CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-B2G-22-001
A search for a heavy resonance decaying to a top quark and a new scalar in the boosted all-hadronic final state at $ \sqrt{s}= $ 13 TeV
Abstract: A search for a heavy resonance decaying to a top quark and a neutral scalar boson $ \phi $ in the all-hadronic final state is presented, where the $ \phi $ boson candidate is identified by its decay into a bottom quark-antiquark pair. The search is focused on final states in which the decay products of the highly Lorentz-boosted top quark and $ \phi $ boson are each expected to be reconstructed as single, large-radius jets with distinct substructures. The analysis is performed using data from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$ ^{-1} $ recorded by the CMS experiment at the CERN LHC in 2016--2018. The production of a vector-like top quark, $ \mathrm{T}^\prime $, a weak-isospin singlet, is used as a benchmark model and limits are set at the 95% confidence level on the cross section for a heavy resonance decaying to a top quark and $ \phi $ boson. For the case where the neutral scalar is a standard model Higgs boson and the $ \mathrm{T}^\prime $ quark width is 5% of its mass, $ \mathrm{T}^\prime $ quark masses below 1.2 TeV are excluded.
Figures & Tables Summary Additional Figures References CMS Publications
Figures

png pdf
Figure 1:
Feynman diagram showing the electroweak production of a single top quark partner $ \mathrm{T}^\prime $ at leading order, produced in association with a bottom quark and decaying to a top quark and a new scalar $ \phi $.

png pdf
Figure 2:
Selection criteria on the top quark and $ \phi $ boson candidate jets for the three analysis regions and their corresponding Pass and Fail tagging regions.

png pdf
Figure 3:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ (left) and $ m_{\mathrm{T}^\prime}^{\mathrm{rec}} $ (right) axes. The top row shows the distributions in the $ \text{T}_\text{Xbb} $ Fail tagging region, $ \mathrm{SR}_{\mathrm{F}} $, and the bottom in the $ \text{T}_\text{Xbb} $ Pass tagging region, $ \mathrm{SR}_{\mathrm{P}} $. A $ m_{\phi}= $ 175, $ m_{\mathrm{T}^\prime}= $ 1100 GeV signal sample normalized to a cross section of 1 fb is overlaid for visualization.

png pdf
Figure 3-a:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ (left) and $ m_{\mathrm{T}^\prime}^{\mathrm{rec}} $ (right) axes. The top row shows the distributions in the $ \text{T}_\text{Xbb} $ Fail tagging region, $ \mathrm{SR}_{\mathrm{F}} $, and the bottom in the $ \text{T}_\text{Xbb} $ Pass tagging region, $ \mathrm{SR}_{\mathrm{P}} $. A $ m_{\phi}= $ 175, $ m_{\mathrm{T}^\prime}= $ 1100 GeV signal sample normalized to a cross section of 1 fb is overlaid for visualization.

png pdf
Figure 3-b:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ (left) and $ m_{\mathrm{T}^\prime}^{\mathrm{rec}} $ (right) axes. The top row shows the distributions in the $ \text{T}_\text{Xbb} $ Fail tagging region, $ \mathrm{SR}_{\mathrm{F}} $, and the bottom in the $ \text{T}_\text{Xbb} $ Pass tagging region, $ \mathrm{SR}_{\mathrm{P}} $. A $ m_{\phi}= $ 175, $ m_{\mathrm{T}^\prime}= $ 1100 GeV signal sample normalized to a cross section of 1 fb is overlaid for visualization.

png pdf
Figure 3-c:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ (left) and $ m_{\mathrm{T}^\prime}^{\mathrm{rec}} $ (right) axes. The top row shows the distributions in the $ \text{T}_\text{Xbb} $ Fail tagging region, $ \mathrm{SR}_{\mathrm{F}} $, and the bottom in the $ \text{T}_\text{Xbb} $ Pass tagging region, $ \mathrm{SR}_{\mathrm{P}} $. A $ m_{\phi}= $ 175, $ m_{\mathrm{T}^\prime}= $ 1100 GeV signal sample normalized to a cross section of 1 fb is overlaid for visualization.

