CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-EXO-21-019
A search for pair production of leptoquarks decaying to muons and bottom quarks at $ \sqrt{s}= $ 13 TeV
Abstract: A search for pair production of leptoquarks each decaying to a muon and a b quark is performed using proton-proton collision data collected at $ \sqrt{s}= $ 13 TeV in 2016-2018 with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 138 fb$ ^{-1} $. Scalar leptoquarks with masses less than 1810 GeV are excluded, assuming a 100% branching fraction of the leptoquark to a muon and a b quark. These limits represent the most stringent limits to date on leptoquarks decaying to muons and b quarks.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Dominant leading-order Feynman diagrams for pair production of LQs at the LHC.

png pdf
Figure 1-a:
Dominant leading-order Feynman diagrams for pair production of LQs at the LHC.

png pdf
Figure 1-b:
Dominant leading-order Feynman diagrams for pair production of LQs at the LHC.

png pdf
Figure 1-c:
Dominant leading-order Feynman diagrams for pair production of LQs at the LHC.

png pdf
Figure 1-d:
Dominant leading-order Feynman diagrams for pair production of LQs at the LHC.

png pdf
Figure 2:
Comparison of data and background $ m_{\mu\mu} $ distribution at the preselection level for the $ \mathrm{Z}/\gamma^*\mathrm{+jets} $ + $ \mathrm{t} \overline{\mathrm{t}} $ +jets (left) and diboson + $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{V} $ (right) background control regions. The shaded band represents the combined statistical and systematic uncertainty in the full background estimate.

png pdf
Figure 2-a:
Comparison of data and background $ m_{\mu\mu} $ distribution at the preselection level for the $ \mathrm{Z}/\gamma^*\mathrm{+jets} $ + $ \mathrm{t} \overline{\mathrm{t}} $ +jets (left) and diboson + $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{V} $ (right) background control regions. The shaded band represents the combined statistical and systematic uncertainty in the full background estimate.

png pdf
Figure 2-b:
Comparison of data and background $ m_{\mu\mu} $ distribution at the preselection level for the $ \mathrm{Z}/\gamma^*\mathrm{+jets} $ + $ \mathrm{t} \overline{\mathrm{t}} $ +jets (left) and diboson + $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{V} $ (right) background control regions. The shaded band represents the combined statistical and systematic uncertainty in the full background estimate.

png pdf
Figure 3:
Comparison of data and background $ p_{\mathrm{T}} $ distribution at the preselection level for the leading two muons and jets. The shaded band represents the combined statistical and systematic uncertainty in the full background estimate.

png pdf
Figure 3-a:
Comparison of data and background $ p_{\mathrm{T}} $ distribution at the preselection level for the leading two muons and jets. The shaded band represents the combined statistical and systematic uncertainty in the full background estimate.

png pdf
Figure 3-b:
Comparison of data and background $ p_{\mathrm{T}} $ distribution at the preselection level for the leading two muons and jets. The shaded band represents the combined statistical and systematic uncertainty in the full background estimate.

png pdf
Figure 3-c:
Comparison of data and background $ p_{\mathrm{T}} $ distribution at the preselection level for the leading two muons and jets. The shaded band represents the combined statistical and systematic uncertainty in the full background estimate.

png pdf
Figure 3-d:
Comparison of data and background $ p_{\mathrm{T}} $ distribution at the preselection level for the leading two muons and jets. The shaded band represents the combined statistical and systematic uncertainty in the full background estimate.

png pdf
Figure 4:
Comparison of data and background BDT discriminant distributions at preselection for LQ mass hypotheses of 1500 GeV (left), 1800 GeV (middle), and 2000 GeV (right).The shaded band represents the combined statistical and systematic uncertainty in the full background estimate.

png pdf
Figure 4-a:
Comparison of data and background BDT discriminant distributions at preselection for LQ mass hypotheses of 1500 GeV (left), 1800 GeV (middle), and 2000 GeV (right).The shaded band represents the combined statistical and systematic uncertainty in the full background estimate.

png pdf
Figure 4-b:
Comparison of data and background BDT discriminant distributions at preselection for LQ mass hypotheses of 1500 GeV (left), 1800 GeV (middle), and 2000 GeV (right).The shaded band represents the combined statistical and systematic uncertainty in the full background estimate.

png pdf
Figure 4-c:
Comparison of data and background BDT discriminant distributions at preselection for LQ mass hypotheses of 1500 GeV (left), 1800 GeV (middle), and 2000 GeV (right).The shaded band represents the combined statistical and systematic uncertainty in the full background estimate.

