CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-HIG-23-015
Differential cross section measurement of $ \mathrm{t\bar{t}H} $ production in proton-proton collisions at $ \sqrt{s}= $ 13 TeV in CMS
Abstract: The production of a Higgs (H) boson in association with two top quarks ($ \mathrm{t\bar{t}H} $) in final states containing multiple electrons, muons, or hadronically decaying tau leptons is measured using proton-proton collisions recorded at a center-of-mass energy of 13 TeV with the CMS detector. The analyzed data correspond to an integrated luminosity of 138 fb$^{-1}$. The analysis aims at events that contain $ \mathrm{H \rightarrow WW} $ or $ \mathrm{H \rightarrow} \tau \tau $ decays and the top quarks decay into final states with leptons or hadrons. The signal sensitivity is maximized by partitioning the selected events depending on the lepton multiplicity into three exclusive event categories: 2$ \ell $ ``same sign'' + 0 hadronic tau leptons, 2$ \ell $ ``same sign'' + 1 hadronic tau lepton, and 3$ \ell $ ``same sign'' + 0 hadronic tau leptons, where $ \ell $ denotes charged light leptons (e, $ \mu $). Differential production rates are measured as a function of the H boson transverse momentum and of the mass of the $ \mathrm{t\bar{t}H} $ system and found to be compatible with predictions from the standard model of particle physics. This result is the first differential measurement of $ \mathrm{t\bar{t}H} $ production to date by the CMS Collaboration.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Feynman diagrams at LO for $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H} $ production.

png pdf
Figure 1-a:
Feynman diagrams at LO for $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H} $ production.

png pdf
Figure 1-b:
Feynman diagrams at LO for $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H} $ production.

png pdf
Figure 2:
Feynman diagrams at LO for $ \mathrm{t}\mathrm{H} $ production via the $ t $-channel ($ \mathrm{t}\mathrm{H}\mathrm{q} $ in upper left and upper right) and $ s $-channel (middle ) processes, and for associated production of a H boson with a single top quark and a W boson ($ \mathrm{t}\mathrm{H}\mathrm{W} $ in lower left and lower right). The $ \mathrm{t}\mathrm{H}\mathrm{q} $ and $ \mathrm{t}\mathrm{H}\mathrm{W} $ production processes are shown for the five-flavour scheme described in Section 3.

png pdf
Figure 2-a:
Feynman diagrams at LO for $ \mathrm{t}\mathrm{H} $ production via the $ t $-channel ($ \mathrm{t}\mathrm{H}\mathrm{q} $ in upper left and upper right) and $ s $-channel (middle ) processes, and for associated production of a H boson with a single top quark and a W boson ($ \mathrm{t}\mathrm{H}\mathrm{W} $ in lower left and lower right). The $ \mathrm{t}\mathrm{H}\mathrm{q} $ and $ \mathrm{t}\mathrm{H}\mathrm{W} $ production processes are shown for the five-flavour scheme described in Section 3.

png pdf
Figure 2-b:
Feynman diagrams at LO for $ \mathrm{t}\mathrm{H} $ production via the $ t $-channel ($ \mathrm{t}\mathrm{H}\mathrm{q} $ in upper left and upper right) and $ s $-channel (middle ) processes, and for associated production of a H boson with a single top quark and a W boson ($ \mathrm{t}\mathrm{H}\mathrm{W} $ in lower left and lower right). The $ \mathrm{t}\mathrm{H}\mathrm{q} $ and $ \mathrm{t}\mathrm{H}\mathrm{W} $ production processes are shown for the five-flavour scheme described in Section 3.

png pdf
Figure 2-c:
Feynman diagrams at LO for $ \mathrm{t}\mathrm{H} $ production via the $ t $-channel ($ \mathrm{t}\mathrm{H}\mathrm{q} $ in upper left and upper right) and $ s $-channel (middle ) processes, and for associated production of a H boson with a single top quark and a W boson ($ \mathrm{t}\mathrm{H}\mathrm{W} $ in lower left and lower right). The $ \mathrm{t}\mathrm{H}\mathrm{q} $ and $ \mathrm{t}\mathrm{H}\mathrm{W} $ production processes are shown for the five-flavour scheme described in Section 3.

