a pair of charged pions, a pair of charged kaons, or a charged kaon and pion, respectively. Depending on the Higgs boson production mode, different triggering and reconstruction techniques are adopted. The analyzed data sets correspond to integrated luminosities up to 138 fb$ ^{-1} $, depending on the reconstructed final state. After combining various data sets and categories, no significant excess above the background expectations is observed. Upper limits at 95% confidence level on the Higgs boson branching fractions into $ \rho(770)\gamma $, $ \phi(1020)\gamma $, and $ \mathrm{K}^{*}(892)^{0}\gamma $ are determined to be 3.7 $ \times $ 10$^{-4} $, 3.0 $ \times $ 10$^{-4} $, and 3.0 $ \times $ 10$^{-4} $, respectively. In case of the $ \rho(770)\gamma $ and $ \phi(1020)\gamma $ channels, these are the most stringent experimental limits to date.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Feynman diagrams showing the different Higgs boson decay mechanisms into a photon and a light meson (upper: $ \phi $ meson; lower: $ \mathrm{K}^{*0} $ meson). The hatched circle in the upper right diagram denotes the off-shell $ \mathrm{H} \to \gamma\gamma^* $ amplitude, which in the SM arises first at one-loop order.

png pdf
Figure 2:
Track pair invariant mass distributions in selected data events, for the $ \mathrm{g}\mathrm{g}\mathrm{H} $ category of the analysis, for the $ \rho^{0}\gamma $ (upper left), $ \phi\gamma $ (upper right), and $ \mathrm{K}^{*0}\gamma $ (lower) decays. The vertical dashed lines represent the signal mass region borders.

png pdf
Figure 2-a:
Track pair invariant mass distributions in selected data events, for the $ \mathrm{g}\mathrm{g}\mathrm{H} $ category of the analysis, for the $ \rho^{0}\gamma $ (upper left), $ \phi\gamma $ (upper right), and $ \mathrm{K}^{*0}\gamma $ (lower) decays. The vertical dashed lines represent the signal mass region borders.

png pdf
Figure 2-b:
Track pair invariant mass distributions in selected data events, for the $ \mathrm{g}\mathrm{g}\mathrm{H} $ category of the analysis, for the $ \rho^{0}\gamma $ (upper left), $ \phi\gamma $ (upper right), and $ \mathrm{K}^{*0}\gamma $ (lower) decays. The vertical dashed lines represent the signal mass region borders.

png pdf
Figure 2-c:
Track pair invariant mass distributions in selected data events, for the $ \mathrm{g}\mathrm{g}\mathrm{H} $ category of the analysis, for the $ \rho^{0}\gamma $ (upper left), $ \phi\gamma $ (upper right), and $ \mathrm{K}^{*0}\gamma $ (lower) decays. The vertical dashed lines represent the signal mass region borders.

png pdf
Figure 3:
Post-fit $ m_{\mathrm{M}\gamma} $ distributions in data and the background model for $ \mathrm{g}\mathrm{g}\mathrm{H} $ cat0 (upper left) and VBF high-$ p_{\mathrm{T}}^\gamma $ cat0 (upper right) of the $ \mathrm{H}\to\rho^{0}\gamma $ search, $ \mathrm{g}\mathrm{g}\mathrm{H} $ cat0 (middle left) and the VH category (middle right) of the $ \mathrm{H}\to\phi\gamma $ search, $ \mathrm{g}\mathrm{g}\mathrm{H} $ cat0 (lower left) and the VBF low-$ p_{\mathrm{T}}^\gamma $ cat0 (lower right) of the $ \mathrm{H}\to\mathrm{K}^{*0}\gamma $ search. The signal simulation is shown normalized at a branching fraction corresponding to the expected UL. Signal and background fit components, as well as 1 and 2 standard deviation(s) uncertainty bands are also shown.

png pdf
Figure 3-a:
Post-fit $ m_{\mathrm{M}\gamma} $ distributions in data and the background model for $ \mathrm{g}\mathrm{g}\mathrm{H} $ cat0 (upper left) and VBF high-$ p_{\mathrm{T}}^\gamma $ cat0 (upper right) of the $ \mathrm{H}\to\rho^{0}\gamma $ search, $ \mathrm{g}\mathrm{g}\mathrm{H} $ cat0 (middle left) and the VH category (middle right) of the $ \mathrm{H}\to\phi\gamma $ search, $ \mathrm{g}\mathrm{g}\mathrm{H} $ cat0 (lower left) and the VBF low-$ p_{\mathrm{T}}^\gamma $ cat0 (lower right) of the $ \mathrm{H}\to\mathrm{K}^{*0}\gamma $ search. The signal simulation is shown normalized at a branching fraction corresponding to the expected UL. Signal and background fit components, as well as 1 and 2 standard deviation(s) uncertainty bands are also shown.

