CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-TOP-23-001 ; CERN-EP-2024-137
Observation of quantum entanglement in top quark pair production in proton-proton collisions at $ \sqrt{s}= $ 13 TeV
Rep. Prog. Phys. 87 (2024) 117801
Abstract: Entanglement is an intrinsic property of quantum mechanics and is predicted to be exhibited in the particles produced at the Large Hadron Collider. A measurement of the extent of entanglement in top quark-antiquark ($ \mathrm{t} \bar{\mathrm{t}} $) events produced in proton-proton collisions at a center-of-mass energy of 13 TeV is performed with the data recorded by the CMS experiment at the CERN LHC in 2016, and corresponding to an integrated luminosity of 36.3 fb$ ^{-1} $. The events are selected based on the presence of two leptons with opposite charges and high transverse momentum. An entanglement-sensitive observable $ D $ is derived from the top quark spin-dependent parts of the $ \mathrm{t} \bar{\mathrm{t}} $ production density matrix and measured in the region of the $ \mathrm{t} \bar{\mathrm{t}} $ production threshold. Values of $ D {<} -$1/3 are evidence of entanglement and $ D $ is observed (expected) to be $-$0.480$ ^{+0.026}_{-0.029} $ ($-$0.467$ ^{+0.026}_{-0.029} $) at the parton level. With an observed significance of 5.1 standard deviations with respect to the non-entangled hypothesis, this provides observation of quantum mechanical entanglement within $ \mathrm{t} \bar{\mathrm{t}} $ pairs in this phase space. This measurement provides a new probe of quantum mechanics at the highest energies ever produced.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Representative leading order QCD Feynman diagrams for the $ \mathrm{t} \bar{\mathrm{t}} $ production through $ \mathrm{g}\mathrm{g} $ fusion (left) and quark-antiquark annihilation (right).

png pdf
Figure 2:
Predicted values of $ -(1+\Delta)/ $ 3 obtained from $ \mathrm{t} \bar{\mathrm{t}} $ MC simulation, without accounting for detector effects, are shown on the left as a function of $ m({\mathrm{t}\bar{\mathrm{t}}} ) $ and the cosine of the top quark scattering angle $ \Theta $. The value of $ -(1+\Delta)/ $ 3 also determined by a $ \mathrm{t} \bar{\mathrm{t}} $ MC simulation as a function of $ m({\mathrm{t}\bar{\mathrm{t}}} ) $ and $ \beta_z({\mathrm{t}\bar{\mathrm{t}}} ) $ is shown on the right. In both figures the black solid lines represent the $ D=-1/ $ 3 boundary for entanglement, while the black dashed line indicates the selected phase space in this analysis. The minimum value on the $ z $ axis of-1 corresponds to the boundary $ \mathrm{tr}[C]= $ 3, a maximally entangled state. Top quarks with no spin correlations correspond to a value of $ D= $ 0 and $ \Delta=- $ 1 ($ C=\mathbf{0} $).

png pdf
Figure 2-a:
Predicted values of $ -(1+\Delta)/ $ 3 obtained from $ \mathrm{t} \bar{\mathrm{t}} $ MC simulation, without accounting for detector effects, are shown on the left as a function of $ m({\mathrm{t}\bar{\mathrm{t}}} ) $ and the cosine of the top quark scattering angle $ \Theta $. The value of $ -(1+\Delta)/ $ 3 also determined by a $ \mathrm{t} \bar{\mathrm{t}} $ MC simulation as a function of $ m({\mathrm{t}\bar{\mathrm{t}}} ) $ and $ \beta_z({\mathrm{t}\bar{\mathrm{t}}} ) $ is shown on the right. In both figures the black solid lines represent the $ D=-1/ $ 3 boundary for entanglement, while the black dashed line indicates the selected phase space in this analysis. The minimum value on the $ z $ axis of-1 corresponds to the boundary $ \mathrm{tr}[C]= $ 3, a maximally entangled state. Top quarks with no spin correlations correspond to a value of $ D= $ 0 and $ \Delta=- $ 1 ($ C=\mathbf{0} $).

png pdf
Figure 2-b:
Predicted values of $ -(1+\Delta)/ $ 3 obtained from $ \mathrm{t} \bar{\mathrm{t}} $ MC simulation, without accounting for detector effects, are shown on the left as a function of $ m({\mathrm{t}\bar{\mathrm{t}}} ) $ and the cosine of the top quark scattering angle $ \Theta $. The value of $ -(1+\Delta)/ $ 3 also determined by a $ \mathrm{t} \bar{\mathrm{t}} $ MC simulation as a function of $ m({\mathrm{t}\bar{\mathrm{t}}} ) $ and $ \beta_z({\mathrm{t}\bar{\mathrm{t}}} ) $ is shown on the right. In both figures the black solid lines represent the $ D=-1/ $ 3 boundary for entanglement, while the black dashed line indicates the selected phase space in this analysis. The minimum value on the $ z $ axis of-1 corresponds to the boundary $ \mathrm{tr}[C]= $ 3, a maximally entangled state. Top quarks with no spin correlations correspond to a value of $ D= $ 0 and $ \Delta=- $ 1 ($ C=\mathbf{0} $).