png pdf
Figure 5:
Data and background event yields after final selections, for each scalar $ m_{\mathrm{LQ}} $ hypothesis. Each bin on the $ x $ axis represents an independent $ m_{\mathrm{LQ}} $ category, for example the first bin is a comparison of the yields after final selection in the $ m_{\mathrm{LQ}} = $ 300 GeV signal mass hypothesis, and so on. The shaded band represents the combined statistical and systematic uncertainty in the full background estimate.

png pdf
Figure 6:
The expected and observed upper limits at 95% CL on the product of the scalar LQ pair production cross section and the branching fractions $ \beta^2 $ as a function of $ m_{\mathrm{LQ}} $. The solid lines represent the observed limits, the dashed lines represent the median expected limits, and the inner dark-green and outer light-yellow bands represent the 68% and 95% CL intervals. The $ \sigma_{\text{theory}} $ curves and their blue bands represent the theoretical scalar LQ pair production cross sections and the uncertainties on the cross sections due to the PDF prediction and renormalization and factorization scales, respectively.
Tables

png pdf
Table 1:
Systematic uncertainties in combined 2016, 2017, and 2018 signal acceptance and background yields, shown as a range over all final selections (second and third columns) as well as for the $ m_{\mathrm{LQ}} = $ 1800 GeV point (rightmost two columns). The bottom two lines show the total systematic uncertainty and the total statistical uncertainty in the simulated samples, respectively.

png pdf
Table 2:
Event yields in combined 2016, 2017, and 2018 data at the final selection level. Uncertainties are statistical unless otherwise indicated.

