CMS-HIG-14-032 ; CERN-EP-2016-054 | ||
Search for Higgs boson off-shell production in proton-proton collisions at 7 and 8 TeV and derivation of constraints on its total decay width | ||
CMS Collaboration | ||
8 May 2016 | ||
J. High Energy Phys. 09 (2016) 051 | ||
Abstract: A search is presented for the Higgs boson off-shell production in gluon fusion and vector boson fusion processes with the Higgs boson decaying into a ${\mathrm{ W }^+\mathrm{ W }^-} $ pair and the W bosons decaying leptonically. The data observed in this analysis are used to constrain the Higgs boson total decay width. The analysis is based on the data collected by the CMS experiment at the LHC, corresponding to integrated luminosities of 4.9 fb$^{-1}$ at a centre-of-mass energy of 7 TeV and 19.4 fb$^{-1}$ at 8 TeV, respectively. An observed (expected) upper limit on the off-shell Higgs boson event yield normalised to the standard model prediction of 2.4 (6.2) is obtained at the 95% CL for the gluon fusion process and of 19.3 (34.4) for the vector boson fusion process. Observed and expected limits on the total width of 26 and 66 MeV are found, respectively, at the 95% confidence level (CL). These limits are combined with the previous result in the ZZ channel leading to observed and expected 95% CL upper limits on the width of 13 and 26 MeV, respectively. | ||
Links: e-print arXiv:1605.02329 [hep-ex] (PDF) ; CDS record ; inSPIRE record ; CADI line (restricted) ; |
Figures | |
png pdf |
Figure 1:
Feynman diagrams for the GF channel: (a) for the signal process $\mathrm{ g } \mathrm{ g } \to \mathrm{ H } ( \mathrm{ H } ^{*} )\to \mathrm{ W } ^+\mathrm{ W } ^-$, and (b) for the GF-initiated continuum background process $\mathrm{ g } \mathrm{ g } \to \mathrm{ W } ^+\mathrm{ W } ^-$. The two processes can interfere, as they have identical initial and final states. |
png pdf |
Figure 1-a:
Feynman diagram for the GF channel: the signal process $\mathrm{ g } \mathrm{ g } \to \mathrm{ H } ( \mathrm{ H } ^{*} )\to \mathrm{ W } ^+\mathrm{ W } ^-$. |
png pdf |
Figure 1-b:
Feynman diagram for the GF channel: the GF-initiated continuum background process $\mathrm{ g } \mathrm{ g } \to \mathrm{ W } ^+\mathrm{ W } ^-$. |
png pdf |
Figure 2:
Feynman diagrams for the VBF channel: (a) for the signal process $\mathrm{ q } \mathrm{ q } \to \mathrm{ q } \mathrm{ q } \mathrm{ H } ( \mathrm{H} ^{*})\to \mathrm{ q } \mathrm{ q } {\mathrm{ W }^+ \mathrm{ W }^- } \to \mathrm{ q } \mathrm{ q } \ell ^+\nu \ell ^-\nu $, and (b and c) for two examples of background $\mathrm{ q } \mathrm{ q } \to \mathrm{ q } \mathrm{ q } {\mathrm{ W }^+ \mathrm{ W }^- } \to \mathrm{ q } \mathrm{ q } \ell ^+\nu \ell ^-\nu $ channels. |
png pdf |
Figure 2-a:
Feynman diagram for the VBF channel: the signal process $\mathrm{ q } \mathrm{ q } \to \mathrm{ q } \mathrm{ q } \mathrm{ H } ( \mathrm{H} ^{*})\to \mathrm{ q } \mathrm{ q } {\mathrm{ W }^+ \mathrm{ W }^- } \to \mathrm{ q } \mathrm{ q } \ell ^+\nu \ell ^-\nu $. |
png pdf |
Figure 2-b:
Feynman diagram for the VBF channel: an example of background $\mathrm{ q } \mathrm{ q } \to \mathrm{ q } \mathrm{ q } {\mathrm{ W }^+ \mathrm{ W }^- } \to \mathrm{ q } \mathrm{ q } \ell ^+\nu \ell ^-\nu $ channel. |
png pdf |
Figure 2-c:
Feynman diagram for the VBF channel: an example of background $\mathrm{ q } \mathrm{ q } \to \mathrm{ q } \mathrm{ q } {\mathrm{ W }^+ \mathrm{ W }^- } \to \mathrm{ q } \mathrm{ q } \ell ^+\nu \ell ^-\nu $ channel. |
png pdf |
Figure 3:
The MVA discriminant distribution for 8 TeV data for the 1-jet category in the top quark control region with one b-tagged jet of $ {p_{\mathrm {T}}} > $ 30 GeV. The Z, W+jets, WW, and top quark simulation predictions are corrected with the estimates based on control samples in data, while other contributions are taken from simulation. |
png pdf |
Figure 4:
The $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ distributions for the GF 0-jet (a) and (b), and 1-jet (c) and (d) categories, and the VBF 2-jet category (e) and (f) for 7 TeV data. The distributions are weighted as described in the text. In the histogram panels, the expected off-shell SM Higgs boson signal rate, including signal-background interference, is calculated for $ {\Gamma _{\mathrm{ H } }}= 30 {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ and is shown with and without stacking on top of the backgrounds. In the data/MC panels, the expected off-shell SM Higgs boson rate is calculated for $ {\Gamma _{\mathrm{ H } }}= {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ for the comparison. |
png pdf |
Figure 4-a:
The $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ distribution for the GF 0-jet category for 7 TeV data. The distribution is weighted as described in the text (on-shell). In the histogram panel, the expected off-shell SM Higgs boson signal rate, including signal-background interference, is calculated for $ {\Gamma _{\mathrm{ H } }}= 30 {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ and is shown with and without stacking on top of the backgrounds. In the data/MC panel, the expected off-shell SM Higgs boson rate is calculated for $ {\Gamma _{\mathrm{ H } }}= {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ for the comparison. |
png pdf |
Figure 4-b:
The $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ distribution for the GF 0-jet category for 7 TeV data. The distribution is weighted as described in the text (off-shell). In the histogram panel, the expected off-shell SM Higgs boson signal rate, including signal-background interference, is calculated for $ {\Gamma _{\mathrm{ H } }}= 30 {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ and is shown with and without stacking on top of the backgrounds. In the data/MC panel, the expected off-shell SM Higgs boson rate is calculated for $ {\Gamma _{\mathrm{ H } }}= {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ for the comparison. |
png pdf |
Figure 4-c:
The $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ distribution for the GF 1-jet category for 7 TeV data. The distribution is weighted as described in the text (on-shell). In the histogram panel, the expected off-shell SM Higgs boson signal rate, including signal-background interference, is calculated for $ {\Gamma _{\mathrm{ H } }}= 30 {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ and is shown with and without stacking on top of the backgrounds. In the data/MC panel, the expected off-shell SM Higgs boson rate is calculated for $ {\Gamma _{\mathrm{ H } }}= {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ for the comparison. |
png pdf |
Figure 4-d:
The $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ distribution for the GF 1-jet for 7 TeV data. The distribution is weighted as described in the text (off-shell). In the histogram panel, the expected off-shell SM Higgs boson signal rate, including signal-background interference, is calculated for $ {\Gamma _{\mathrm{ H } }}= 30 {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ and is shown with and without stacking on top of the backgrounds. In the data/MC panel, the expected off-shell SM Higgs boson rate is calculated for $ {\Gamma _{\mathrm{ H } }}= {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ for the comparison. |
png pdf |
Figure 4-e:
The $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ distribution for the VBF 2-jet category for 7 TeV data. The distribution is weighted as described in the text (on-shell). In the histogram panel, the expected off-shell SM Higgs boson signal rate, including signal-background interference, is calculated for $ {\Gamma _{\mathrm{ H } }}= 30 {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ and is shown with and without stacking on top of the backgrounds. In the data/MC panel, the expected off-shell SM Higgs boson rate is calculated for $ {\Gamma _{\mathrm{ H } }}= {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ for the comparison. |
png pdf |
Figure 4-f:
The $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ distribution for the VBF 2-jet category for 7 TeV data. The distribution is weighted as described in the text (off-shell). In the histogram panel, the expected off-shell SM Higgs boson signal rate, including signal-background interference, is calculated for $ {\Gamma _{\mathrm{ H } }}= 30 {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ and is shown with and without stacking on top of the backgrounds. In the data/MC panel, the expected off-shell SM Higgs boson rate is calculated for $ {\Gamma _{\mathrm{ H } }}= {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ for the comparison. |
png pdf |
Figure 5:
The $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ and MVA discriminant distributions for the GF 0-jet (a) and (b), and 1-jet (c) and (d) categories, and $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ for the VBF 2-jet category (e) and (f) for 8 TeV data. More details are given in the caption of Fig. 4. |
png pdf |
Figure 5-a:
The $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ distribution for the GF 0-jet for 8 TeV data. More details are given in the caption of Fig. 4. |
png pdf |
Figure 5-b:
The MVA discriminant distribution for the GF 0-jet for 8 TeV data. More details are given in the caption of Fig. 4. |
png pdf |
Figure 5-c:
The $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ distribution for the GF 1-jet for 8 TeV data. More details are given in the caption of Fig. 4. |
png pdf |
Figure 5-d:
The MVA discriminant distribution for the GF 1-jet for 8 TeV data. More details are given in the caption of Fig. 4. |
png pdf |
Figure 5-e:
The ${m_{\mathrm {T}}^{\mathrm{ H } }}$ for the VBF 2-jet category for 8 TeV data (on-shell). More details are given in the caption of Fig. 4. |
png pdf |
Figure 5-f:
The ${m_{\mathrm {T}}^{\mathrm{ H } }}$ for the VBF 2-jet category for 8 TeV data (off-shell). More details are given in the caption of Fig. 4. |
png pdf |
Figure 6:
Scan of the off-shell VBF signal strength $ {\mu _\mathrm {VBF}^{\text {off-shell}}}$ for 0-, 1-, 2-jet categories separately and all categories combined for the $\mathrm{ H } \to \mathrm{ W } \mathrm{ W } $ process: the observed (expected) scan is represented by the solid (dashed) line. |
png pdf |
Figure 6-a:
Scan of the negative log-likelihood as a function of the off-shell GF SM Higgs boson signal strength $ {\mu _\mathrm {GF}^{\text {off-shell}}}$ for 0-, 1-, 2-jet categories separately and all categories combined for the $\mathrm{ H } \to \mathrm{ W } \mathrm{ W } $ process: the observed (expected) scan is represented by the solid (dashed) line. |
png pdf |
Figure 6-b:
Scan of the off-shell VBF signal strength $ {\mu _\mathrm {VBF}^{\text {off-shell}}}$ for 0-, 1-, 2-jet categories separately and all categories combined for the $\mathrm{ H } \to \mathrm{ W } \mathrm{ W } $ process: the observed (expected) scan is represented by the solid (dashed) line. |
png pdf |
Figure 7:
Scan of the negative log-likelihood as a function of $ {\Gamma _{\mathrm{ H } }}$ for 0-, 1-, 2-jet categories separately and all categories combined for the $\mathrm{ H } \to \mathrm{ W } \mathrm{ W } $ process: the observed (expected) scan is represented by the solid (dashed) line. |
png pdf |
Figure 8:
Scan of the negative log-likelihood as a function of off-shell SM Higgs boson signal strength for GF $ {\mu _\mathrm {GF}^{\text {off-shell}}}$ (a) and for VBF $ {\mu _\mathrm {VBF}^{\text {off-shell}}}$ (b) from the combined fit of $\mathrm{ H } \to \mathrm{ W } \mathrm{ W } $ and $\mathrm{ H } \to \mathrm{ Z } \mathrm{ Z } $ channels for 7 and 8 TeV. In the likelihood scan of $ {\mu _\mathrm {GF}^{\text {off-shell}}}$ and $ {\mu _\mathrm {VBF}^{\text {off-shell}}}$, this analysis assumes the SU(2) custodial symmetry: $ {\mu ^{\mathrm{ Z } \mathrm{ Z } }_\mathrm {GF}}/ {\mu ^{\mathrm{ W } \mathrm{ W } }_\mathrm {GF}}= {\mu ^{\mathrm{ Z } \mathrm{ Z } }_\mathrm {VBF}}/ {\mu ^{\mathrm{ W } \mathrm{ W } }_\mathrm {VBF}}= $ 1. |
png pdf |
Figure 8-a:
Scan of the negative log-likelihood as a function of off-shell SM Higgs boson signal strength for GF $ {\mu _\mathrm {GF}^{\text {off-shell}}}$ from the combined fit of $\mathrm{ H } \to \mathrm{ W } \mathrm{ W } $ and $\mathrm{ H } \to \mathrm{ Z } \mathrm{ Z } $ channels for 7 and 8 TeV. In the likelihood scan, this analysis assumes the SU(2) custodial symmetry: $ {\mu ^{\mathrm{ Z } \mathrm{ Z } }_\mathrm {GF}}/ {\mu ^{\mathrm{ W } \mathrm{ W } }_\mathrm {GF}}= $ 1. |
png pdf |
Figure 8-b:
Scan of the negative log-likelihood as a function of off-shell SM Higgs boson signal strength for VBF $ {\mu _\mathrm {VBF}^{\text {off-shell}}}$ from the combined fit of $\mathrm{ H } \to \mathrm{ W } \mathrm{ W } $ and $\mathrm{ H } \to \mathrm{ Z } \mathrm{ Z } $ channels for 7 and 8 TeV. In the likelihood scan, this analysis assumes the SU(2) custodial symmetry: $ {\mu ^{\mathrm{ Z } \mathrm{ Z } }_\mathrm {VBF}}/ {\mu ^{\mathrm{ W } \mathrm{ W } }_\mathrm {VBF}}= $ 1. |
png pdf |
Figure 9:
Scan of the negative log-likelihood as a function of $ {\Gamma _{\mathrm{ H } }}$ from the combined fit of $\mathrm{ H } \to \mathrm{ W } \mathrm{ W } $ and $\mathrm{ H } \to \mathrm{ Z } \mathrm{ Z } $ channels for 7 and 8 TeV. In the likelihood scan of $ {\Gamma _{\mathrm{ H } }}$, this analysis assumes the same GF and VBF ratio of signal strengths for $\mathrm{ W } \mathrm{ W } $ and $\mathrm{ Z } \mathrm{ Z } $ decay modes : $ {\mu ^{\mathrm{ Z } \mathrm{ Z } }_\mathrm {GF}}/ {\mu ^{\mathrm{ W } \mathrm{ W } }_\mathrm {GF}}= {\mu ^{\mathrm{ Z } \mathrm{ Z } }_\mathrm {VBF}}/ {\mu ^{\mathrm{ W } \mathrm{ W } }_\mathrm {VBF}}$. |
