CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-FTR-18-016
Search for invisible decays of a Higgs boson produced through vector boson fusion at the High-Luminosity LHC
Abstract: The search for a Higgs boson decaying to invisible particles, produced through the vector boson fusion mode in the High-Luminosity LHC proton-proton collisions at $\sqrt{s}= $ 14 TeV, is investigated based on simulation studies using Delphes, a fast-simulation package used to provide a parameterised response of the upgraded CMS detector. The event selection follows the existing CMS Run II data analysis, optimised for the High-Luminosity LHC conditions. The 95% confidence-level upper limits on the branching fraction of a standard-model-like Higgs boson decaying to invisible final states are studied with integrated luminosities of 300, 1000 and 3000 fb$^{-1}$ as a function of the thresholds applied on the transverse energy of the recoiling Higgs boson deposited in the detector.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
$ {E_{\mathrm {T}}^{\text {miss}}} $ (left) and $ {\mathrm {H}_{\mathrm {T}}^{\mathrm {miss}}} $ (right) distributions in 200 PU VBF H signal samples, comparing full simulation (Phase 2) and Delphes. On the left, the distribution in Delphes is smeared as explained in the main text to reproduce the Phase 2 distribution.

png pdf
Figure 1-a:
$ {E_{\mathrm {T}}^{\text {miss}}} $ (left) and $ {\mathrm {H}_{\mathrm {T}}^{\mathrm {miss}}} $ (right) distributions in 200 PU VBF H signal samples, comparing full simulation (Phase 2) and Delphes. On the left, the distribution in Delphes is smeared as explained in the main text to reproduce the Phase 2 distribution.

png pdf
Figure 1-b:
$ {E_{\mathrm {T}}^{\text {miss}}} $ (left) and $ {\mathrm {H}_{\mathrm {T}}^{\mathrm {miss}}} $ (right) distributions in 200 PU VBF H signal samples, comparing full simulation (Phase 2) and Delphes. On the left, the distribution in Delphes is smeared as explained in the main text to reproduce the Phase 2 distribution.

png pdf
Figure 2:
Distributions of $|\Delta \eta _{\text {jj}}|$ and $|\Delta \phi _{\text {jj}}|$ in the signal region for the final selection, $M_{\text {jj}} > $ 2500 GeV and $ {E_{\mathrm {T}}^{\text {miss}}} > $ 190 GeV.

png pdf
Figure 2-a:
Distributions of $|\Delta \eta _{\text {jj}}|$ and $|\Delta \phi _{\text {jj}}|$ in the signal region for the final selection, $M_{\text {jj}} > $ 2500 GeV and $ {E_{\mathrm {T}}^{\text {miss}}} > $ 190 GeV.

png pdf
Figure 2-b:
Distributions of $|\Delta \eta _{\text {jj}}|$ and $|\Delta \phi _{\text {jj}}|$ in the signal region for the final selection, $M_{\text {jj}} > $ 2500 GeV and $ {E_{\mathrm {T}}^{\text {miss}}} > $ 190 GeV.

png pdf
Figure 3:
Distributions of $M_{\text {jj}}$ and min$\Delta \phi $(jet $ {p_{\mathrm {T}}} > $ 30 GeV, $ {E_{\mathrm {T}}^{\text {miss}}} $) in the signal region for the final selection, $M_{\text {jj}} > $ 2500 GeV and $ {E_{\mathrm {T}}^{\text {miss}}} > $ 190 GeV.

png pdf
Figure 3-a:
Distributions of $M_{\text {jj}}$ and min$\Delta \phi $(jet $ {p_{\mathrm {T}}} > $ 30 GeV, $ {E_{\mathrm {T}}^{\text {miss}}} $) in the signal region for the final selection, $M_{\text {jj}} > $ 2500 GeV and $ {E_{\mathrm {T}}^{\text {miss}}} > $ 190 GeV.

png pdf
Figure 3-b:
Distributions of $M_{\text {jj}}$ and min$\Delta \phi $(jet $ {p_{\mathrm {T}}} > $ 30 GeV, $ {E_{\mathrm {T}}^{\text {miss}}} $) in the signal region for the final selection, $M_{\text {jj}} > $ 2500 GeV and $ {E_{\mathrm {T}}^{\text {miss}}} > $ 190 GeV.