png pdf
Table 3:
Total signal selection efficiency, defined as events passing final selection divided by number of generated events. Uncertainties are statistical.
Summary
A search has been presented for pair production of leptoquarks decaying to muons and bottom quarks using proton-proton collision data collected at $ \sqrt{s} = $ 13 TeV in 2016--2018 with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb$ ^{-1} $. Limits are set at 95% confidence level on the product of the scalar leptoquark pair production cross section and $ \beta^2 $, as a function of the leptoquark mass $ m_{\mathrm{LQ}} $, where $ \beta $ is the branching fraction of the leptoquark to decay to a muon and a bottom quark. Leptoquarks with masses less than 1810 GeV are excluded for $ \beta= $ 1.0. This represents the most stringent limits to date on these models.
References
1 J. C. Pati and A. Salam Unified lepton-hadron symmetry and a gauge theory of the basic interactions PRD 8 (1973) 1240
2 J. C. Pati and A. Salam Lepton number as the fourth color PRD 10 (1974) 275
3 H. Georgi and S. Glashow Unity of all elementary-particle forces PRL 32 (1974) 438
4 H. Murayama and T. Yanagida A viable SU(5) GUT with light leptoquark bosons Mod. Phys. Lett. A 07 (1992) 147
5 H. Fritzsch and P. Minkowski United interactions of leptons and hadrons Annals Phys. 93 (1975) 193
6 G. Senjanovi \'c and A. Sokorac Light lepto-quarks in SO(10) Z. Phys. C 20 (1983) 255
7 P. H. Frampton and B.-H. Lee SU(15) grand unification PRL 64 (1990) 619
8 P. H. Frampton and T. W. Kephart Higgs sector and proton decay in SU(15q) grand unification PRD 42 (1990) 3892
9 B. Schrempp and F. Schrempp Light leptoquarks PLB 153 (1985) 101
10 S. Dimopoulos and L. Susskind Mass without scalars NPB 155 (1979) 237
11 S. Dimopoulos Technicolored signatures NPB 168 (1980) 69
12 E. Eichten and K. Lane Dynamical breaking of the weak interaction symmetries PLB 90 (1980) 85
13 J. L. Hewett and T. G. Rizzo Low-energy phenomenology of superstring-inspired E$ _{6} $ models PL 183 (1989) 193
14 G. R. Farrar and P. Fayet Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry PLB 76 (1978) 575
15 P. Ramond Dual theory for free fermions PRD 3 (1971) 2415
16 Y. A. Golfand and E. P. Likhtman Extension of the algebra of Poincaré group generators and violation of p invariance JETP Lett. 13 (1971) 323
17 A. Neveu and J. H. Schwarz Factorizable dual model of pions NPB 31 (1971) 86
18 D. V. Volkov and V. P. Akulov Possible universal neutrino interaction JETP Lett. 16 (1972) 438
19 J. Wess and B. Zumino A Lagrangian model invariant under supergauge transformations PLB 49 (1974) 52
20 J. Wess and B. Zumino Supergauge transformations in four dimensions NPB 70 (1974) 39
21 P. Fayet Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino NPB 90 (1975) 104
22 H. P. Nilles Supersymmetry, supergravity and particle physics Phys. Rept. 110 (1984) 1
23 R. Barbier et al. R-parity violating supersymmetry Phys. Rept. 420 (2005) 1 hep-ph/0406039
24 BaBar Collaboration Evidence for an excess of $ \bar{B} \to D^{(*)} \tau^-\bar{\nu}_\tau $ decays PRL 109 (2012) 101802 1205.5442
25 BaBar Collaboration Measurement of an Excess of $ \bar{B} \to D^{(*)}\tau^- \bar{\nu}_\tau $ Decays and Implications for Charged Higgs Bosons PRD 88 (2013) 07 1303.0571
26 Belle Collaboration Measurement of the branching ratio of $ \bar{B} \to D^{(\ast)} \tau^- \bar{\nu}_\tau $ relative to $ \bar{B} \to D^{(\ast)} \ell^- \bar{\nu}_\ell $ decays with hadronic tagging at Belle PRD 92 (2015) 07 1507.03233
27 Belle Collaboration Measurement of the $ \tau $ lepton polarization and $ R(D^*) $ in the decay $ \bar{B} \to D^* \tau^- \bar{\nu}_\tau $ PRL 118 (2017) 211801 1612.00529
28 Belle Collaboration Measurement of the $ \tau $ lepton polarization and $ R(D^*) $ in the decay $ \bar{B} \rightarrow D^* \tau^- \bar{\nu}_\tau $ with one-prong hadronic $ \tau $ decays at Belle PRD 97 (2018) 01 1709.00129
29 Belle Collaboration Measurement of $ \mathcal{R}(D) $ and $ \mathcal{R}(D^*) $ with a semileptonic tagging method PRL 124 (2020) 161803 1910.05864
30 LHCb Collaboration Measurement of the ratio of branching fractions $ \mathcal{B}(\bar{B}^0 \to D^{*+}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}^0 \to D^{*+}\mu^{-}\bar{\nu}_{\mu}) $ PRL 115 (2015) 111803 1506.08614
31 LHCb Collaboration Measurement of the ratio of the $ B^0 \to D^{*-} \tau^+ \nu_{\tau} $ and $ B^0 \to D^{*-} \mu^+ \nu_{\mu} $ branching fractions using three-prong $ \tau $-lepton decays PRL 120 (2018) 171802 1708.08856
32 LHCb Collaboration Test of Lepton Flavor Universality by the measurement of the $ B^0 \to D^{*-} \tau^+ \nu_{\tau} $ branching fraction using three-prong $ \tau $ decays PRD 97 (2018) 07 1711.02505
33 LHCb Collaboration Search for lepton-universality violation in $ {B}^{+}\rightarrow{K}^{+}{\ell}^{+}{\ell}^{-} $ decays PRL 12 (2019) 191801
34 LHCb Collaboration Test of lepton universality with $ B^{0} \rightarrow K^{*0}\ell^{+}\ell^{-} $ decays JHEP 08 (2017) 055 1705.05802
35 LHCb Collaboration Measurement of the ratio of branching fractions $ \mathcal{B}(B_c^+\,\to\,J/\psi\tau^+\nu_\tau) $/$ \mathcal{B}(B_c^+\,\to\,J/\psi\mu^+\nu_\mu) $ PRL 120 (2018) 121801 1711.05623
36 CMS, LHCb Collaboration Observation of the rare $ B^0_s\to\mu^+\mu^- $ decay from the combined analysis of CMS and LHCb data Nature 522 (2015) 68 1411.4413
37 LHCb Collaboration Measurement of lepton universality parameters in $ B^+\to K^+\ell^+\ell^- $ and $ B^0\to K^{*0}\ell^+\ell^- $ decays PRD 108 (2023) 03 2212.09153
38 LHCb Collaboration Test of lepton flavor universality using $ B^0 \to D^{*-}\tau^+\nu_{\tau} $ decays with hadronic $ \tau $ channels PRD 108 (2023) 01 2305.01463