png pdf
Figure 3-b:
Post-fit $ m_{\mathrm{M}\gamma} $ distributions in data and the background model for $ \mathrm{g}\mathrm{g}\mathrm{H} $ cat0 (upper left) and VBF high-$ p_{\mathrm{T}}^\gamma $ cat0 (upper right) of the $ \mathrm{H}\to\rho^{0}\gamma $ search, $ \mathrm{g}\mathrm{g}\mathrm{H} $ cat0 (middle left) and the VH category (middle right) of the $ \mathrm{H}\to\phi\gamma $ search, $ \mathrm{g}\mathrm{g}\mathrm{H} $ cat0 (lower left) and the VBF low-$ p_{\mathrm{T}}^\gamma $ cat0 (lower right) of the $ \mathrm{H}\to\mathrm{K}^{*0}\gamma $ search. The signal simulation is shown normalized at a branching fraction corresponding to the expected UL. Signal and background fit components, as well as 1 and 2 standard deviation(s) uncertainty bands are also shown.

png pdf
Figure 3-c:
Post-fit $ m_{\mathrm{M}\gamma} $ distributions in data and the background model for $ \mathrm{g}\mathrm{g}\mathrm{H} $ cat0 (upper left) and VBF high-$ p_{\mathrm{T}}^\gamma $ cat0 (upper right) of the $ \mathrm{H}\to\rho^{0}\gamma $ search, $ \mathrm{g}\mathrm{g}\mathrm{H} $ cat0 (middle left) and the VH category (middle right) of the $ \mathrm{H}\to\phi\gamma $ search, $ \mathrm{g}\mathrm{g}\mathrm{H} $ cat0 (lower left) and the VBF low-$ p_{\mathrm{T}}^\gamma $ cat0 (lower right) of the $ \mathrm{H}\to\mathrm{K}^{*0}\gamma $ search. The signal simulation is shown normalized at a branching fraction corresponding to the expected UL. Signal and background fit components, as well as 1 and 2 standard deviation(s) uncertainty bands are also shown.

png pdf
Figure 3-d:
Post-fit $ m_{\mathrm{M}\gamma} $ distributions in data and the background model for $ \mathrm{g}\mathrm{g}\mathrm{H} $ cat0 (upper left) and VBF high-$ p_{\mathrm{T}}^\gamma $ cat0 (upper right) of the $ \mathrm{H}\to\rho^{0}\gamma $ search, $ \mathrm{g}\mathrm{g}\mathrm{H} $ cat0 (middle left) and the VH category (middle right) of the $ \mathrm{H}\to\phi\gamma $ search, $ \mathrm{g}\mathrm{g}\mathrm{H} $ cat0 (lower left) and the VBF low-$ p_{\mathrm{T}}^\gamma $ cat0 (lower right) of the $ \mathrm{H}\to\mathrm{K}^{*0}\gamma $ search. The signal simulation is shown normalized at a branching fraction corresponding to the expected UL. Signal and background fit components, as well as 1 and 2 standard deviation(s) uncertainty bands are also shown.

png pdf
Figure 3-e:
Post-fit $ m_{\mathrm{M}\gamma} $ distributions in data and the background model for $ \mathrm{g}\mathrm{g}\mathrm{H} $ cat0 (upper left) and VBF high-$ p_{\mathrm{T}}^\gamma $ cat0 (upper right) of the $ \mathrm{H}\to\rho^{0}\gamma $ search, $ \mathrm{g}\mathrm{g}\mathrm{H} $ cat0 (middle left) and the VH category (middle right) of the $ \mathrm{H}\to\phi\gamma $ search, $ \mathrm{g}\mathrm{g}\mathrm{H} $ cat0 (lower left) and the VBF low-$ p_{\mathrm{T}}^\gamma $ cat0 (lower right) of the $ \mathrm{H}\to\mathrm{K}^{*0}\gamma $ search. The signal simulation is shown normalized at a branching fraction corresponding to the expected UL. Signal and background fit components, as well as 1 and 2 standard deviation(s) uncertainty bands are also shown.