png pdf
Figure 2-d:
Feynman diagrams at LO for $ \mathrm{t}\mathrm{H} $ production via the $ t $-channel ($ \mathrm{t}\mathrm{H}\mathrm{q} $ in upper left and upper right) and $ s $-channel (middle ) processes, and for associated production of a H boson with a single top quark and a W boson ($ \mathrm{t}\mathrm{H}\mathrm{W} $ in lower left and lower right). The $ \mathrm{t}\mathrm{H}\mathrm{q} $ and $ \mathrm{t}\mathrm{H}\mathrm{W} $ production processes are shown for the five-flavour scheme described in Section 3.

png pdf
Figure 2-e:
Feynman diagrams at LO for $ \mathrm{t}\mathrm{H} $ production via the $ t $-channel ($ \mathrm{t}\mathrm{H}\mathrm{q} $ in upper left and upper right) and $ s $-channel (middle ) processes, and for associated production of a H boson with a single top quark and a W boson ($ \mathrm{t}\mathrm{H}\mathrm{W} $ in lower left and lower right). The $ \mathrm{t}\mathrm{H}\mathrm{q} $ and $ \mathrm{t}\mathrm{H}\mathrm{W} $ production processes are shown for the five-flavour scheme described in Section 3.

png pdf
Figure 3:
The distribution of the number of jets in the 3$ \ell $ and 4$ \ell $ CRs. In the 3$ \ell $ CR, bins one to four correspond to events without b jets, bins five to eight correspond to events with exactly one b jet, and bins nine to twelve correspond to events with more than one b jet. In the 4$ \ell $ CR, the first bin corresponds to events without jets, the second bin corresponds to events with more than zero jets and exactly one b jet, and the third bin corresponds to events with more than one jet and more than one b jet. The 3$ \ell $ CR is dominated by WZ background, while the 4$ \ell $ CR is dominated by ZZ.

png pdf
Figure 3-a:
The distribution of the number of jets in the 3$ \ell $ and 4$ \ell $ CRs. In the 3$ \ell $ CR, bins one to four correspond to events without b jets, bins five to eight correspond to events with exactly one b jet, and bins nine to twelve correspond to events with more than one b jet. In the 4$ \ell $ CR, the first bin corresponds to events without jets, the second bin corresponds to events with more than zero jets and exactly one b jet, and the third bin corresponds to events with more than one jet and more than one b jet. The 3$ \ell $ CR is dominated by WZ background, while the 4$ \ell $ CR is dominated by ZZ.

png pdf
Figure 3-b:
The distribution of the number of jets in the 3$ \ell $ and 4$ \ell $ CRs. In the 3$ \ell $ CR, bins one to four correspond to events without b jets, bins five to eight correspond to events with exactly one b jet, and bins nine to twelve correspond to events with more than one b jet. In the 4$ \ell $ CR, the first bin corresponds to events without jets, the second bin corresponds to events with more than zero jets and exactly one b jet, and the third bin corresponds to events with more than one jet and more than one b jet. The 3$ \ell $ CR is dominated by WZ background, while the 4$ \ell $ CR is dominated by ZZ.

png pdf
Figure 4:
Postfit distributions of the DNN discriminant for 2 $ \ell ss + 0\tau_\mathrm{h} $ (upper left), 2 $ \ell ss + 1\tau_\mathrm{h} $ (upper right) and 3 $ \ell + 0\tau_\mathrm{h} $ (bottom) categories. All nodes of the DNN classifier are shown in the plots, $ \mathrm{t}\overline{\mathrm{t}}\mathrm{W} $ and $ \mathrm{t}\overline{\mathrm{t}}\mathrm{Z} $ are the most abundant backgrounds in the $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H} $ node.