png pdf
Figure 3:
Reconstruction-level $ m({\mathrm{t}\bar{\mathrm{t}}} ) $ (upper left), $ p_{\mathrm{T}}(\mathrm{t}/\bar{\mathrm{t}}) $ (upper right), and $ \cos\varphi $ (lower) distributions of the combined signal model (POWHEGv2$+$PYTHIA-8${+}\eta$t, labeled PH$+$P8${+}\eta$t) in the full phase space comparing the modeling of the data by MC simulation when not including $\eta$t contributions (purple dotted line in the upper panel under each plot), or no $ p_{\mathrm{T}}(\mathrm{t}/\bar{\mathrm{t}}) $ reweighting is applied (gray dashed line in the upper panel), or neither of those (red dashed-dotted line in upper panel). The lower panel under each plot compares the data to POWHEGv2$+$HERWIG++ (blue dashed line, labeled PH$+$HPP${+}\eta$t), to MG5_MC@NLO-FxFx$+$PYTHIA-8 (purple dashed-dotted line), and finally to the nominal MC including $\eta$t contributions and $ p_{\mathrm{T}}(\mathrm{t}/\bar{\mathrm{t}}) $ reweighting (orange solid line, labeled PH$+$P8${+}\eta$t). The hashed uncertainty bands correspond to the pre-fit systematic uncertainties and includes the statistical uncertainty of the data as well. The label ``$ p_{\mathrm{T}} $ rew.'' in the legend refers to the $ p_{\mathrm{T}} $ reweighting procedure (detailed in Section 7) used to reweight the $ \mathrm{t} \bar{\mathrm{t}} $ sample to NNLO in QCD.

png pdf
Figure 3-a:
Reconstruction-level $ m({\mathrm{t}\bar{\mathrm{t}}} ) $ (upper left), $ p_{\mathrm{T}}(\mathrm{t}/\bar{\mathrm{t}}) $ (upper right), and $ \cos\varphi $ (lower) distributions of the combined signal model (POWHEGv2$+$PYTHIA-8${+}\eta$t, labeled PH$+$P8${+}\eta$t) in the full phase space comparing the modeling of the data by MC simulation when not including $\eta$t contributions (purple dotted line in the upper panel under each plot), or no $ p_{\mathrm{T}}(\mathrm{t}/\bar{\mathrm{t}}) $ reweighting is applied (gray dashed line in the upper panel), or neither of those (red dashed-dotted line in upper panel). The lower panel under each plot compares the data to POWHEGv2$+$HERWIG++ (blue dashed line, labeled PH$+$HPP${+}\eta$t), to MG5_MC@NLO-FxFx$+$PYTHIA-8 (purple dashed-dotted line), and finally to the nominal MC including $\eta$t contributions and $ p_{\mathrm{T}}(\mathrm{t}/\bar{\mathrm{t}}) $ reweighting (orange solid line, labeled PH$+$P8${+}\eta$t). The hashed uncertainty bands correspond to the pre-fit systematic uncertainties and includes the statistical uncertainty of the data as well. The label ``$ p_{\mathrm{T}} $ rew.'' in the legend refers to the $ p_{\mathrm{T}} $ reweighting procedure (detailed in Section 7) used to reweight the $ \mathrm{t} \bar{\mathrm{t}} $ sample to NNLO in QCD.

png pdf
Figure 3-b:
Reconstruction-level $ m({\mathrm{t}\bar{\mathrm{t}}} ) $ (upper left), $ p_{\mathrm{T}}(\mathrm{t}/\bar{\mathrm{t}}) $ (upper right), and $ \cos\varphi $ (lower) distributions of the combined signal model (POWHEGv2$+$PYTHIA-8${+}\eta$t, labeled PH$+$P8${+}\eta$t) in the full phase space comparing the modeling of the data by MC simulation when not including $\eta$t contributions (purple dotted line in the upper panel under each plot), or no $ p_{\mathrm{T}}(\mathrm{t}/\bar{\mathrm{t}}) $ reweighting is applied (gray dashed line in the upper panel), or neither of those (red dashed-dotted line in upper panel). The lower panel under each plot compares the data to POWHEGv2$+$HERWIG++ (blue dashed line, labeled PH$+$HPP${+}\eta$t), to MG5_MC@NLO-FxFx$+$PYTHIA-8 (purple dashed-dotted line), and finally to the nominal MC including $\eta$t contributions and $ p_{\mathrm{T}}(\mathrm{t}/\bar{\mathrm{t}}) $ reweighting (orange solid line, labeled PH$+$P8${+}\eta$t). The hashed uncertainty bands correspond to the pre-fit systematic uncertainties and includes the statistical uncertainty of the data as well. The label ``$ p_{\mathrm{T}} $ rew.'' in the legend refers to the $ p_{\mathrm{T}} $ reweighting procedure (detailed in Section 7) used to reweight the $ \mathrm{t} \bar{\mathrm{t}} $ sample to NNLO in QCD.