png pdf
Figure 3-f:
Post-fit $ m_{\mathrm{M}\gamma} $ distributions in data and the background model for $ \mathrm{g}\mathrm{g}\mathrm{H} $ cat0 (upper left) and VBF high-$ p_{\mathrm{T}}^\gamma $ cat0 (upper right) of the $ \mathrm{H}\to\rho^{0}\gamma $ search, $ \mathrm{g}\mathrm{g}\mathrm{H} $ cat0 (middle left) and the VH category (middle right) of the $ \mathrm{H}\to\phi\gamma $ search, $ \mathrm{g}\mathrm{g}\mathrm{H} $ cat0 (lower left) and the VBF low-$ p_{\mathrm{T}}^\gamma $ cat0 (lower right) of the $ \mathrm{H}\to\mathrm{K}^{*0}\gamma $ search. The signal simulation is shown normalized at a branching fraction corresponding to the expected UL. Signal and background fit components, as well as 1 and 2 standard deviation(s) uncertainty bands are also shown.

png pdf
Figure 4:
Expected and observed UL on $ \mathcal{B}(\mathrm{H}\to\rho^{0}\gamma) $ (upper left), $ \mathcal{B}(\mathrm{H}\to\phi\gamma) $ (upper right), and $ \mathcal{B}(\mathrm{H}\to\mathrm{K}^{*0}\gamma) $ (lower) split by analysis categories and combined. Green and yellow bands correspond to 68% and 95% confidence intervals on the expected upper limits.

png pdf
Figure 4-a:
Expected and observed UL on $ \mathcal{B}(\mathrm{H}\to\rho^{0}\gamma) $ (upper left), $ \mathcal{B}(\mathrm{H}\to\phi\gamma) $ (upper right), and $ \mathcal{B}(\mathrm{H}\to\mathrm{K}^{*0}\gamma) $ (lower) split by analysis categories and combined. Green and yellow bands correspond to 68% and 95% confidence intervals on the expected upper limits.

png pdf
Figure 4-b:
Expected and observed UL on $ \mathcal{B}(\mathrm{H}\to\rho^{0}\gamma) $ (upper left), $ \mathcal{B}(\mathrm{H}\to\phi\gamma) $ (upper right), and $ \mathcal{B}(\mathrm{H}\to\mathrm{K}^{*0}\gamma) $ (lower) split by analysis categories and combined. Green and yellow bands correspond to 68% and 95% confidence intervals on the expected upper limits.

png pdf
Figure 4-c:
Expected and observed UL on $ \mathcal{B}(\mathrm{H}\to\rho^{0}\gamma) $ (upper left), $ \mathcal{B}(\mathrm{H}\to\phi\gamma) $ (upper right), and $ \mathcal{B}(\mathrm{H}\to\mathrm{K}^{*0}\gamma) $ (lower) split by analysis categories and combined. Green and yellow bands correspond to 68% and 95% confidence intervals on the expected upper limits.
Tables

png pdf
Table 1:
Mass requirements imposed on the ditrack system for signal and sideband regions.

png pdf
Table 2:
Summary of the event selection criteria, photon identification efficiency and integrated luminosity ($ \mathcal{L} $) used in the analysis.