png pdf
Figure 4-a:
Postfit distributions of the DNN discriminant for 2 $ \ell ss + 0\tau_\mathrm{h} $ (upper left), 2 $ \ell ss + 1\tau_\mathrm{h} $ (upper right) and 3 $ \ell + 0\tau_\mathrm{h} $ (bottom) categories. All nodes of the DNN classifier are shown in the plots, $ \mathrm{t}\overline{\mathrm{t}}\mathrm{W} $ and $ \mathrm{t}\overline{\mathrm{t}}\mathrm{Z} $ are the most abundant backgrounds in the $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H} $ node.

png pdf
Figure 4-b:
Postfit distributions of the DNN discriminant for 2 $ \ell ss + 0\tau_\mathrm{h} $ (upper left), 2 $ \ell ss + 1\tau_\mathrm{h} $ (upper right) and 3 $ \ell + 0\tau_\mathrm{h} $ (bottom) categories. All nodes of the DNN classifier are shown in the plots, $ \mathrm{t}\overline{\mathrm{t}}\mathrm{W} $ and $ \mathrm{t}\overline{\mathrm{t}}\mathrm{Z} $ are the most abundant backgrounds in the $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H} $ node.

png pdf
Figure 4-c:
Postfit distributions of the DNN discriminant for 2 $ \ell ss + 0\tau_\mathrm{h} $ (upper left), 2 $ \ell ss + 1\tau_\mathrm{h} $ (upper right) and 3 $ \ell + 0\tau_\mathrm{h} $ (bottom) categories. All nodes of the DNN classifier are shown in the plots, $ \mathrm{t}\overline{\mathrm{t}}\mathrm{W} $ and $ \mathrm{t}\overline{\mathrm{t}}\mathrm{Z} $ are the most abundant backgrounds in the $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H} $ node.

png pdf
Figure 5:
Measured differential cross section and uncertainties as a function of the $ p_{\mathrm{T}} $ (left) and $ m_{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}} $ (right) relative to the SM. Yellow band represents the impact of the systematic uncertainties, while the azure band represents the impact of the systematic uncertainties, while the azure band represents the impacts of the statistical uncertainties.

png pdf
Figure 5-a:
Measured differential cross section and uncertainties as a function of the $ p_{\mathrm{T}} $ (left) and $ m_{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}} $ (right) relative to the SM. Yellow band represents the impact of the systematic uncertainties, while the azure band represents the impact of the systematic uncertainties, while the azure band represents the impacts of the statistical uncertainties.

png pdf
Figure 5-b:
Measured differential cross section and uncertainties as a function of the $ p_{\mathrm{T}} $ (left) and $ m_{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}} $ (right) relative to the SM. Yellow band represents the impact of the systematic uncertainties, while the azure band represents the impact of the systematic uncertainties, while the azure band represents the impacts of the statistical uncertainties.

png pdf
Figure 6:
Postfit distributions of the DNN discriminant for 2 $ \ell ss + 0\tau_\mathrm{h} $ (upper left), 2 $ \ell ss + 1\tau_\mathrm{h} $ (upper right) and 3 $ \ell + 0\tau_\mathrm{h} $ (bottom). All nodes of the DNN classifier are shown in the plots, $ \mathrm{t}\overline{\mathrm{t}}\mathrm{W} $ and $ \mathrm{t}\overline{\mathrm{t}}\mathrm{Z} $ are the most abundant backgrounds in the $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H} $ node.

png pdf
Figure 6-a:
Postfit distributions of the DNN discriminant for 2 $ \ell ss + 0\tau_\mathrm{h} $ (upper left), 2 $ \ell ss + 1\tau_\mathrm{h} $ (upper right) and 3 $ \ell + 0\tau_\mathrm{h} $ (bottom). All nodes of the DNN classifier are shown in the plots, $ \mathrm{t}\overline{\mathrm{t}}\mathrm{W} $ and $ \mathrm{t}\overline{\mathrm{t}}\mathrm{Z} $ are the most abundant backgrounds in the $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H} $ node.

png pdf
Figure 6-b:
Postfit distributions of the DNN discriminant for 2 $ \ell ss + 0\tau_\mathrm{h} $ (upper left), 2 $ \ell ss + 1\tau_\mathrm{h} $ (upper right) and 3 $ \ell + 0\tau_\mathrm{h} $ (bottom). All nodes of the DNN classifier are shown in the plots, $ \mathrm{t}\overline{\mathrm{t}}\mathrm{W} $ and $ \mathrm{t}\overline{\mathrm{t}}\mathrm{Z} $ are the most abundant backgrounds in the $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H} $ node.