39 LHCb Collaboration Measurement of the ratios of branching fractions $ \mathcal{R}(D^{*}) $ and $ \mathcal{R}(D^{0}) $ 2302.02886
40 Muon $g\ensuremath - 2$ Collaboration Final report of the E821 muon anomalous magnetic moment measurement at BNL PRD 73 (2006) 072003
41 Muon $g\ensuremath - 2$ Collaboration Measurement of the positive muon anomalous magnetic moment to 0.46 ppm PRL 126 (2021) 141801
42 B. Diaz, M. Schmaltz, and Y.-M. Zhong The leptoquark Hunter's guide: Pair production JHEP 10 (2017) 097 1706.05033
43 W. Buchm \"u ller, R. R \"u ckl, and D. Wyler Leptoquarks in lepton-quark collisions PLB 191 (1987) 442
44 J. Blumlein, E. Boos, and A. Kryukov Leptoquark pair production in hadronic interactions Z. Phys. C 76 (1997) 137 hep-ph/9610408
45 CMS Collaboration Search for pair production of second-generation leptoquarks at $ \sqrt{s}=13\text{ }\text{ }\mathrm{TeV} $ PRD 9 (2019) 032014
46 ATLAS Collaboration Search for pairs of scalar leptoquarks decaying into quarks and electrons or muons in $ \sqrt{s} $ = 13 TeV $ pp $ collisions with the ATLAS detector JHEP 10 (2020) 112 2006.05872
47 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
48 CMS Collaboration Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015
CDS
49 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
50 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_t $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
51 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
52 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
53 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
54 CMS Collaboration Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s} = $ 13\,TeV using the CMS detector JINST 14 (2019) P07004 CMS-JME-17-001
1903.06078
55 E. Bols et al. Jet flavour classification using DeepJet JINST 15 (2020) P12012 2008.10519
56 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
57 CMS Collaboration Performance of the DeepJet b tagging algorithm using 41.9/fb of data from proton-proton collisions at 13 TeV with Phase 1 CMS detector CMS Detector Performance Note CMS-DP-2018-058, 2018
CDS
58 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13\,TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
59 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
60 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s}= $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
61 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s}= $ 13 TeV CMS Physics Analysis Summary, 2018
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
62 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s}= $ 13 TeV CMS Physics Analysis Summary, 2019
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
63 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} $ = 13 TeV CMS Physics Analysis Summary, 2018
link
CMS-PAS-LUM-17-004
64 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} $ = 13 TeV CMS Physics Analysis Summary, 2019
link
CMS-PAS-LUM-18-002
65 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
66 S. Frixione and B. R. Webber Matching NLO QCD computations and parton shower simulations JHEP 06 (2002) 029 hep-ph/0204244
67 I. Dor \v s ner et al. Physics of leptoquarks in precision experiments and at particle colliders Phys. Rept. 641 (2016) 1 1603.04993
68 I. Doršner and A. Greljo Leptoquark toolbox for precision collider studies JHEP 201 (2018) 126
69 M. Kr ä mer, T. Plehn, M. Spira, and P. M. Zerwas Pair production of scalar leptoquarks at the CERN LHC PRD 71 (2005) 057503
70 T. Mandal, S. Mitra, and S. Seth Pair production of scalar leptoquarks at the lhc to nlo parton shower accuracy PRD 93 (2016) 035018
71 J. Butterworth et al. PDF4LHC recommendations for LHC Run II JPG 43 (2016) 023001 1510.03865
72 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
73 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
74 S. Alioli, P. Nason, C. Oleari, and E. Re NLO vector-boson production matched with shower in POWHEG JHEP 07 (2008) 060 0805.4802
75 S. Alioli, P. Nason, C. Oleari, and E. Re NLO single-top production matched with shower in POWHEG: $ s $- and $ t $-channel contributions JHEP 09 (2009) 111 0907.4076
76 S. Frixione, E. Laenen, P. Motylinski, and B. R. Webber Single-top production in MC@NLO JHEP 03 (2006) 092 hep-ph/0512250
77 T. Sjöstrand et al. An Introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
78 NNPDF Collaboration Parton distributions for the LHC Run II JHEP 04 (2015) 040 1410.8849
79 GEANT4 Collaboration GEANT 4---A simulation toolkit NIM A 506 (2003) 250
80 J. Allison et al. GEANT 4 developments and applications IEEE Trans. Nucl. Sci. 53 (2006) 270
81 CMS Collaboration Event generator tunes obtained from underlying event and multiparton scattering measurements EPJC 76 (2016) 155 CMS-GEN-14-001
1512.00815
82 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 1 CMS-GEN-17-001
1903.12179
83 G. Punzi Sensitivity of searches for new signals and its optimization in Statistical problems in particle physics, astrophysics and cosmology, Stanford, 2003
PHYSTAT 200 (2003) 3
physics/0308063
84 CMS Collaboration Search for high-mass resonances in dilepton final states in proton-proton collisions at $ \sqrt{s}= $ 13 TeV CMS-EXO-16-047
1803.06292
85 M. Botje et al. The PDF4LHC Working Group Interim Recommendations 1101.0538
86 D. Bourilkov, R. C. Group, and M. R. Whalley LHAPDF: PDF use from the Tevatron to the LHC hep-ph/0605240
87 CMS Collaboration Measurement of the inelastic proton-proton cross section at $ \sqrt{s}= $ 13 TeV JHEP 07 (2018) 161 CMS-FSQ-15-005
1802.02613
88 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
89 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435 hep-ex/9902006
90 A. L. Read Presentation of search results: The CL$ _{\rm{s}} $ technique JPG 28 (2002) 2693
Compact Muon Solenoid
LHC, CERN