png pdf
Table 3:
Exclusion limits at 95% CL on the branching fractions of the Higgs boson decays. Observed and median expected limits with the upper and lower bounds in the expected 68% CL intervals are also reported.
Summary
A search was presented for Higgs boson decays into a photon and a $ \rho(770) $, $ \phi(1020) $, or $ \mathrm{K}^{*}(892)^{0} $ meson, using pp collision data at $ \sqrt{s}= $ 13 TeV collected by the CMS experiment at the LHC. Events are selected assuming the mesons decay into a pair of charged pions, a pair of charged kaons, or a charged kaon and pion, respectively. Depending on the Higgs boson production mode, different signal triggering and reconstruction techniques are adopted. The analyzed data sets correspond to an integrated luminosity varying between 39.5 and 138 fb$ ^{-1} $, depending on the targeted final state. After combining various data sets and categories, no significant excess above the background expectations is observed. Upper limits at the 95% confidence level on the Higgs boson branching fractions into $ \rho(770)\gamma $, $ \phi(1020)\gamma $, and $ \mathrm{K}^{*}(892)^{0}\gamma $ are determined to be 3.7 $ \times $ 10$^{-4} $, 3.0 $ \times $ 10$^{-4} $, and 3.0 $ \times $ 10$^{-4} $, respectively. Limits for the $ \rho(770)\gamma $ and $ \phi(1020)\gamma $ channels constitute the most stringent experimental limits to date.
References
1 ATLAS Collaboration Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} $ = 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 ATLAS Collaboration Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector PLB 784 (2018) 173 1806.00425
5 CMS Collaboration Observation of $ \mathrm{t\overline{t}} $H production PRL 120 (2018) 231801 CMS-HIG-17-035
1804.02610
6 ATLAS Collaboration Measurements of Higgs boson production cross-sections in the $ H\to\tau^{+}\tau^{-} $ decay channel in pp collisions at $ \sqrt{s} $ = 13 TeV with the ATLAS detector JHEP 08 (2022) 175 2201.08269
7 CMS Collaboration Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of $ \tau $ leptons in pp collisions at $ \sqrt{s} = $ 13 TeV PRL 128 (2022) CMS-HIG-20-015
2107.11486
8 CMS Collaboration Measurements of Higgs boson production in the decay channel with a pair of $ \tau $ leptons in proton-proton collisions at $ \sqrt{s}= $ 13 TeV EPJC 83 (2023) 562 CMS-HIG-19-010
2204.12957
9 ATLAS Collaboration Measurements of $ WH $ and $ ZH $ production in the $ H \rightarrow b\bar{b} $ decay channel in $ pp $ collisions at 13 TeV with the ATLAS detector EPJC 81 (2021) 178 2007.02873
10 CMS Collaboration Observation of the Higgs boson decay to bottom quarks PRL 121 (2018) 121801 CMS-HIG-18-016
1808.08242
11 ATLAS Collaboration Direct constraint on the Higgs-charm coupling from a search for Higgs boson decays into charm quarks with the ATLAS detector EPJC 82 (2022) 717 2201.11428
12 CMS Collaboration Search for Higgs boson decay to a charm quark-antiquark pair in proton-proton collisions at $ \sqrt{s}=13\text{ }\text{ }\mathrm{TeV} $ PRL 131 (2023) CMS-HIG-21-008
2205.05550
13 CMS Collaboration Search for Higgs boson decays into Z and J/$ \psi $ and for Higgs and Z boson decays into J/$ \psi $ or $ \Upsilon $ pairs in pp collisions at $ \sqrt{s} $ = 13 TeV Phys. Lett. B, 2023
link
CMS-HIG-20-008
2206.03525
14 ATLAS Collaboration Searches for exclusive Higgs and $ Z $ boson decays into a vector quarkonium state and a photon using 139 fb$ ^{-1} $ of ATLAS $ \sqrt{s}= $ 13 TeV proton-proton collision data EPJC 83 (2023) 2208.03122
15 CMS Collaboration Search for rare decays of Z and Higgs bosons to J$ /\psi $ and a photon in proton-proton collisions at $ \sqrt{s} = $ 13 TeV EPJC 79 (2019) CMS-SMP-17-012
1810.10056
16 CMS Collaboration Evidence for Higgs boson decay to a pair of muons JHEP 01 (2021) 148 CMS-HIG-19-006
2009.04363
17 M. König and M. Neubert Exclusive radiative Higgs decays as probes of light-quark Yukawa couplings JHEP 08 (2015) 012 1505.03870
18 D. d'Enterria and V. D. Le Rare and exclusive few-body decays of the Higgs, Z, W bosons, and the top quark J. Phys. G, 2024
link
2312.11211
19 CMS Collaboration Search for decays of the 125 GeV Higgs boson into a Z boson and a $ \rho $ or $ \phi $ meson JHEP 11 (2020) 039 CMS-HIG-19-012
2007.05122
20 ATLAS Collaboration Search for exclusive Higgs and z boson decays to $ \phi\gamma $ and $ \rho\gamma $ with the ATLAS detector JHEP 12 (2023) 127 1712.02758
21 ATLAS Collaboration Search for exclusive Higgs and $ Z $ boson decays to $ \omega\gamma $ and Higgs boson decays to $ K^{*}\gamma $ with the ATLAS detector PLB 847 (2023) 2301.09938
22 ATLAS Collaboration Searches for exclusive Higgs boson decays into $ D^*\gamma $ and $ Z $ boson decays into $ D^0\gamma $ and $ K^0_s\gamma $ in $ pp $ collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector Phys. Lett. B. 847 (2024) 2402.18731
23 A. L. Kagan et al. Exclusive window onto Higgs Yukawa couplings PRL 114 (2015) 1406.1722
24 G. Perez, Y. Soreq, E. Stamou, and K. Tobioka Prospects for measuring the Higgs boson coupling to light quarks PRD 93 (2016) 013001 1505.06689