png pdf
Figure 3-c:
Reconstruction-level $ m({\mathrm{t}\bar{\mathrm{t}}} ) $ (upper left), $ p_{\mathrm{T}}(\mathrm{t}/\bar{\mathrm{t}}) $ (upper right), and $ \cos\varphi $ (lower) distributions of the combined signal model (POWHEGv2$+$PYTHIA-8${+}\eta$t, labeled PH$+$P8${+}\eta$t) in the full phase space comparing the modeling of the data by MC simulation when not including $\eta$t contributions (purple dotted line in the upper panel under each plot), or no $ p_{\mathrm{T}}(\mathrm{t}/\bar{\mathrm{t}}) $ reweighting is applied (gray dashed line in the upper panel), or neither of those (red dashed-dotted line in upper panel). The lower panel under each plot compares the data to POWHEGv2$+$HERWIG++ (blue dashed line, labeled PH$+$HPP${+}\eta$t), to MG5_MC@NLO-FxFx$+$PYTHIA-8 (purple dashed-dotted line), and finally to the nominal MC including $\eta$t contributions and $ p_{\mathrm{T}}(\mathrm{t}/\bar{\mathrm{t}}) $ reweighting (orange solid line, labeled PH$+$P8${+}\eta$t). The hashed uncertainty bands correspond to the pre-fit systematic uncertainties and includes the statistical uncertainty of the data as well. The label ``$ p_{\mathrm{T}} $ rew.'' in the legend refers to the $ p_{\mathrm{T}} $ reweighting procedure (detailed in Section 7) used to reweight the $ \mathrm{t} \bar{\mathrm{t}} $ sample to NNLO in QCD.

png pdf
Figure 4:
Reconstruction-level distributions of $ \cos\varphi $ (left) and $ p_{\mathrm{T}}(\mathrm{t}/\bar{\mathrm{t}}) $ (right) requiring 345 $ < m({\mathrm{t}\bar{\mathrm{t}}} ) < $ 400 GeV and $ \beta_z({\mathrm{t}\bar{\mathrm{t}}} ) < $ 0.9. The lower panels on each figure show the same model comparison done in Fig. 3. The hashed uncertainty bands correspond to the pre-fit systematic uncertainties and includes the statistical uncertainty of the data as well. The label ``$ p_{\mathrm{T}} $ rew.'' in the legend refers to the $ p_{\mathrm{T}} $ reweighting procedure (detailed in Section 7) used to reweight the $ \mathrm{t} \bar{\mathrm{t}} $ sample to NNLO in QCD.

png pdf
Figure 4-a:
Reconstruction-level distributions of $ \cos\varphi $ (left) and $ p_{\mathrm{T}}(\mathrm{t}/\bar{\mathrm{t}}) $ (right) requiring 345 $ < m({\mathrm{t}\bar{\mathrm{t}}} ) < $ 400 GeV and $ \beta_z({\mathrm{t}\bar{\mathrm{t}}} ) < $ 0.9. The lower panels on each figure show the same model comparison done in Fig. 3. The hashed uncertainty bands correspond to the pre-fit systematic uncertainties and includes the statistical uncertainty of the data as well. The label ``$ p_{\mathrm{T}} $ rew.'' in the legend refers to the $ p_{\mathrm{T}} $ reweighting procedure (detailed in Section 7) used to reweight the $ \mathrm{t} \bar{\mathrm{t}} $ sample to NNLO in QCD.

png pdf
Figure 4-b:
Reconstruction-level distributions of $ \cos\varphi $ (left) and $ p_{\mathrm{T}}(\mathrm{t}/\bar{\mathrm{t}}) $ (right) requiring 345 $ < m({\mathrm{t}\bar{\mathrm{t}}} ) < $ 400 GeV and $ \beta_z({\mathrm{t}\bar{\mathrm{t}}} ) < $ 0.9. The lower panels on each figure show the same model comparison done in Fig. 3. The hashed uncertainty bands correspond to the pre-fit systematic uncertainties and includes the statistical uncertainty of the data as well. The label ``$ p_{\mathrm{T}} $ rew.'' in the legend refers to the $ p_{\mathrm{T}} $ reweighting procedure (detailed in Section 7) used to reweight the $ \mathrm{t} \bar{\mathrm{t}} $ sample to NNLO in QCD.

png pdf
Figure 5:
Reconstruction-level distribution of the combined $ {\mathrm{t}\bar{\mathrm{t}}} {+} {\eta}$t signal model in mixtures of the noSC combined signal sample. Template variations as a function of $ \cos\varphi $ requiring an $ m({\mathrm{t}\bar{\mathrm{t}}} ) $ of 345 $ < m({\mathrm{t}\bar{\mathrm{t}}} ) < $ 400 GeV and $ \beta_z({\mathrm{t}\bar{\mathrm{t}}} ) < $ 0.9 are shown. The $ \mathrm{t} \bar{\mathrm{t}} $ noSC and SC mixtures ranging from $ -100% $ to $ +100% $ noSC are shown on the left. The $\eta$t noSC and SC mixtures ranging from zero noSC to $ +100% $ noSC are shown on the right.

png pdf
Figure 5-a:
Reconstruction-level distribution of the combined $ {\mathrm{t}\bar{\mathrm{t}}} {+} {\eta}$t signal model in mixtures of the noSC combined signal sample. Template variations as a function of $ \cos\varphi $ requiring an $ m({\mathrm{t}\bar{\mathrm{t}}} ) $ of 345 $ < m({\mathrm{t}\bar{\mathrm{t}}} ) < $ 400 GeV and $ \beta_z({\mathrm{t}\bar{\mathrm{t}}} ) < $ 0.9 are shown. The $ \mathrm{t} \bar{\mathrm{t}} $ noSC and SC mixtures ranging from $ -100% $ to $ +100% $ noSC are shown on the left. The $\eta$t noSC and SC mixtures ranging from zero noSC to $ +100% $ noSC are shown on the right.