Tables | |
png pdf |
Table 1:
Analysis region definitions for on- and off-shell selections. |
png pdf |
Table 2:
Summary of systematic uncertainties. |
Summary |
A search is presented for the Higgs boson off-shell production in gluon fusion and vector boson fusion processes with the Higgs boson decaying into a ${\mathrm{ W }^+\mathrm{ W }^-} $ pair and the W bosons decaying leptonically. The data observed in this analysis are used to constrain the Higgs boson total decay width. The analysis is based on pp collision data collected by the CMS experiment at $\sqrt{s} = $ 7 and 8 TeV, corresponding to integrated luminosities of 4.9 and 19.4 fb$^{-1}$ respectively. The observed and expected upper limits for the off-shell signal strengths at 95% CL are 3.5 and 16.0 for the gluon fusion process, and 48.1 and 99.2 for the vector boson fusion process. The observed and expected constraints on the Higgs boson total width are, respectively, $ \Gamma_{\mathrm{ H }} < $ 26 and $<$ 66 MeV, obtained at the 95% CL. These results are combined with those obtained earlier in the $\mathrm{ H }\to\mathrm{ ZZ }$ channel, which further improves the observed and expected upper limits of the off-shell signal strengths to 2.4 and 6.2 for the gluon fusion process, and 19.3 and 34.4 for the vector boson fusion process. The observed and expected constraints on the Higgs boson total width from the combination are, respectively, $ s\Gamma_{\mathrm{ H }} < $ 13 and $<$ 26 MeV at the 95% CL. |
References | ||||
1 | ATLAS Collaboration | Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC | PLB 716 (2012) 1 | 1207.7214 |
2 | CMS Collaboration | Observation of a new boson at a mass of 125$ GeV $ with the CMS experiment at the LHC | PLB 716 (2012) 30 | CMS-HIG-12-028 1207.7235 |
3 | CMS Collaboration | Observation of a new boson with mass near 125$ GeV $ in $ \mathrm{ p }\mathrm{ p } $ collisions at $ \sqrt{s} = 7 $ and 8 TeV | JHEP 06 (2013) 081 | CMS-HIG-12-036 1303.4571 |
4 | CMS Collaboration | Study of the Mass and Spin-Parity of the Higgs Boson Candidate via its Decays to Z Boson Pairs | PRL 110 (2013) 081803 | CMS-HIG-12-041 1212.6639 |
5 | ATLAS Collaboration | Evidence for the spin-0 nature of the Higgs boson using ATLAS data | PLB 726 (2013) 120 | 1307.1432 |
6 | ATLAS Collaboration | Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC | PLB 726 (2013) 88 | 1307.1427 |
7 | CMS Collaboration | Precise determination of the mass of the Higgs boson and tests of the compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8$ TeV $ | EPJC 75 (2015) 212 | CMS-HIG-14-009 1412.8662 |
8 | CMS Collaboration | Measurement of the properties of a Higgs boson in the four-lepton final state | PRD 89 (2014) 092007 | CMS-HIG-13-002 1312.5353 |
9 | CMS Collaboration | Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV | PRD 92 (2015) 012004 | CMS-HIG-14-018 1411.3441 |
10 | CMS Collaboration | Observation of the diphoton decay of the Higgs boson and measurement of its properties | EPJC 74 (2014) 3076 | |
11 | LHC Higgs Cross Section Working Group | Handbook of LHC Higgs Cross Sections: 3. Higgs Properties | CERN Report CERN-2013-004, 2013. | 1307.1347 |