25 CMS Collaboration HEPData record for this analysis link
26 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
27 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
28 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) CMS-EGM-17-001
2012.06888
29 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
30 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13\,TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
31 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
32 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
33 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
34 S. Alioli, P. Nason, C. Oleari, and E. Re NLO Higgs boson production via gluon fusion matched with shower in POWHEG JHEP 04 (2009) 002 0812.0578
35 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
36 P. Nason and C. Oleari NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG JHEP 02 (2010) 037 0911.5299
37 G. Luisoni, P. Nason, C. Oleari, and F. Tramontano HW$ ^{\pm} $/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO JHEP 10 (2013) 083 1306.2542
38 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector CERN Yellow Rep. Monogr. , no.~CERN-2017-002-M, 2016
link
1610.07922
39 Particle Data Group Collaboration Review of Particle Physics PRD 110 (2024) 030001
40 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
41 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
42 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
43 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
44 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
45 P. Faccioli and C. Louren Particle polarization in high energy physics; an introduction and case studies on vector particle production at the LHC ço, . Lecture Notes in Physics, . Springer, 1002
link
46 D. J. Lange The EvtGen particle decay simulation package NIM A 462 (2001) 152
47 \GEANTfour Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
48 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
49 D. Contardo et al. Technical Proposal for the Phase-II Upgrade of the CMS Detector Technical Report CMS-TDR-15-02, CERN, Geneva, 2015
link
50 CMS Collaboration Measurements of inclusive W and Z cross sections in pp collisions at $ \sqrt{s}= $ 7 TeV JHEP 01 (2011) 080 CMS-EWK-10-002
1012.2466
51 M. Cacciari, G. P. Salam, and G. Soyez The catchment area of jets JHEP 04 (2008) 005 0802.1188
52 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
53 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
54 CMS Collaboration Pileup mitigation at CMS in 13 TeV data JINST 15 (2020) P09018 CMS-JME-18-001
2003.00503
55 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) CMS-JME-13-004
1607.03663
56 E. Chabanat et al. Vertex reconstruction in CMS NIM A 549 (2005) 188
57 CMS Collaboration Performance of reconstruction and identification of $ \tau $ leptons decaying to hadrons and $ \nu_\tau $ in pp collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) CMS-TAU-16-003
1809.02816
58 CMS Collaboration Jet Performance in pp Collisions at 7 TeV technical report, CERN, Geneva, 2010
CDS
59 T. Chen and C. Guestrin XGBoost: A scalable tree boosting system in nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '16, . ACM, New York, NY, USA, 2016
Proceedings of the 2 (2016) 785
1603.02754
60 TMVA Collaboration TMVA - Toolkit for multivariate data analysis physics/0703039
61 D. L. Rainwater, R. Szalapski, and D. Zeppenfeld Probing color singlet exchange in $ Z $ + 2-jet events at the CERN LHC PRD 54 (1996) 6680 hep-ph/9605444
62 M. J. Oreglia A study of the reactions $ \psi^\prime \to \gamma \gamma \psi $ PhD thesis, Stanford University, . SLAC Report SLAC-R-236, 1980
link
63 R. D. Fisher On the interpretation of $ \chi^2 $ from contingency tables, and the calculation of P J. Royal Stat. Soc. 85 (1922) 87
64 P. D. Dauncey, M. Kenzie, N. Wardle, and G. J. Davies Handling uncertainties in background shapes: the discrete profiling method JINST 10 (2015) P04015 1408.6865
65 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
66 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary , CERN, 2018
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
67 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary , CERN, 2019
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
68 CMS Collaboration Measurement of the inelastic proton-proton cross section at $ \sqrt{s}= $ 13 TeV JHEP 07 (2018) 161 CMS-FSQ-15-005
1802.02613
69 CMS Collaboration Tracking performances for charged pions with Run2 Legacy data Technical Report CMS-DP-2022-012, CERN, 2022
CDS
70 J. Butterworth et al. PDF4LHC recommendations for LHC Run II JPG 43 (2016) 023001 1510.03865
71 CMS Collaboration The CMS statistical analysis and combination tool: \textscCombine Submitted to Comput. Softw. Big Sci, 2024 CMS-CAT-23-001
2404.06614
72 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435 hep-ex/9902006
73 A. L. Read Presentation of search results: The CL$ _{\text{s}} $ technique JPG 28 (2002) 2693
74 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
Compact Muon Solenoid
LHC, CERN