png pdf
Figure 5-b:
Reconstruction-level distribution of the combined $ {\mathrm{t}\bar{\mathrm{t}}} {+} {\eta}$t signal model in mixtures of the noSC combined signal sample. Template variations as a function of $ \cos\varphi $ requiring an $ m({\mathrm{t}\bar{\mathrm{t}}} ) $ of 345 $ < m({\mathrm{t}\bar{\mathrm{t}}} ) < $ 400 GeV and $ \beta_z({\mathrm{t}\bar{\mathrm{t}}} ) < $ 0.9 are shown. The $ \mathrm{t} \bar{\mathrm{t}} $ noSC and SC mixtures ranging from $ -100% $ to $ +100% $ noSC are shown on the left. The $\eta$t noSC and SC mixtures ranging from zero noSC to $ +100% $ noSC are shown on the right.

png pdf
Figure 6:
The post-fit detector-level distribution of $ \cos\varphi $ requiring 345 $ < m({\mathrm{t}\bar{\mathrm{t}}} ) < $ 400 GeV, $ \beta_z({\mathrm{t}\bar{\mathrm{t}}} ) < $ 0.9, and including $\eta$t in the fit, is shown on the left. The hashed band corresponds to the post-fit uncertainty and includes the statistical uncertainty of the data added in quadrature. The nominal combined signal model, POWHEGv2$+$PYTHIA-8${+}\eta$t, is labeled as PH$+$P8${+}\eta$t. The fitted noSC and SC mixture template for the combined signal model in the $ \cos\varphi $ distribution is shown on the right.

png pdf
Figure 6-a:
The post-fit detector-level distribution of $ \cos\varphi $ requiring 345 $ < m({\mathrm{t}\bar{\mathrm{t}}} ) < $ 400 GeV, $ \beta_z({\mathrm{t}\bar{\mathrm{t}}} ) < $ 0.9, and including $\eta$t in the fit, is shown on the left. The hashed band corresponds to the post-fit uncertainty and includes the statistical uncertainty of the data added in quadrature. The nominal combined signal model, POWHEGv2$+$PYTHIA-8${+}\eta$t, is labeled as PH$+$P8${+}\eta$t. The fitted noSC and SC mixture template for the combined signal model in the $ \cos\varphi $ distribution is shown on the right.

png pdf
Figure 6-b:
The post-fit detector-level distribution of $ \cos\varphi $ requiring 345 $ < m({\mathrm{t}\bar{\mathrm{t}}} ) < $ 400 GeV, $ \beta_z({\mathrm{t}\bar{\mathrm{t}}} ) < $ 0.9, and including $\eta$t in the fit, is shown on the left. The hashed band corresponds to the post-fit uncertainty and includes the statistical uncertainty of the data added in quadrature. The nominal combined signal model, POWHEGv2$+$PYTHIA-8${+}\eta$t, is labeled as PH$+$P8${+}\eta$t. The fitted noSC and SC mixture template for the combined signal model in the $ \cos\varphi $ distribution is shown on the right.

png pdf
Figure 7:
Result of the scan of the quantity $ -2\Delta\ln L $ from a profile likelihood fit as a function of the parameter of interest $ D $, when including (left) or excluding (right) the $\eta$t contribution. Both results are at parton level and the relevant phase space is indicated in the figures itself. The region where the $ \mathrm{t} \bar{\mathrm{t}} $ pairs become separable and not entangled ($ D > -1/ $ 3) is indicated by the shaded area.

png pdf
Figure 7-a:
Result of the scan of the quantity $ -2\Delta\ln L $ from a profile likelihood fit as a function of the parameter of interest $ D $, when including (left) or excluding (right) the $\eta$t contribution. Both results are at parton level and the relevant phase space is indicated in the figures itself. The region where the $ \mathrm{t} \bar{\mathrm{t}} $ pairs become separable and not entangled ($ D > -1/ $ 3) is indicated by the shaded area.

png pdf
Figure 7-b:
Result of the scan of the quantity $ -2\Delta\ln L $ from a profile likelihood fit as a function of the parameter of interest $ D $, when including (left) or excluding (right) the $\eta$t contribution. Both results are at parton level and the relevant phase space is indicated in the figures itself. The region where the $ \mathrm{t} \bar{\mathrm{t}} $ pairs become separable and not entangled ($ D > -1/ $ 3) is indicated by the shaded area.

png pdf
Figure 9:
Summary of the measurement of the entanglement proxy $ D $ in data (black filled or open point) compared with MC predictions including (solid line) or not including (dashed line) contributions from the $\eta$t state. The legend denotes MC predictions without the $\eta$t state with a slash through $\eta$t. Inner error bars represent the statistical uncertainty, while the outer error bars represent the total uncertainty for data. The statistical uncertainty in the MC predictions is denoted by the light shaded region and the total uncertainty, including scale and PDF uncertainties, is represented by the darker shaded region. The boundary for entanglement is indicated by the shaded region at $ D=-1/ $ 3.
Tables

png pdf
Table 1:
The expected number of events from signal and background contributions after event selection, compared with the number observed in data. The `` $ \mathrm{t} \bar{\mathrm{t}} $ other'' category includes mis-identified semileptonic and fully hadronic decays, and hadronic decays of tau leptons of the $ \mathrm{t} \bar{\mathrm{t}} $ pairs. The uncertainties include only the MC statistical uncertainties. The ``Only $\eta$t '' contribution is not added to the total MC prediction since it is included in the combined ($ {\mathrm{t}\bar{\mathrm{t}}} {+} {\eta}$t) signal contribution.