png pdf
Figure 6-c:
Postfit distributions of the DNN discriminant for 2 $ \ell ss + 0\tau_\mathrm{h} $ (upper left), 2 $ \ell ss + 1\tau_\mathrm{h} $ (upper right) and 3 $ \ell + 0\tau_\mathrm{h} $ (bottom). All nodes of the DNN classifier are shown in the plots, $ \mathrm{t}\overline{\mathrm{t}}\mathrm{W} $ and $ \mathrm{t}\overline{\mathrm{t}}\mathrm{Z} $ are the most abundant backgrounds in the $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H} $ node.
Tables

png pdf
Table 1:
Event selections applied in the 2 $ \ell\mkern 1mu\mathrm{ss} + 0\tau_\mathrm{h} $, 2 $ \ell\mkern 1mu\mathrm{ss} + 1\tau_\mathrm{h} $, 3 $ \ell + 0\tau_\mathrm{h} $, and 3 $ \ell + 1\tau_\mathrm{h} $ channels. The $ p_{\mathrm{T}} $ thresholds applied to the lepton of highest, second-highest, and third-highest $ p_{\mathrm{T}} $ are separated by slashes. The symbol ``$ \text{---} $'' indicates that no requirement is applied.

png pdf
Table 2:
Input variables for the H boson $ p_{\mathrm{T}} $ DNN-based regression. A check mark (\checkmark) indicates the variable is used in a given channel, whereas a long dash ($ \text{---} $) indicates the variable is not used in that channel. The sum of the variables listed in the table corresponds to the sum of their four vectors. The list of variables has been optimized to ensure the best H boson $ p_{\mathrm{T}} $ regression per each final state. The most important variables for the classifier are the sum of the first five jets followed by the lepton variables.

png pdf
Table 3:
Binning for the H boson $ p_{\mathrm{T}} $ measurement for each channel.

png pdf
Table 4:
Binning for the $ m_{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}} $ measurement for each channel.

png pdf
Table 5:
Summary of the main systematic uncertainty sources, their type, and the correlations across the three data-taking years.

