CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-EXO-22-018
Search for leptoquarks produced in lepton-quark collisions and coupling to $ \tau $ leptons
Abstract: A search for leptoquarks produced in lepton-quark collisions and coupling to $ \tau $ leptons is presented. It is based on a data set of proton-proton collision events recorded by the CMS detector at the LHC at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb$ ^{-1} $. The reconstructed final state consists of a jet, significant missing transverse momentum, and a $ \tau $ lepton reconstructed through its leptonic or hadronic decays. Limits are set on the leptoquark production cross section times branching fraction and interpreted as exclusions in the plane of the leptoquark mass and the coupling strength of the leptoquark-lepton-quark vertex. These results complement the constraints on the leptoquark-$ \tau $-b couplings set by previous searches in other production modes, while they are the first limits for leptoquark-$ \tau $-u, leptoquark-$ \tau $-d, and leptoquark-$ \tau $-s couplings.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Observed and expected distributions of the collinear mass in the $ \tau_\mathrm{h}$+jet (left), $ \mathrm{e}$+jet (center), and $ \mu$+jet (right) channels for the btag (top) and no-btag (bottom) categories with the highest BDT output requirements. The uncertainty band includes statistical and systematic uncertainties, and the background distributions are the results of the maximum likelihood fit.

png pdf
Figure 1-a:
Observed and expected distributions of the collinear mass in the $ \tau_\mathrm{h}$+jet (left), $ \mathrm{e}$+jet (center), and $ \mu$+jet (right) channels for the btag (top) and no-btag (bottom) categories with the highest BDT output requirements. The uncertainty band includes statistical and systematic uncertainties, and the background distributions are the results of the maximum likelihood fit.

png pdf
Figure 1-b:
Observed and expected distributions of the collinear mass in the $ \tau_\mathrm{h}$+jet (left), $ \mathrm{e}$+jet (center), and $ \mu$+jet (right) channels for the btag (top) and no-btag (bottom) categories with the highest BDT output requirements. The uncertainty band includes statistical and systematic uncertainties, and the background distributions are the results of the maximum likelihood fit.

png pdf
Figure 1-c:
Observed and expected distributions of the collinear mass in the $ \tau_\mathrm{h}$+jet (left), $ \mathrm{e}$+jet (center), and $ \mu$+jet (right) channels for the btag (top) and no-btag (bottom) categories with the highest BDT output requirements. The uncertainty band includes statistical and systematic uncertainties, and the background distributions are the results of the maximum likelihood fit.

png pdf
Figure 1-d:
Observed and expected distributions of the collinear mass in the $ \tau_\mathrm{h}$+jet (left), $ \mathrm{e}$+jet (center), and $ \mu$+jet (right) channels for the btag (top) and no-btag (bottom) categories with the highest BDT output requirements. The uncertainty band includes statistical and systematic uncertainties, and the background distributions are the results of the maximum likelihood fit.

png pdf
Figure 1-e:
Observed and expected distributions of the collinear mass in the $ \tau_\mathrm{h}$+jet (left), $ \mathrm{e}$+jet (center), and $ \mu$+jet (right) channels for the btag (top) and no-btag (bottom) categories with the highest BDT output requirements. The uncertainty band includes statistical and systematic uncertainties, and the background distributions are the results of the maximum likelihood fit.

png pdf
Figure 1-f:
Observed and expected distributions of the collinear mass in the $ \tau_\mathrm{h}$+jet (left), $ \mathrm{e}$+jet (center), and $ \mu$+jet (right) channels for the btag (top) and no-btag (bottom) categories with the highest BDT output requirements. The uncertainty band includes statistical and systematic uncertainties, and the background distributions are the results of the maximum likelihood fit.

png pdf
Figure 2:
Expected and observed upper limits at 95% CL on the scalar lepton-induced LQ production cross section times branching fraction for a LQ coupling to b quarks and $ \tau $ leptons (left), or to light-flavor quarks and $ \tau $ leptons (right), using $ \lambda= $ 1.5.

png pdf
Figure 2-a:
Expected and observed upper limits at 95% CL on the scalar lepton-induced LQ production cross section times branching fraction for a LQ coupling to b quarks and $ \tau $ leptons (left), or to light-flavor quarks and $ \tau $ leptons (right), using $ \lambda= $ 1.5.

png pdf
Figure 2-b:
Expected and observed upper limits at 95% CL on the scalar lepton-induced LQ production cross section times branching fraction for a LQ coupling to b quarks and $ \tau $ leptons (left), or to light-flavor quarks and $ \tau $ leptons (right), using $ \lambda= $ 1.5.

png pdf
Figure 3:
Expected upper limit at 95% CL on the coupling strength $ \lambda $ of a scalar LQ to b quarks and $ \tau $ leptons (left), and to light-flavor quarks and $ \tau $ leptons (right).

png pdf
Figure 3-a:
Expected upper limit at 95% CL on the coupling strength $ \lambda $ of a scalar LQ to b quarks and $ \tau $ leptons (left), and to light-flavor quarks and $ \tau $ leptons (right).