png pdf
Table 2:
An overview of the systematic uncertainties and their impact on the yields and shape of the $ \cos\varphi $ distribution. The uncertainties are categorized by their type where ``norm.'' refers to normalization uncertainties modeled with a log-normal prior and ``shape'' refers to shape uncertainties. The impact on the yields and shape of the $ \cos\varphi $ distribution is given in percent where the difference in the shape of the $ \cos\varphi $ distribution is determined from the forward-backward asymmetry. The JES systematics are split as in Ref. [70] with the addition of ``JES: Relative Balance'' accounting for the difference in modeling of missing transverse momentum.

png pdf
Table 3:
The number of predicted and observed events in the selected phase space, before the fit to the data (pre-fit) and with their best fit normalizations (post-fit). The uncertainties in the pre-fit and post-fit yields reflect total uncertanties but do not include correlations. The ``Only $\eta$t '' contribution is not added to the total MC prediction since it is included in the combined signal contribution.
Summary
Entanglement is an intrinsic property of quantum mechanics and its measurement utilizes elementary particles to test quantum mechanics. Recently, the ATLAS Collaboration reported the first observation of entanglement in the top quark-antiquark ($ \mathrm{t} \bar{\mathrm{t}} $) system [21] wih a result indicating slight deviation from MC simulation. The measurement of the entanglement of $ \mathrm{t} \bar{\mathrm{t}} $ pairs performed with CMS data exploits the spin correlation variable $ D $, which at the $ \mathrm{t} \bar{\mathrm{t}} $ production threshold, and in absence of BSM contributions, provides access to the full spin correlation information. This result contrasts with the ATLAS Collaboration's findings in several key ways. We directly measure entanglement at the parton level, whereas ATLAS reports their observable at the particle level. Additionally, our analysis is the first to consider non-relativistic bound-state effects in the production threshold by including the ground state of toponium, $\eta$t, which were not included in the ATLAS result. Unlike ATLAS, the CMS result is derived from a binned likelihood fit to extract the entanglement proxy, rather than using a calibration curve. The $ D $ variable represents an entanglement proxy, where less than $ -1/ $ 3 signals the presence of entanglement. This proxy is measured using events containing two oppositely charged electrons or muons produced in pp collisions at a center-of-mass energy of 13 TeV. The modeling of the data is improved when including the additional predicted contribution of the ground state of toponium, $\eta$t, and is utilized in a combined signal model of $ {\mathrm{t}\bar{\mathrm{t}}} {+} {\eta}$t in the measurement. The extent to which $ \mathrm{t} \bar{\mathrm{t}} $ pairs are entangled is measured by means of a binned profile likelihood fit of the parameter of interest $ D $ directly from the distribution of $ \cos\varphi $, where $ \varphi $ is the angle between the two charged decay leptons in their respective parent top quark rest frames. In the most sensitive kinematic phase space of the relative velocity between the lab and $ \mathrm{t} \bar{\mathrm{t}} $ reference frames $ \beta_z({\mathrm{t}\bar{\mathrm{t}}} ) < $ 0.9, and of the invariant mass of the top quark pair 345 $ < m({\mathrm{t}\bar{\mathrm{t}}} ) < $ 400 GeV, the fit of the $ \cos\varphi $ distribution yields an observed value of $ D=-$0.480$^{+0.026}_{-0.029} $ and an expected value of $ D=-$0.467$ ^{+0.026}_{-0.029} $ including the predicted $\eta$t state. This result has an observed (expected) significance of 5.1 (4.7) $ \sigma $, corresponding to the observation of top quark entanglement. The measured value of $ D $ is in good agreement with the MC modeling in this phase space when including the expected $\eta$t bound state contribution.
References
1 S. J. Freedman and J. F. Clauser Experimental test of local hidden-variable theories PRL 28 (1972) 938
2 A. Aspect, J. Dalibard, and G. Roger Experimental test of Bell's inequalities using time-varying analyzers PRL 49 (1982) 1804
3 A. Vaziri, G. Weihs, and A. Zeilinger Experimental two-photon, three-dimensional entanglement for quantum communication PRL 89 (2002) 240401
4 A. Aspect, P. Grangier, and G. Roger Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: A new violation of Bell's inequalities PRL 49 (1982) 91
5 B. Hensen et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres Nature 526 (2015) 682 1508.05949
6 M. Giustina et al. Significant-loophole-free test of Bell's theorem with entangled photons PRL 115 (2015) 250401 1511.03190
7 W. Pfaff et al. Demonstration of entanglement-by-measurement of solid-state qubits Nature Phys. 9 (2012) 29
8 J. S. Bell On the Einstein-Podolsky-Rosen paradox Phys. Phys. Fiz. 1 (1964) 195
9 M. A. Rowe et al. Experimental violation of a Bell's inequality with efficient detection Nature 409 (2001) 791