png pdf
Figure 3-d:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ (left) and $ m_{\mathrm{T}^\prime}^{\mathrm{rec}} $ (right) axes. The top row shows the distributions in the $ \text{T}_\text{Xbb} $ Fail tagging region, $ \mathrm{SR}_{\mathrm{F}} $, and the bottom in the $ \text{T}_\text{Xbb} $ Pass tagging region, $ \mathrm{SR}_{\mathrm{P}} $. A $ m_{\phi}= $ 175, $ m_{\mathrm{T}^\prime}= $ 1100 GeV signal sample normalized to a cross section of 1 fb is overlaid for visualization.

png pdf
Figure 4:
2D pulls in the $ m_{\phi}^{\mathrm{rec}} $ and $ m_{\mathrm{T}^\prime}^{\mathrm{rec}} $ observables in the $ \text{T}_\text{Xbb} $ Pass tagging region of the $ \mathrm{SR} $ after the maximum likelihood fit to the data.

png pdf
Figure 5:
Median expected (left) and observed (right) upper limits at the 95% CL on the product of the production cross section for the $ \mathrm{T}^\prime \to t\phi $ channel and the branching fraction $ \mathcal{B}(\mathrm{t}\to \mathrm{b}\mathrm{q}\bar{\mathrm{q}}) $ as a function of $ (m_{\mathrm{T}^\prime},m_{\phi}) $.

png pdf
Figure 5-a:
Median expected (left) and observed (right) upper limits at the 95% CL on the product of the production cross section for the $ \mathrm{T}^\prime \to t\phi $ channel and the branching fraction $ \mathcal{B}(\mathrm{t}\to \mathrm{b}\mathrm{q}\bar{\mathrm{q}}) $ as a function of $ (m_{\mathrm{T}^\prime},m_{\phi}) $.

png pdf
Figure 5-b:
Median expected (left) and observed (right) upper limits at the 95% CL on the product of the production cross section for the $ \mathrm{T}^\prime \to t\phi $ channel and the branching fraction $ \mathcal{B}(\mathrm{t}\to \mathrm{b}\mathrm{q}\bar{\mathrm{q}}) $ as a function of $ (m_{\mathrm{T}^\prime},m_{\phi}) $.

png pdf
Figure 6:
Upper limits at the 95% CL on the product of the production cross section $ \mathrm{p}\mathrm{p}\to\mathrm{T}^\prime\to\mathrm{t}\mathrm{H} $ and branching fraction $ \mathcal{B}(\mathrm{t} \to \mathrm{b}\mathrm{q}\bar{\mathrm{q}},\, \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}}) $ as a function of the $ \mathrm{T}^\prime $ mass for fixed $ m_{\phi}=m_{\mathrm{H}}= $ 125 GeV. The solid red (blue) curves indicate the theoretical cross sections for the singlet $ \mathrm{T}^\prime $ quark model assuming its width is 1% (5%) of its mass.

png pdf
Figure 7:
Upper limits at the 95% CL on the product of the production cross section for the $ \mathrm{T}^\prime \to t\phi $ channel and the branching fraction $ \mathcal{B}(\mathrm{t}\to \mathrm{b}\mathrm{q}\bar{\mathrm{q}}) $ as a function of $ m_{\mathrm{T}^\prime} $ for all values of $ m_{\phi} $ with official simulations.
Tables

png pdf
Table 1:
The coupling $ \kappa $ to the H, Z, and W bosons, reduced cross section $ \hat\sigma $ as defined in Ref. [28], and total cross section $ \sigma $ for singlet $ \mathrm{T}^\prime $ quarks with widths of 1% and 5% and mass $ m_{\mathrm{Q}} $. For the singlet scenario, these cross sections are multiplied by the branching fraction $ \mathcal{B}(\mathrm{T}^\prime \to \mathrm{t}\mathrm{H}) $, taken to be 25%.

png pdf
Table 2:
Sources of systematic uncertainty that are taken into account in the statistical analysis. The correlation of the uncertainty between the data-taking years, and the list of simulated processes affected by the uncertainty are also given.