png pdf
Table 6:
Measured signal strengths and corresponding uncertainties (68% CL) in different H boson $ p_{\mathrm{T}} $ bins and $ m_{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}} $ bins.
Summary
The production of a Higgs boson in association with two top quarks ($ \mathrm{t}\overline{\mathrm{t}}\mathrm{H} $) is measured in final states containing multiple electrons, muons, or tau leptons decaying to hadrons and a neutrino, using proton-proton collisions recorded at a center-of-mass energy of 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 138 fb$ ^{-1} $. The analysis is optimised for events that contain $ \mathrm{H}\to\mathrm{W}\mathrm{W} $ or $ \mathrm{H}\to\tau\tau $ decays where each of the top quarks decays either semileptonically or exclusively to jets. The sensitivity to the signal process is maximized by including three signatures in the analysis, depending on the lepton multiplicity. The separation among the $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H} $ signal and the background processes is enhanced through machine-learning techniques. Differential production rates are measured as a function of the Higgs boson transverse momentum and of the mass of the $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H} $ system and found to be compatible with predictions from the standard model. This result is the first differential measurement of $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H} $ production to date by the CMS Collaboration.
References
1 ATLAS Collaboration Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration A portrait of the Higgs boson by the CMS experiment ten years after the discovery (July, ) 6068, 2022
Nature 60 (2022) 7
4 CMS Collaboration Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 $ \,\text {TeV} $ no.~5, 212, 2015
Eur. Phys. J. 75 (2015)
CMS-HIG-14-009
1412.8662
5 ATLAS, CDF, CMS and D0 Collaborations First combination of Tevatron and LHC measurements of the top quark mass \url https://arxiv.org/abs/1403.4427, 2014
link
6 B. A. Dobrescu and C. T. Hill Electroweak symmetry breaking via top condensation seesaw PRL 81 (1998) 2634 hep-ph/9712319
7 R. S. Chivukula, B. A. Dobrescu, H. Georgi, and C. T. Hill Top Quark Seesaw Theory of Electroweak Symmetry Breaking PR 59 (1999) 075003 hep-ph/9809470
8 D. Delepine, J. M. Gerard, and R. Gonzalez Felipe Is the standard Higgs scalar elementary? PL 372 (1996) 271 hep-ph/9512339
9 CMS Collaboration Measurement of the Higgs boson production rate in association with top quarks in final states with electrons, muons, and hadronically decaying tau leptons at $ \sqrt{s} = $ 13 TeV EPJC 81 (2021) 378 CMS-HIG-19-008
2011.03652
10 CMS Collaboration Measurement of the $ \mathrm{t\bar{t}H} $ and tH production rates in the H $ \to \mathrm{b\bar{b}} $ decay channel using proton-proton collision data at $ \sqrt{s} $ = 13 TeV \url https://arxiv.org/abs/2407.6, 2024
link
11 CMS Collaboration Search for CP violation in ttH and tH production in multilepton channels in proton-proton collisions at 13 TeV (July, ), 2023
Journal of High Energy Physics 202 (2023) 3
12 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
13 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
14 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
15 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2018
link
CMS-PAS-LUM-17-004
16 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2019
link
CMS-PAS-LUM-18-002
17 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
18 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
19 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG \textscbox JHEP 06 (2010) 043 1002.2581
20 F. Maltoni, G. Ridolfi, and M. Ubiali b-initiated processes at the LHC: a reappraisal JHEP 07 (2012) 022 1203.6393
21 F. Demartin, F. Maltoni, K. Mawatari, and M. Zaro Higgs production in association with a single top quark at the LHC EPJC 75 (2015) 267 1504.00611
22 R. Frederix and I. Tsinikos Subleading EW corrections and spin-correlation effects in $ t\bar{t}W $ multi-lepton signatures EPJC 80 (2020) 803 2004.09552
23 J. A. Dror, M. Farina, E. Salvioni, and J. Serra Strong tW Scattering at the LHC JHEP 01 (2016) 071 1511.03674
24 L. Buonocore et al. Precise Predictions for the Associated Production of a W Boson with a Top-Antitop Quark Pair at the LHC no.~23, 23, 2023
PRL 131 (2023)
2306.16311
25 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
26 J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions EPJC 53 (2008) 473 0706.2569
27 P. Artoisenet, R. Frederix, O. Mattelaer, and R. Rietkerk Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations JHEP 03 (2013) 015 1212.3460
28 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
29 NNPDF Collaboration Parton distributions for the LHC Run 2 JHEP 04 (2015) 040 1410.8849
30 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
31 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA 8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