png pdf
Figure 3-b:
Expected upper limit at 95% CL on the coupling strength $ \lambda $ of a scalar LQ to b quarks and $ \tau $ leptons (left), and to light-flavor quarks and $ \tau $ leptons (right).
Tables

png pdf
Table 1:
Selection criteria, where $ \ell $ stands for $ \tau_\mathrm{h} $, $ \mu $, or e, depending on the final state.
Summary
As a summary, a search for leptoquarks produced via lepton-induced production and coupling to $ \tau $ leptons has been performed for the first time, using data collected by the CMS detector in Run-2. The limits are competitive with those set using other production modes at high mass and coupling values for $ \mathrm{b}\tau $ couplings, while limits on the couplings of leptoquarks to light-flavor quarks and $ \tau $ leptons are set for the first time.
References
1 J. C. Pati and A. Salam Lepton number as the fourth color (Jul, ) 275, 1974
PRD 1 (1974) 0
2 H. Georgi and S. L. Glashow Unity of all elementary-particle forces (Feb, ) 438, 1974
PRL 3 (1974) 2
3 S. Dimopoulos and L. Susskind Mass without scalars Nuclear Physics B 155 (1979) 237
4 S. Dimopoulos Technicoloured signatures Nuclear Physics B 168 (1980) 69
5 B. Schrempp and F. Schrempp Light leptoquarks Physics Letters B 153 (1985) 101
6 W. Buchmuller and D. Wyler Constraints on SU(5)-type leptoquarks Physics Letters B 177 (1986) 377
7 M. Tanaka and R. Watanabe New physics in the weak interaction of $ \bar B\to D^{(*)}\tau\bar\nu $ PRD 87 (2013) 034028 1212.1878
8 S. Fajfer, J. F. Kamenik, I. Nisandzic, and J. Zupan Implications of lepton flavor universality violations in B decays PRL 109 (2012) 161801 1206.1872
9 Y. Sakaki, M. Tanaka, A. Tayduganov, and R. Watanabe Testing leptoquark models in $ \bar B \to D^{(*)} \tau \bar\nu $ PRD 88 (2013) 094012 1309.0301
10 M. Bauer and M. Neubert Minimal leptoquark explanation for the $ R_{D^{(*)}} $, $ R_K $, and $ (g-2)_\mu $ anomalies PRL 116 (2016) 141802 1511.01900
11 L. Calibbi, A. Crivellin, and T. Ota Effective field theory approach to $ b\to s\ell\ell^{(')} $, $ B\to K^{(*)}\nu\overline{\nu} $ and $ B\to D^{(*)}\tau\nu $ with third generation couplings PRL 115 (2015) 181801 1506.02661
12 M. Freytsis, Z. Ligeti, and J. T. Ruderman Flavor models for $ \bar{B} \to D^{(*)} \tau \bar{\nu} $ PRD 92 (2015) 054018 1506.08896
13 S. Bhattacharya, S. Nandi, and S. K. Patra Optimal-observable analysis of possible new physics in $ B\to D^{(\ast)}\tau\nu_{\tau} $ PRD 93 (2016) 034011 1509.07259
14 S. Fajfer and N. Ko \v s nik Vector leptoquark resolution of $ R_K $ and $ R_{D^{(*)}} $ puzzles PLB 755 (2016) 270 1511.06024
15 B. Dumont, K. Nishiwaki, and R. Watanabe Lhc constraints and prospects for $ S_1 $ scalar leptoquark explaining the $ \bar B \to D^{(*)} \tau \bar\nu $ anomaly PRD 94 (2016) 034001 1603.05248
16 D. Buttazzo, A. Greljo, G. Isidori, and D. Marzocca B-physics anomalies: a guide to combined explanations JHEP 11 (2017) 044 1706.07808
17 J. Kumar, D. London, and R. Watanabe Combined explanations of the $ b \to s \mu^+ \mu^- $ and $ b \to c \tau^- {\bar\nu} $ anomalies: a general model analysis PRD 99 (2019) 015007 1806.07403
18 A. Angelescu et al. Single leptoquark solutions to the B-physics anomalies PRD 104 (2021) 055017 2103.12504
19 Belle Collaboration Observation of $ B^0 \rightarrow D^{*-} \tau^+ \nu_\tau $ decay at Belle PRL 99 (2007) 191807 0706.4429
20 Belle Collaboration Observation of $ B^+ \to \bar{D}^*0 \tau^+ \nu_\tau $ and evidence for $ B^+ \to \bar{D}^0 \tau^+ \nu_\tau $ at Belle PRD 82 (2010) 072005 1005.2302
21 BaBar Collaboration Evidence for an excess of $ \bar{B} \to D^{(*)} \tau^-\bar{\nu}_\tau $ decays PRL 109 (2012) 101802 1205.5442
22 BaBar Collaboration Measurement of an excess of $ \bar{B} \to D^{(*)}\tau^- \bar{\nu}_\tau $ decays and implications for charged higgs bosons PRD 88 (2013) 072012 1303.0571
23 LHCb Collaboration Measurement of the ratio of branching fractions $ \mathcal{B}(\bar{B}^0 \to D^{*+}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}^0 \to D^{*+}\mu^{-}\bar{\nu}_{\mu}) $ PRL 115 (2015) 111803 1506.08614
24 Belle Collaboration Measurement of the branching ratio of $ \bar{B}^0 \rightarrow D^{*+} \tau^- \bar{\nu}_{\tau} $ relative to $ \bar{B}^0 \rightarrow D^{*+} \ell^- \bar{\nu}_{\ell} $ decays with a semileptonic tagging method PRD 94 (2016) 072007 1607.07923
25 Belle Collaboration Measurement of the $ \tau $ lepton polarization and $ R(D^*) $ in the decay $ \bar{B} \rightarrow D^* \tau^- \bar{\nu}_\tau $ with one-prong hadronic $ \tau $ decays at Belle PRD 97 (2018) 012004 1709.00129
26 ATLAS Collaboration Search for new phenomena in $ pp $ collisions in final states with tau leptons, b-jets, and missing transverse momentum with the ATLAS detector PRD 104 (2021) 112005 2108.07665