10 M. Ansmann et al. Violation of Bell's inequality in Josephson phase qubits Nature 461 (2009) 504
11 A. Einstein, B. Podolsky, and N. Rosen Can quantum-mechanical description of physical reality be considered complete? PR 47 (1935) 777
12 A. J. Barr, P. Caban, and J. Rembieli \'n ski Bell-type inequalities for systems of relativistic vector bosons Quantum 7 (2023) 1070 2204.11063
13 A. J. Barr Testing Bell inequalities in Higgs boson decays PLB 825 (2022) 136866 2106.01377
14 J. A. Aguilar-Saavedra Laboratory-frame tests of quantum entanglement in $ {\mathrm{H}\to\mathrm{W}\mathrm{W}} $ PRD 107 (2023) 076016 2209.14033
15 J. A. Aguilar-Saavedra, A. Bernal, J. A. Casas, and J. M. Moreno Testing entanglement and Bell inequalities in $ {\mathrm{H}\to\mathrm{Z}\mathrm{Z}} $ PRD 107 (2023) 016012 2209.13441
16 M. M. Altakach et al. Quantum information and $ {CP} $ measurement in $ {\mathrm{H}\to\tau^{+}\tau^{-}} $ at future lepton colliders PRD 107 (2023) 093002 2211.10513
17 K. Cheng, T. Han, and M. Low Optimizing fictitious states for Bell inequality violation in bipartite qubit systems 2311.09166
18 T. Han, M. Low, and T. A. Wu Quantum entanglement and Bell inequality violation in semi-leptonic top decays 2310.17696
19 Z. Dong, D. Gon ç alves, K. Kong, and A. Navarro When the machine chimes the Bell: Entanglement and Bell inequalities with boosted $ \mathrm{t} \overline{\mathrm{t}} $ 2305.07075
20 M. Varma and O. K. Baker Quantum entanglement in top quark pair production Nucl. Phys. A 1042 (2024) 122795 2306.07788
21 A. J. Barr et al. Quantum entanglement and Bell inequality violation at colliders Prog. Part. Nucl. Phys. 139 (2024) 104134 2402.07972
22 M. Fabbrichesi, R. Floreanini, E. Gabrielli, and L. Marzola Bell inequalities and quantum entanglement in weak gauge boson production at the LHC and future colliders EPJC 83 (2023) 823 2302.00683
23 K. Cheng, T. Han, and M. Low Optimizing entanglement and Bell inequality violation in top anti-top events 2407.01672
24 S. A. Abel, M. Dittmar, and H. Dreiner Testing locality at colliders via Bell's inequality? PLB 280 (1992) 304
25 M. Fabbrichesi, R. Floreanini, E. Gabrielli, and L. Marzola Bell inequality is violated \\ in $ {\mathrm{B}^0} {\rightarrow} \mathrm{J}/\psi $\HepParticleResonanceFull$ \mathrm{K} $\ast8920 decays PRD 109 (2024) L031104 2305.04982
26 ATLAS Collaboration Observation of quantum entanglement in top-quark pairs using the ATLAS detector Submitted to Nature, 2023 2311.07288
27 Y. Afik and J. R. M. de Nova Entanglement and quantum tomography with top quarks at the LHC Eur. Phys. J. Plus 136 (2021) 907 2003.02280
28 M. Fabbrichesi, R. Floreanini, and G. Panizzo Testing Bell inequalities at the LHC with top-quark pairs PRL 127 (2021) 161801 2102.11883
29 C. Severi, C. Degli Esposti Boschi, F. Maltoni, and M. Sioli Quantum tops at the LHC: from entanglement to Bell inequalities EPJC 82 (2022) 285 2110.10112
30 R. Iengo Sommerfeld enhancement: general results from field theory diagrams JHEP 05 (2009) 024
31 R. Mammen Abraham and D. Gon ç alves Boosting new physics searches in $ {{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}} $ and $ {\mathrm{t}\mathrm{Z}\mathrm{j}} $ production with angular moments EPJC 83 (2023) 965 2208.05986
32 D. Gon ç alves, J. H. Kim, K. Kong, and Y. Wu Direct Higgs-top $ {CP} $-phase measurement with $ {{\mathrm{t}\overline{\mathrm{t}}} \mathrm{h}} $ at the 14 TeV LHC and 100 TeV FCC JHEP 01 (2022) 158 2108.01083
33 R. Aoude, E. Madge, F. Maltoni, and L. Mantani Quantum SMEFT tomography: Top quark pair production at the LHC PRD 106 (2022) 055007 2203.05619
34 H. Baer et al. Top squarks from the landscape at high luminosity LHC PRD 108 (2023) 075027 2307.08067
35 C. Severi and E. Vryonidou Quantum entanglement and top spin correlations in SMEFT at higher orders JHEP 01 (2023) 148 2210.09330
36 M. Fabbrichesi, R. Floreanini, and E. Gabrielli Constraining new physics in entangled two-qubit systems: top-quark, tau-lepton and photon pairs EPJC 83 (2023) 162 2208.11723
37 F. Maltoni, C. Severi, S. Tentori, and E. Vryonidou Quantum detection of new physics in top-quark pair production at the LHC JHEP 03 (2024) 099 2401.08751
38 F. Maltoni, C. Severi, S. Tentori, and E. Vryonidou Quantum tops at circular lepton colliders 2404.08049
39 Particle Data Group , R. L. Workman et al. Review of particle physics Prog. Theor. Exp. Phys. 2022 (2022) 083C01
40 G. Mahlon and S. J. Parke Spin correlation effects in top quark pair production at the LHC PRD 81 (2010) 074024 1001.3422
41 CMS Collaboration Measurement of the top quark polarization and $ \mathrm{t} \overline{\mathrm{t}} $ spin correlations using dilepton final states in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PRD 100 (2019) 072002 CMS-TOP-18-006
1907.03729
42 M. Czakon and A. Mitov top++: a program for the calculation of the top-pair cross-section at hadron colliders Comput. Phys. Commun. 185 (2014) 2930 1112.5675
43 M. Czakon and A. Mitov NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels JHEP 12 (2012) 054 1207.0236