png pdf
Figure 4:
Distributions of $ {E_{\mathrm {T}}^{\text {miss}}} $ and $ {\mathrm {H}_{\mathrm {T}}^{\mathrm {miss}}} $ in the signal region for the final selection, $M_{\text {jj}} > $ 2500 GeV and $ {E_{\mathrm {T}}^{\text {miss}}} > $ 190 GeV.

png pdf
Figure 4-a:
Distributions of $ {E_{\mathrm {T}}^{\text {miss}}} $ and $ {\mathrm {H}_{\mathrm {T}}^{\mathrm {miss}}} $ in the signal region for the final selection, $M_{\text {jj}} > $ 2500 GeV and $ {E_{\mathrm {T}}^{\text {miss}}} > $ 190 GeV.

png pdf
Figure 4-b:
Distributions of $ {E_{\mathrm {T}}^{\text {miss}}} $ and $ {\mathrm {H}_{\mathrm {T}}^{\mathrm {miss}}} $ in the signal region for the final selection, $M_{\text {jj}} > $ 2500 GeV and $ {E_{\mathrm {T}}^{\text {miss}}} > $ 190 GeV.

png pdf
Figure 5:
Left: 95% CL limits on ${\text {B}({\mathrm {H}} \to \text {inv.})}$ as a function of the minimum threshold on $ {E_{\mathrm {T}}^{\text {miss}}} $, for $M_{\text {jj}} > $ 2500 GeV and an integrated luminosity of 3000 fb$^{-1}$. Right: 95% CL limits for scenarios with different integrated luminosities.

png pdf
Figure 5-a:
Left: 95% CL limits on ${\text {B}({\mathrm {H}} \to \text {inv.})}$ as a function of the minimum threshold on $ {E_{\mathrm {T}}^{\text {miss}}} $, for $M_{\text {jj}} > $ 2500 GeV and an integrated luminosity of 3000 fb$^{-1}$. Right: 95% CL limits for scenarios with different integrated luminosities.

png pdf
Figure 5-b:
Left: 95% CL limits on ${\text {B}({\mathrm {H}} \to \text {inv.})}$ as a function of the minimum threshold on $ {E_{\mathrm {T}}^{\text {miss}}} $, for $M_{\text {jj}} > $ 2500 GeV and an integrated luminosity of 3000 fb$^{-1}$. Right: 95% CL limits for scenarios with different integrated luminosities.
Tables

png pdf
Table 1:
Impact on the signal and background yields from the different sources of systematic uncertainty considered in Ref. [14] and for the HL-LHC setup considered in this analysis.