27 CMS Collaboration Search for a singly produced third-generation scalar leptoquark decaying to a $ \tau $ lepton and a bottom quark in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 07 (2018) 115 CMS-EXO-17-029
1806.03472
28 CMS Collaboration Search for singly and pair-produced leptoquarks coupling to third-generation fermions in proton-proton collisions at s=13 TeV PLB 819 (2021) 136446 CMS-EXO-19-015
2012.04178
29 ATLAS Collaboration Search for pair production of third-generation scalar leptoquarks decaying into a top quark and a $ \tau $-lepton in $ pp $ collisions at $ \sqrt{s} $ = 13 TeV with the ATLAS detector JHEP 06 (2021) 179 2101.11582
30 CMS Collaboration Searches for additional Higgs bosons and for vector leptoquarks in $ \tau\tau $ final states in proton-proton collisions at $ \sqrt{s} $ = 13 TeV Submitted to JHEP, 2022 CMS-HIG-21-001
2208.02717
31 CMS Collaboration Search for new physics in the $ \tau $ lepton plus missing transverse momentum final state in proton-proton collisions at $ \sqrt s $ = 13 TeV Submitted to JHEP, 2022 CMS-EXO-21-009
2212.12604
32 V. Bertone, S. Carrazza, D. Pagani, and M. Zaro On the impact of lepton PDFs JHEP 11 (2015) 194 1508.07002
33 A. Manohar, P. Nason, G. P. Salam, and G. Zanderighi How bright is the proton? A precise determination of the photon parton distribution function PRL 117 (2016) 242002 1607.04266
34 NNPDF Collaboration Illuminating the photon content of the proton within a global PDF analysis SciPost Phys. 5 (2018) 008 1712.07053
35 A. V. Manohar, P. Nason, G. P. Salam, and G. Zanderighi The photon content of the proton JHEP 12 (2017) 046 1708.01256
36 L. Buonocore, P. Nason, F. Tramontano, and G. Zanderighi Leptons in the proton JHEP 08 (2020) 019 2005.06477
37 L. Buonocore et al. Lepton-quark collisions at the Large Hadron Collider PRL 125 (2020) 231804 2005.06475
38 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
39 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13\,TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
40 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
41 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) P05014 CMS-EGM-17-001
2012.06888
42 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
43 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
44 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
45 CMS Collaboration Performance of reconstruction and identification of $ \tau $ leptons decaying to hadrons and $ \nu_\tau $ in pp collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P10005 CMS-TAU-16-003
1809.02816
46 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
47 CMS Collaboration Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s} = $ 13 TeV using the CMS detector JINST 14 (2019) P07004 CMS-JME-17-001
1903.06078
48 CMS Collaboration Identification of hadronic tau lepton decays using a deep neural network JINST 17 (2022) P07023 CMS-TAU-20-001
2201.08458
49 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
50 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
51 J. M. Lindert et al. Precise predictions for $ V+ $ jets dark matter backgrounds EPJC 77 (2017) 829 1705.04664
52 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
53 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
54 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
55 S. Alioli et al. Jet pair production in POWHEG JHEP 04 (2011) 081 1012.3380
56 S. Alioli, P. Nason, C. Oleari, and E. Re NLO higgs boson production via gluon fusion matched with shower in POWHEG JHEP 04 (2009) 002 0812.0578
57 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
58 R. D. Ball et al. Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO NPB 855 (2012) 153 1107.2652
59 NNPDF Collaboration Parton distributions with QED corrections NPB 877 (2013) 290 1308.0598
60 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
61 GEANT4 Collaboration GEANT4 --- a simulation toolkit NIM A 506 (2003) 250
62 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
63 E. Bols et al. Jet flavour classification using DeepJet JINST 15 (2020) P12012 2008.10519
64 A. Höcker et al. TMVA - Toolkit for multivariate data analysis arXiv e-prints (March, ) physics/0703039, 2007 physics/0703039
65 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
66 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2018
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
67 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2019
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
68 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435 hep-ex/9902006
69 A. L. Read Presentation of search results: the $ \rm CL_s $ technique JPG 28 (2002) 2693
70 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
Compact Muon Solenoid
LHC, CERN