png pdf
Table 3:
Run 2 luminosity uncertainty correlation scheme
Summary
A search for the single production of a vector-like top quark partner $ \mathrm{T}^\prime $ decaying to the third generation SM top quark and a neutral scalar boson $ \phi $ in the fully-hadronic final state is presented using proton-proton collision data recorded by the CMS experiment at $ \sqrt{s}= $ 13 TeV and corresponding to a total integrated luminosity of 138 fb$ ^{-1} $. The hadronic decay products of the top quark and $ \phi $ boson are expected to be highly Lorentz-boosted from the decay of the massive $ \mathrm{T}^\prime $ resonance, resulting in two large-radius jets in the final state. Upper limits at 95% confidence level are set on the product of the production cross section and branching fraction for the decay $ \mathrm{T}^\prime\to \mathrm{t}\phi $, representing the first results for the decay $ \mathrm{T}^\prime \to \mathrm{t}(\mathrm{b}\mathrm{q}\overline{\mathrm{q}})\phi(\mathrm{b}\overline{\mathrm{b}}) $ by the CMS collaboration. For the case where the neutral scalar is the standard model Higgs boson, upper limits are set on the product of the production cross section and the $ \mathrm{T}^\prime \to \mathrm{t}\mathrm{H} $ branching fraction between 300 to 4.6 fb at 95% CL for $ \mathrm{T}^\prime $ quark masses between 0.8 and 3 TeV. They exclude $ \mathrm{T}^\prime $ quark masses below 1.2 TeV assuming the $ \mathrm{T}^\prime $ quark is a weak-isospin singlet with a resonance width 5% of its mass. For other $ \phi $ boson masses, upper limits as low as 1.3 fb are set.
Additional Figures

png pdf
Additional Figure 1:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ axis for events in the range 800 $ < m_{\mathrm{T}^\prime}^{\mathrm{rec}} < $ 900 GeV.

png pdf
Additional Figure 2:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ axis for events in the range 900 $ < m_{\mathrm{T}^\prime}^{\mathrm{rec}} < $ 1000 GeV.

png pdf
Additional Figure 3:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ axis for events in the range 1000 $ < m_{\mathrm{T}^\prime}^{\mathrm{rec}} < $ 1100 GeV.

png pdf
Additional Figure 4:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ axis for events in the range 1100 $ < m_{\mathrm{T}^\prime}^{\mathrm{rec}} < $ 1200 GeV.

png pdf
Additional Figure 5:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ axis for events in the range 1200 $ < m_{\mathrm{T}^\prime}^{\mathrm{rec}} < $ 1300 GeV.

png pdf
Additional Figure 6:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ axis for events in the range 1300 $ < m_{\mathrm{T}^\prime}^{\mathrm{rec}} < $ 1400 GeV.

png pdf
Additional Figure 7:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ axis for events in the range 1400 $ < m_{\mathrm{T}^\prime}^{\mathrm{rec}} < $ 1500 GeV.

png pdf
Additional Figure 8:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ axis for events in the range 1500 $ < m_{\mathrm{T}^\prime}^{\mathrm{rec}} < $ 1700 GeV.

png pdf
Additional Figure 9:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ axis for events in the range 1700 $ < m_{\mathrm{T}^\prime}^{\mathrm{rec}} < $ 2000 GeV.

png pdf
Additional Figure 10:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ axis for events in the range 2000 $ < m_{\mathrm{T}^\prime}^{\mathrm{rec}} < $ 3500 GeV.