12 | ATLAS Collaboration | Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at $ \sqrt{s}=$ 7 and 8 TeV in the ATLAS experiment | EPJC 76 (2016) 6 | 1507.04548 |
13 | N. Kauer and G. Passarino | Inadequacy of zero-width approximation for a light Higgs boson signal | JHEP 08 (2012) 116 | 1206.4803 |
14 | G. Passarino | Higgs interference effects in $ \mathrm{ gg \to ZZ } $ and their uncertainty | JHEP 08 (2012) 146 | 1206.3824 |
15 | G. Passarino | Higgs CAT | EPJC 74 (2014) 2866 | 1312.2397 |
16 | N. Kauer | Inadequacy of zero-width approximation for a light Higgs boson signal | MPLA 28 (2013) 1330015 | 1305.2092 |
17 | F. Caola and K. Melnikov | Constraining the Higgs boson width with ZZ production at the LHC | PRD 88 (2013) 054024 | 1307.4935 |
18 | J. M. Campbell, R. K. Ellis, and C. Williams | Bounding the Higgs width at the LHC using full analytic results for $\mathrm{ gg \to e^+e^-\mu^+\mu^-$ | JHEP 04 (2014) 060 | 1311.3589 |
19 | J. S. Gainer et al. | Beyond Geolocating: Constraining Higher Dimensional Operators in $ H \to 4\ell $ with Off-Shell Production and More | PRD 91 (2015), no. 3, 035011 | 1403.4951 |
20 | C. Englert and M. Spannowsky | Limitations and Opportunities of Off-Shell Coupling Measurements | PRD 90 (2014) 053003 | 1405.0285 |
21 | CMS Collaboration | Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs | PLB 736 (2014) 64 | CMS-HIG-14-002 1405.3455 |
22 | CMS Collaboration | Limits on the Higgs boson lifetime and width from its decay to four charged leptons | PRD 92 (2015) 072010 | CMS-HIG-14-036 1507.06656 |
23 | ATLAS Collaboration | Constraints on the off-shell Higgs boson signal strength in the high-mass ZZ and WW final states with the ATLAS detector | EPJC 75 (2015) 335 | 1503.01060 |
24 | J. M. Campbell and R. K. Ellis | Bounding the Higgs width at the LHC: Complementary results from $ \mathrm{ H }\to\mathrm{ W }\mathrm{ W } $ | PRD 89 (2014) 053011 | 1312.1628 |
25 | CMS Collaboration | Absolute Calibration of the Luminosity Measurement at CMS: Winter 2012 Update | CDS | |
26 | CMS Collaboration | CMS Luminosity Based on Pixel Cluster Counting - Summer 2013 Update | CMS-PAS-LUM-13-001 | CMS-PAS-LUM-13-001 |
27 | CMS Collaboration | The CMS experiment at the CERN LHC | JINST 3 (2008) S08004 | CMS-00-001 |
28 | CMS Collaboration | Performance of CMS muon reconstruction in $ \mathrm{ p }\mathrm{ p } $ collision events at $ \sqrt{s} = $ 7 TeV | JINST 7 (2012) P10002 | CMS-MUO-10-004 1206.4071 |
29 | CMS Collaboration | Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s} = $ 8 TeV | JINST 10 (2015) P06005 | CMS-EGM-13-001 1502.02701 |
30 | ATLAS and CMS Collaborations | Combined Measurement of the Higgs Boson Mass in $ pp $ Collisions at $ \sqrt{s}=7 $ and 8 TeV with the ATLAS and CMS Experiments | PRL 114 (2015) 191803 | |
31 | T. Melia, P. Nason, R. Rontsch, and G. Zanderighi | WW, WZ and ZZ production in the POWHEG BOX | JHEP 11 (2011) 078 | 1107.5051 |
32 | P. Nason | A new method for combining NLO QCD with shower Monte Carlo algorithms | JHEP 11 (2004) 040 | hep-ph/0409146 |
33 | S. Frixione, P. Nason, and C. Oleari | Matching NLO QCD computations with Parton Shower simulations: the POWHEG method | JHEP 11 (2007) 070 | 0709.2092 |