44 M. Czakon and A. Mitov NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction JHEP 01 (2013) 080 1210.6832
45 M. Czakon, P. Fiedler, and A. Mitov Total top-quark pair-production cross section at hadron colliders through $ \mathcal{O}({\alpha_\mathrm{S}}^4) $ PRL 110 (2013) 252004 1303.6254
46 B. Fuks, K. Hagiwara, K. Ma, and Y.-J. Zheng Signatures of toponium formation in LHC run 2 data PRD 104 (2021) 034023 2102.11281
47 N. Brambilla, A. Pineda, J. Soto, and A. Vairo Potential NRQCD: an effective theory for heavy quarkonium NPB 566 (2000) 275 hep-ph/9907240
48 CMS Collaboration Differential cross section measurements for the production of top quark pairs and of additional jets using dilepton events from $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 13 TeV Submitted to JHEP, 2024 CMS-TOP-20-006
2402.08486
49 CMS Collaboration Measurements of $ \mathrm{t} \overline{\mathrm{t}} $ differential cross sections in proton-proton collisions at $ \sqrt{s}= $ 13 TeV using events containing two leptons JHEP 02 (2019) 149 CMS-TOP-17-014
1811.06625
50 CMS Collaboration Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV PRD 95 (2017) 092001 CMS-TOP-16-008
1610.04191
51 ATLAS Collaboration Measurements of $ \mathrm{t} \overline{\mathrm{t}} $ differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 13 TeV using the ATLAS detector PRD 98 (2018) 012003 1801.02052
52 ATLAS Collaboration Measurement of the $ \mathrm{t} \overline{\mathrm{t}} $ production cross-section in the lepton+jets channel at $ \sqrt{s}= $ 13 TeV with the ATLAS experiment PLB 810 (2020) 135797 2006.13076
53 Y. Kiyo et al. Top-quark pair production near threshold at LHC EPJC 60 (2009) 375 0812.0919
54 W.-L. Ju et al. Top quark pair production near threshold: single/double distributions and mass determination JHEP 06 (2020) 158 2004.03088
55 Y. Sumino and H. Yokoya Bound-state effects on kinematical distributions of top quarks at hadron colliders JHEP 09 (2010) 034 1007.0075
56 V. S. Fadin, V. A. Khoze, and T. Sjöstrand On the threshold behaviour of heavy top production Z. Phys. C 48 (1990) 613
57 M. Beneke et al. Next-to-leading power endpoint factorization and resummation for off-diagonal `gluon' thrust JHEP 07 (2022) 144 2205.04479
58 G. Mahlon and S. J. Parke Angular correlations in top quark pair production and decay at hadron colliders PRD 53 (1996) 4886 hep-ph/9512264
59 W. Bernreuther, D. Heisler, and Z.-G. Si A set of top quark spin correlation and polarization observables for the LHC: Standard model predictions and new physics contributions JHEP 12 (2015) 026 1508.05271
60 A. Brandenburg, Z. G. Si, and P. Uwer QCD-corrected spin analysing power of jets in decays of polarized top quarks PLB 539 (2002) 235 hep-ph/0205023
61 CDF Collaboration Measurement of $ \mathrm{t} \overline{\mathrm{t}} $ spin correlation in $ {\mathrm{p}\overline{\mathrm{p}}} $ collisions using the CDF II detector at the Tevatron PRD 83 (2011) 031104 1012.3093
62 A. Peres Separability criterion for density matrices PRL 77 (1996) 1413 quant-ph/9604005
63 M. Horodecki, P. Horodecki, and R. Horodecki On the necessary and sufficient conditions for separability of mixed quantum states Phys. Lett. A 223 (1996) 1 quant-ph/9605038
64 M. Baumgart and B. Tweedie A new twist on top quark spin correlations JHEP 03 (2013) 117 1212.4888
65 R. Horodecki, P. Horodecki, and M. Horodecki Violating Bell inequality by mixed spin-1/2 states: necessary and sufficient condition Phys. Lett. A 200 (1995) 340
66 J. A. Aguilar-Saavedra and J. A. Casas Improved tests of entanglement and Bell inequalities with LHC tops EPJC 82 (2022) 666 2205.00542
67 CMS Collaboration Projection of the top quark spin correlation measurement and search for top squark pair production at the HL-LHC CMS Physics Analysis Summary, 2022
CMS-PAS-FTR-18-034
CMS-PAS-FTR-18-034
68 CMS Collaboration The CMS statistical analysis and combination tool: combine Submitted to Comput. Softw. Big Sci, 2024 CMS-CAT-23-001
2404.06614
69 W. Verkerke and D. Kirkby The RooFit toolkit for data modeling in Proc. 13th International Conference on Computing in High Energy and Nuclear Physics (CHEP ): La Jolla CA, 2003
[eConf C0303241 MOLT007]
physics/0306116
70 L. Moneta et al. The RooStats project in Proc. 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT ): Jaipur, India, 2010
[PoS (ACAT) 057]
1009.1003
71 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
72 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
73 CMS Collaboration Development of the CMS detector for the CERN LHC Run 3 JINST 19 (2024) P05064 CMS-PRF-21-001
2309.05466
74 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
75 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
76 M. Cacciari, G. P. Salam, and G. Soyez FASTJET user manual EPJC 72 (2012) 1896 1111.6097
77 CMS Collaboration Pileup mitigation at CMS in 13 TeV data JINST 15 (2020) P09018 CMS-JME-18-001
2003.00503
78 CMS Collaboration Jet energy scale and resolution in the CMS experiment in $ {\mathrm{p}\mathrm{p}} $ collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