32 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
33 J. Allison et al. Recent developments in GEANT 4 NIM A 835 (2016) 186
34 CMS Collaboration Measurements of inclusive W and Z cross sections in pp collisions at $ \sqrt{s} = $ 7 TeV JHEP 01 (2011) 080 CMS-EWK-10-002
1012.2466
35 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
36 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
37 CMS Collaboration Performance of reconstruction and identification of $ \tau $ leptons decaying to hadrons and $ \nu_{\tau} $ in pp collisions at $ \sqrt{s} = $ 13 TeV JINST 13 (2018) P10005 CMS-TAU-16-003
1809.02816
38 CMS Collaboration Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s} = $ 13 TeV using the CMS detector JINST 14 (2019) P07004 CMS-JME-17-001
1903.06078
39 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
40 CMS Collaboration Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P06005 CMS-EGM-13-001
1502.02701
41 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV no.~06, P06015, 2018
JINST 13 (2018)
CMS-MUO-16-001
1804.04528
42 K. Rehermann and B. Tweedie Efficient identification of boosted semileptonic top quarks at the LHC JHEP 03 (2011) 059 1007.2221
43 CMS Collaboration Search for new physics in same-sign dilepton events in proton-proton collisions at $ \sqrt{s} = $ 13 TeV EPJC 76 (2016) 439 CMS-SUS-15-008
1605.03171
44 CMS Performance of the DeepTau algorithm for the discrimination of taus against jets, electrons, and muons \href https://cds.cern.ch/record/2694158 Collaboration, , CMS Detector Performance Summary CMS-DP-2019-033, 2019
45 Y. Lecun Generalization and network design strategies \href http://yann.lecun.com/exdb/publis/pdf/lecun-89.pdf, Technical Report of the University of Toronto, CRG-TR-89-4
46 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
47 M. Cacciari, G. P. Salam, and G. Soyez The catchment area of jets JHEP 04 (2008) 005 0802.1188
48 CMS Collaboration Jet algorithms performance in 13 TeV data CMS Physics Analysis Summary, 2016
CMS-PAS-JME-16-003
CMS-PAS-JME-16-003
49 CMS CMS Phase 1 heavy flavour identification performance and developments \href http://cds.cern.ch/record/2263802 Collaboration, , CMS Detector Performance Summary CMS-DP-2017-013, 2017
50 CMS Collaboration Evidence for associated production of a Higgs boson with a top quark pair in final states with electrons, muons, and hadronically decaying $ \tau $ leptons at $ \sqrt{s} = $ 13 TeV JHEP 08 (2018) 066 CMS-HIG-17-018
1803.05485
51 Particle Data Group , P. A. Zyla et al. Review of particle physics Prog. Theor. Exp. Phys. 2020 (2020) 083C01
52 CMS Collaboration Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at $ \sqrt{s} = $ 13 TeV JHEP 11 (2017) 047 CMS-HIG-16-041
1706.09936
53 CMS Collaboration Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s} = $ 13 tev using the cms detector (July, ) P07004, 2019
Journal of Instrumentation 1 (2019) 4
54 CMS Collaboration Search for physics beyond the standard model in top quark production with additional leptons in the context of effective field theory (December, ), 2023
Journal of High Energy Physics 202 (2023) 3
55 CMS Collaboration Search for CP violation in $ \mathrm{t\bar{t}H} $ and tH production in multilepton channels in proton-proton collisions at $ \sqrt{s} $ = 13 TeV JHEP 07 (2023) 092 CMS-HIG-21-006
2208.02686
56 T. Adye Unfolding algorithms and applications Journal of Physics:, 2011
Conference Series 368 (2011) 012029
57 CMS Collaboration The CMS statistical analysis and combination tool: Combine Computing and Software for Big Science 8 (November, ), 2024
link
58 CMS CMS luminosity measurements for the 2016 data-taking period \href http://cds.cern.ch/record/2257069 Collaboration, , CMS Physics Analysis Summary, 2017 CMS-PAS-LUM-17-001
59 CMS CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV \href http://cds.cern.ch/record/262 Collaboration, , CMS Physics Analysis Summary, 1960 CMS-PAS-LUM-17-004
60 CMS CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV \href http://cds.cern.ch/record/2676164 Collaboration, , CMS Physics Analysis Summary, 2018 CMS-PAS-LUM-18-002
61 CMS Collaboration Measurement of the inelastic proton-proton cross section at $ \sqrt{s}= $ 13 TeV JHEP 07 (2018) 161 CMS-FSQ-15-005
1802.02613
62 D. de Florian et al. Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector CERN Report CERN-2017-002-M, 2016
link
1610.07922
63 M. Cacciari et al. The $ \mathrm{t}\overline{\mathrm{t}} $ cross-section at 1.8 TeV and 1.96 TeV: a study of the systematics due to parton densities and scale dependence JHEP 04 (2004) 068 hep-ph/0303085
64 S. Catani, D. de Florian, M. Grazzini, and P. Nason Soft gluon resummation for Higgs boson production at hadron colliders JHEP 07 (2003) 028 hep-ph/0306211
65 R. Frederix et al. Four-lepton production at hadron colliders: MadGraph-5\_aMC@NLO predictions with theoretical uncertainties JHEP 02 (2012) 099 1110.4738
66 J. Butterworth et al. PDF4LHC recommendations for LHC Run 2 JPG 43 (2016) 023001 1510.03865
Compact Muon Solenoid
LHC, CERN