34 | S. Alioli, P. Nason, C. Oleari, and E. Re | NLO vector-boson production matched with shower in POWHEG | JHEP 07 (2008) 060 | 0805.4802 |
35 | S. Alioli, P. Nason, C. Oleari, and E. Re | A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX | JHEP 06 (2010) 043 | 1002.2581 |
36 | J. Alwall et al. | MadGraph 5: going beyond | JHEP 06 (2011) 128 | 1106.0522 |
37 | CMS Collaboration | Measurement of Higgs boson production and properties in the $ \mathrm{ W }\mathrm{ W } $ decay channel with leptonic final states | JHEP 01 (2014) 096 | CMS-HIG-13-023 1312.1129 |
38 | T. Binoth, N. Kauer, and P. Mertsch | Gluon-induced QCD corrections to $ \mathrm{ p }\mathrm{ p }\to\mathrm{ZZ}\to\ell\bar{\ell}\ell'\bar{\ell'} $ | in Proceedings of XVI Int. Workshop on Deep-Inelastic Scattering and Related Topics, London, 2008 | 0807.0024 |
39 | A. Ballestrero et al. | PHANTOM: A Monte Carlo event generator for six parton final states at high energy colliders | CPC 180 (2009) 401 | 0801.3359 |
40 | H.-L. Lai et al. | Uncertainty induced by QCD coupling in the CTEQ global analysis of parton distributions | PRD 82 (2010) 054021 | 1004.4624 |
41 | J. M. Campbell and R. K. Ellis | MCFM for the Tevatron and the LHC | NPPS 205--206 (2010) 10 | 1007.3492 |
42 | T. Sjostrand, S. Mrenna, and P. Skands | PYTHIA 6.4 physics and manual | JHEP 05 (2006) 026 | hep-ph/0603175 |
43 | M. Bonvini et al. | Signal-background interference effects for $ \mathrm{gg} \to\mathrm{ H }\to \mathrm{ WW } $ beyond leading order | PRD 88 (2013) 034032 | 1304.3053 |
44 | C. S. Li, H. T. Li, D. Y. Shao, and J. Wang | Soft gluon resummation in the signal-background interference process of $ \mathrm{g} \mathrm{g}(\to \mathrm{h}^*)\to\mathrm{ZZ} $ | JHEP 08 (2015) 065 | 1504.02388 |
45 | K. Melnikov and M. Dowling | Production of two Z-bosons in gluon fusion in the heavy top quark approximation | PLB 744 (2015) 43 | 1503.01274 |
46 | M. Ciccolini, A. Denner, and S. Dittmaier | Electroweak and QCD corrections to Higgs production via vector-boson fusion at the CERN LHC | PRD 77 (2008) 013002 | 0710.4749 |
47 | P. Bolzoni, F. Maltoni, S.-O. Moch, and M. Zaro | Higgs Boson Production via Vector-Boson Fusion at Next-to-Next-to-Leading Order in QCD | PRL 105 (2010) 011801 | 1003.4451 |
48 | P. Bolzoni, F. Maltoni, S.-O. Moch, and M. Zaro | Vector boson fusion at next-to-next-to-leading order in QCD: Standard model Higgs boson and beyond | PRD 85 (2012) 035002 | 1109.3717 |
49 | GEANT4 Collaboration | Geant4--a simulation toolkit | NIMA 506 (2003) 250 | |
50 | CMS Collaboration | Particle--Flow Event Reconstruction in CMS and Performance for Jets, Taus, and $ E_{\mathrm{T}}^{\text{miss}} $ | CDS | |
51 | CMS Collaboration | Commissioning of the Particle-flow Event Reconstruction with the first LHC collisions recorded in the CMS detector | CDS | |
52 | M. Cacciari and G. P. Salam | Pileup subtraction using jet areas | PLB 659 (2008) 119 | 0707.1378 |
53 | S. Xie | Search for the Standard Model Higgs Boson Decaying to Two W Bosons at CMS | PhD thesis, MIT, 2012. CERN-THESIS-2012-068 | |
54 | A. Massironi | Search for a Higgs Boson in the $\mathrm{ H \to WW \to \ell \nu \ell \nu } $ channel at CMS | PhD thesis, Universita degli Studi di Milano-Bicocca, 2013. Dottorato di ricerca in fisica e astronomia | |
55 | M. Cacciari, G. P. Salam, and G. Soyez | The anti-$ k_t $ jet clustering algorithm | JHEP 04 (2008) 063 | 0802.1189 |