79 CMS Collaboration Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s}= $ 13 TeV using the CMS detector JINST 14 (2019) P07004 CMS-JME-17-001
1903.06078
80 CMS Collaboration Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s}= $ 8 TeV JINST 10 (2015) P06005 CMS-EGM-13-001
1502.02701
81 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) P05014 CMS-EGM-17-001
2012.06888
82 CMS Collaboration ECAL 2016 refined calibration and \mboxRun 2 summary plots CMS Detector Performance Note CMS-DP-2020-021, 2020
CDS
83 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
84 S. Frixione, G. Ridolfi, and P. Nason A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction JHEP 09 (2007) 126 0707.3088
85 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
86 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
87 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG box JHEP 06 (2010) 043 1002.2581
88 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
89 P. Artoisenet, R. Frederix, O. Mattelaer, and R. Rietkerk Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations JHEP 03 (2013) 015 1212.3460
90 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
91 NNPDF Collaboration Parton distributions for the LHC run II JHEP 04 (2015) 040 1410.8849
92 M. Czakon, D. Heymes, and A. Mitov fastNLO tables for NNLO top-quark pair differential distributions 1704.08551
93 M. Czakon, D. Heymes, and A. Mitov High-precision differential predictions for top-quark pairs at the LHC PRL 116 (2016) 082003 1511.00549
94 M. Czakon, D. Heymes, and A. Mitov Dynamical scales for multi-TeV top-pair production at the LHC JHEP 04 (2017) 071 1606.03350
95 CMS Collaboration Measurement of the top quark Yukawa coupling from $ \mathrm{t} \overline{\mathrm{t}} $ kinematic distributions in the dilepton final state in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PRD 102 (2020) 092013 CMS-TOP-19-008
2009.07123
96 T. Sjöstrand et al. An introduction to PYTHIA8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
97 CMS Collaboration Investigations of the impact of the parton shower tuning in PYTHIA8 in the modelling of $ \mathrm{t} \overline{\mathrm{t}} $ at $ \sqrt{s}= $ 8 and 13 TeV CMS Physics Analysis Summary, 2016
CMS-PAS-TOP-16-021
CMS-PAS-TOP-16-021
98 CMS Collaboration Event generator tunes obtained from underlying event and multiparton scattering measurements EPJC 76 (2016) 155 CMS-GEN-14-001
1512.00815
99 M. Bähr et al. HERWIG++ physics and manual EPJC 58 (2008) 639 0803.0883
100 S. Gieseke, C. Röhr, and A. Siodmok Colour reconnections in HERWIG++ EPJC 72 (2012) 2225 1206.0041
101 GEANT4 Collaboration GEANT 4--a simulation toolkit NIM A 506 (2003) 250
102 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in $ {\mathrm{p}\mathrm{p}} $ collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
103 CMS Collaboration Measurement of the $ \mathrm{t} \overline{\mathrm{t}} $ production cross section in the dilepton channel in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 7 TeV JHEP 11 (2012) 067 CMS-TOP-11-005
1208.2671
104 CMS Collaboration Measurement of the differential cross section for top quark pair production in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s} = $ 8 TeV EPJC 75 (2015) 542 CMS-TOP-12-028
1505.04480
105 CMS Collaboration Measurement of the top quark pair production cross section in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PRL 116 (2016) 052002 CMS-TOP-15-003
1510.05302
106 CMS Collaboration Measurement of the Drell-Yan cross section in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 7 TeV JHEP 10 (2011) 007 CMS-EWK-10-007
1108.0566
107 CMS Collaboration Measurement of the inelastic proton-proton cross section at $ \sqrt{s}= $ 13 TeV JHEP 07 (2018) 161 CMS-FSQ-15-005
1802.02613
108 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s}= $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
109 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
110 J. R. Christiansen and P. Z. Skands String formation beyond leading colour JHEP 08 (2015) 003 1505.01681
111 S. Argyropoulos and T. Sjöstrand Effects of color reconnection on $ \mathrm{t} \overline{\mathrm{t}} $ final states at the LHC JHEP 11 (2014) 043 1407.6653
112 M. G. Bowler $ {e^+e^-} $ production of heavy quarks in the string model Z. Phys. C 11 (1981) 169
113 B. Andersson, G. Gustafson, G. Ingelman, and T. Sjöstrand Parton fragmentation and string dynamics Physics Reports 97 (1983) 31
114 CMS Collaboration Measurement of the shape of the b quark fragmentation function using charmed mesons produced inside b jets from $ \mathrm{t} \overline{\mathrm{t}} $ pair decays CMS Physics Analysis Summary, 2021
CMS-PAS-TOP-18-012
CMS-PAS-TOP-18-012
115 CMS Collaboration Review of top quark mass measurements in CMS Submitted to Phys. Rept., 2024 CMS-TOP-23-003
2403.01313
116 A. Martin Toponium physics in Quarks, Leptons, and Their Constituents, A. Zichichi, ed., Springer, 1988
link
117 CMS Collaboration HEPData record for this analysis link
Compact Muon Solenoid
LHC, CERN