png pdf
Table 2:
Number of events expected after the final selection, $M_{\text {jj}} > $ 2500 GeV and $ {E_{\mathrm {T}}^{\text {miss}}} > $ 190 GeV, with an integrated luminosity of 3000 fb$^{-1}$. The uncertainties are the statistical uncertainties from the Delphes samples.
Summary
The search for a Higgs boson decaying invisibly, produced in the vector-boson fusion mode, is investigated at the HL-LHC through simulation studies using a fast parametrisation of the upgraded CMS detector. The analysis follows the latest CMS publication, with an event selection optimised for the HL-LHC conditions. The expected 95% CL upper limits on the branching ratio of the standard model Higgs boson to invisible particles are presented as a function of the lower threshold applied on the transverse missing energy, for scenarios with integrated luminosities of 300, 1000 and 3000 fb$^{-1}$. The 95% CL upper limit on $ {\text{B}(\mathrm{H}\to \text{inv.})} $ assuming standard model production is expected to be at 3.8%, for thresholds values of 2500 GeV (190 GeV) on the dijet mass (missing transverse momentum). Even if the transverse missing energy resolution is degraded by a factor of two due to the high pileup conditions, a similar sensitivity is nevertheless achieved.
References
1 ATLAS Collaboration Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 ATLAS and CMS Collaborations Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC $ pp $ collision data at $ \sqrt{s} = $ 7 and 8 TeV JHEP 08 (2016) 45 1606.02266
5 R. E. Shrock and M. Suzuki Invisible decays of Higgs bosons Phy. Lett. B 110 (1982) 250
6 S. Baek, P. Ko, W.-I. Park, and E. Senaha Higgs portal vector dark matter: revisited JHEP 05 (2013) 036 1212.2131
7 A. Djouadi, O. Lebedev, Y. Mambrini, and J. Quevillon Implications of LHC searches for Higgs--portal dark matter PLB 709 (2012) 65 1112.3299
8 A. Djouadi, A. Falkowski, Y. Mambrini, and J. Quevillon Direct detection of Higgs-portal dark matter at the LHC EPJC 73 (2013) 2455 1205.3169
9 ATLAS Collaboration Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector JHEP 11 (2015) 206 1509.00672
10 ATLAS Collaboration Search for invisible Higgs boson decays in vector boson fusion at $ \sqrt{s} = $ 13 TeV with the ATLAS detector Submitted to: PL(2018) 1809.06682
11 CMS Collaboration Searches for invisible decays of the Higgs boson in $ {{\mathrm{p}}{\mathrm{p}}} $ collisions at $ \sqrt{s} = $ 7 , 8, and 13 TeV JHEP 02 (2017) 135 CMS-HIG-16-016
1610.09218
12 CMS Collaboration Search for new physics in events with a leptonically decaying $ {\mathrm{Z}} $ boson and a large transverse momentum imbalance in proton-proton collisions at $ {\sqrt{s} = 13 TeV} $ EPJC 78 (2018) 291 CMS-EXO-16-052
1711.00431
13 CMS Collaboration Search for new physics in final states with an energetic jet or a hadronically decaying $ {\mathrm{W}} $ or $ {\mathrm{Z}} $ boson and transverse momentum imbalance at $ {\sqrt{s}=13 TeV} $ PRD 97 (2018) 092005 CMS-EXO-16-048
1712.02345
14 CMS Collaboration Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at $ \sqrt{s} = $ 13 TeV Submitted to: PL(2018) CMS-HIG-17-023
1809.05937
15 CMS Collaboration Projected performance of higgs analyses at the hl-lhc for ecfa 2016 CMS-PAS-FTR-16-002 CMS-PAS-FTR-16-002
16 CMS Collaboration The CMS Experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
17 CMS Collaboration Technical Proposal for the Phase-II Upgrade of the CMS Detector CMS-PAS-TDR-15-002 CMS-PAS-TDR-15-002
18 CMS Collaboration The Phase-2 Upgrade of the CMS Tracker CDS
19 CMS Collaboration The Phase-2 Upgrade of the CMS Barrel Calorimeters Technical Design Report CDS
20 CMS Collaboration The Phase-2 Upgrade of the CMS Endcap Calorimeter CDS
21 CMS Collaboration The Phase-2 Upgrade of the CMS Muon Detectors CDS
22 CMS Collaboration CMS Phase-2 Object Performance
23 DELPHES 3 Collaboration DELPHES 3, A modular framework for fast simulation of a generic collider experiment JHEP 02 (2014) 057 1307.6346
24 GEANT4 Collaboration GEANT4: A Simulation toolkit NIMA 506 (2003) 250
25 J. Allison et al. Geant4 developments and applications IEEE Trans. Nucl. Sci. 53 (2006) 270
26 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower monte carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
27 P. Nason and C. Oleari NLO higgs boson production via vector-boson fusion matched with shower in POWHEG JHEP 02 (2010) 037 0911.5299
28 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector 1610.07922
29 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
30 M. Cacciari, G. P. Salam, and G. Soyez The anti--$ {k_{\mathrm{T}}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
31 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
32 D. Bertolini, P. Harris, M. Low, and N. Tran Pileup Per Particle Identification JHEP 10 (2014) 059 1407.6013
33 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017)
34 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC71 (2011) 1554 1007.1727
35 A. L. Read Presentation of search results: the $ cl_{s} $ technique JPG 28 (2002) 2693
36 T. Junk Confidence level computation for combining searches with small statistics NIMA 434 (1999) 435
37 LHC Higgs Cross Section Working Group, S. Dittmaier et al. Handbook of LHC Higgs Cross Sections: 2. Differential Distributions CERN-2012-002 1201.3084
38 ATLAS and CMS Collaborations, LHC Higgs Combination Group Procedure for the LHC higgs boson search combination in Summer 2011 ATL-PHYS-PUB-2011-11, CMS NOTE 2011/005
Compact Muon Solenoid
LHC, CERN