56 | M. Cacciari, G. P. Salam, and G. Soyez | FastJet user manual | EPJC 72 (2012) 1896 | 1111.6097 |
57 | M. Cacciari and G. P. Salam | Dispelling the $ N^{3} $ myth for the $ k_t $ jet-finder | PLB 641 (2006) 57 | hep-ph/0512210 |
58 | CMS Collaboration | Pileup Jet Identification | CMS-PAS-JME-13-005 | CMS-PAS-JME-13-005 |
59 | CMS Collaboration | Identification of $ \mathrm{ b } $-quark jets with the CMS experiment | JINST 8 (2013) P04013 | CMS-BTV-12-001 1211.4462 |
60 | CMS Collaboration | Commissioning of $ \mathrm{ b } $-jet identification with $ \mathrm{ p }\mathrm{ p } $ collisions at $ \sqrt{s} = $ 7 TeV | CDS | |
61 | D. L. Rainwater, R. Szalapski, and D. Zeppenfeld | Probing color singlet exchange in Z + 2-jet events at the CERN LHC | PRD 54 (1996) 6680 | hep-ph/9605444v1 |
62 | J. H. Friedman | Stochastic gradient boosting | Comput. Stat. Data Anal. 38 (2002) 367 | |
63 | H. Voss, A. Hocker, J. Stelzer, and F. Tegenfeldt | TMVA, the Toolkit for Multivariate Data Analysis with ROOT | in XIth International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT), p. 40. 2007. | physics/0703039 |
64 | I. Anderson et al. | Constraining anomalous $ HVV $ interactions at proton and lepton colliders | PRD 89 (2014) 035007 | 1309.4819 |
65 | CMS Collaboration | Determination of jet energy calibration and transverse momentum resolution in CMS | JINST 6 (2011) P11002 | CMS-JME-10-011 1107.4277 |
66 | J. M. Campbell, R. K. Ellis, and C. Williams | Vector boson pair production at the LHC | JHEP 07 (2011) 018 | 1105.0020 |
67 | LHC Higgs Cross Section Working Group | Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables | CERN Report CERN-2011-002, 2011. | 1101.0593 |
68 | LHC Higgs Cross Section Working Group | Handbook of LHC Higgs Cross Sections: 2. Differential Distributions | CERN Report CERN-2012-002, 2012. | 1201.3084 |
69 | F. I. Stewart and J. F. Tackmann | Theory uncertainties for Higgs mass and other searches using jet bins | PRD 85 (2012) 034011 | 1107.2117 |
70 | T. Gleisberg et al. | Event generation with SHERPA 1.1 | JHEP 02 (2009) 007 | 0811.4622 |
71 | F. Cascioli, P. Maierhofer, and S. Pozzorini | Scattering Amplitudes with Open Loops | PRL 108 (2012) 111601 | 1111.5206 |
72 | F. Cascioli et al. | Precise Higgs-background predictions: merging NLO QCD and squared quark-loop corrections to four-lepton + 0,1 jet production | JHEP 01 (2014) 046 | 1309.0500 |
73 | S. Alekhin et al. | The PDF4LHC Working Group Interim Report | 1101.0536 | |
74 | NNPDF Collaboration | Impact of heavy quark masses on parton distributions and LHC phenomenology | NPB 849 (2011) 296 | 1101.1300 |
75 | A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt | Parton distributions for the LHC | EPJC 63 (2009) 189 | 0901.0002 |
76 | CMS Collaboration | Measurement of the underlying event activity at the LHC with $ \sqrt{s} = $ 7 TeV and comparison with $ \sqrt{s} = $ 0.9 TeV | JHEP 09 (2011) 109 | CMS-QCD-10-010 1107.0330 |
77 | CMS Collaboration | Measurement of the underlying event in the Drell--Yan process in proton-proton collisions at $ \sqrt{s} = $ 7 TeV | EPJC 72 (2012) 2080 | CMS-QCD-11-012 1204.1411 |
78 | G. Cowan, K. Cranmer, E. Gross, and O. Vitells | Asymptotic formulae for likelihood-based tests of new physics | EPJC 71 (2011) 1554 | 1007.1727v3 |
Compact Muon Solenoid LHC, CERN |