png pdf
Additional Figure 11:
Upper limits at the 95% CL on the product of the production cross section $ \mathrm{pp}\to\mathrm{T}^\prime\to\mathrm{t}\mathrm{H} $ and branching fraction $ \mathcal{B}(\mathrm{t} \to \mathrm{b}\mathrm{q}\bar{\mathrm{q}},\, \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}}) $ as a function of the $ \mathrm{T}^\prime $ mass for fixed $ m_{\phi}=m_{\mathrm{H}}= $ 125 GeV, presented for the purpose of direct comparison with the experimental limits from CMS-PAS-B2G-23-009 [59], a search for single production of a vector-like $ \mathrm{T}^\prime $ quark decaying to a top quark and neutral scalar boson in the lepton+jets final state. The solid red (blue) curves indicate the theoretical cross sections for the singlet $ \mathrm{T}^\prime $ quark model assuming its width is 1% (5%) of its mass, taken from Ref. [59].
References
1 J. D. Wells Higgs naturalness and the scalar boson proliferation instability problem Synthese 194 (2014) 477 1603.06131
2 Y. Okada and L. Panizzi LHC signatures of vector-like quarks Adv. High Energy Phys. 2013 (2013) 1207.5607
3 O. Eberhardt et al. Joint analysis of Higgs boson decays and electroweak precision observables in the standard model with a sequential fourth generation PRD 86 (2012) 013011
4 J.-A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer, and M. Pérez-Victoria A handbook of vector-like quarks: mixing and single production PRD 88 (2013) 094010 1306.0572
5 ATLAS Collaboration Exploration at the high-energy frontier: ATLAS Run 2 searches investigating the exotic jungle beyond the Standard Model Phys. Rept. 1116 (2025) 301 2403.09292
6 CMS Collaboration Review of searches for vector-like quarks, vector-like leptons, and heavy neutral leptons in proton-proton collisions at $ \sqrt{s} = $ 13 TeV at the CMS experiment Phys. Rept. 1115 (2025) 570 CMS-EXO-23-006
2405.17605
7 A. Bhardwaj, T. Mandal, S. Mitra, and C. Neeraj Roadmap to explore vectorlike quarks decaying to a new scalar or pseudoscalar PRD 106 (2022) 095014 2203.13753
8 S. Fajfer, A. Greljo, J. F. Kamenik, and I. Mustac Light Higgs and vector-like quarks without prejudice JHEP 07 (2013) 155 1304.4219
9 J. A. Aguilar-Saavedra et al. Exotic vectorlike quark phenomenology in the minimal linear \ensuremath\sigma model PRD 101 (2020) 035015 1911.10202
10 G. Cacciapaglia et al. Exotic decays of top partners: mind the search gap PLB 798 (2019) 135015 1908.07524
11 R. Benbrik et al. Signatures of vector-like top partners decaying into new neutral scalar or pseudoscalar bosons JHEP 05 (2020) 028 1907.05929
12 G.-C. Branco et al. Theory and phenomenology of two-higgs-doublet models Physics Reports (2012) 1 1106.0034
13 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
14 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
15 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
16 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
17 CMS Collaboration Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015
CDS
18 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
19 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
20 CMS Collaboration Pileup mitigation at CMS in 13 TeV data JINST 15 (2020) P09018 CMS-JME-18-001
2003.00503
21 D. Bertolini, P. Harris, M. Low, and N. Tran Pileup per particle identification JHEP 10 (2014) 059 1407.6013
22 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
23 M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam Towards an understanding of jet substructure JHEP 09 (2013) 029 1307.0007
24 J. M. Butterworth, A. R. Davison, M. Rubin, and G. P. Salam Jet substructure as a new Higgs search channel at the LHC PRL 100 (2008) 242001 0802.2470
25 A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler Soft drop JHEP 05 (2014) 146 1402.2657
26 A. Roy, N. Nikiforou, N. Castro, and T. Andeen Novel interpretation strategy for searches of singly produced vectorlike quarks at the lhc PRD 101 (2020) 115027 2003.00640
27 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
28 A. Carvalho et al. Single production of vectorlike quarks with large width at the Large Hadron Collider PRD 98 (2018) 1805.06402
29 M. Buchkremer, G. Cacciapaglia, A. Deandrea, and L. Panizzi Model independent framework for searches of top partners NPB 876 (2013) 376 1305.4172
30 M. J. Oreglia A study of the reactions $ \psi^\prime \to \gamma \gamma \psi $ PhD thesis, Stanford University, SLAC Report SLAC-R-236, 1980
link
31 A. L. Read Linear interpolation of histograms NIM A 425 (1999) 357
32 E. Re Single-top Wt-channel production matched with parton showers using the POWHEG method EPJC 71 (2011) 1547 1009.2450
33 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
34 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: The POWHEG method JHEP 11 (2007) 070 0709.2092
35 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: The POWHEG BOX JHEP 06 (2010) 043 1002.2581
36 S. Frixione , G. Ridolfi , and P. Nason A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction JHEP 09 (2007) 126 0707.3088
37 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
38 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
39 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
40 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
41 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
42 ATLAS Collaboration Measurement of the inelastic proton-proton cross section at $ \sqrt{s} = $ 13 TeV with the ATLAS Detector at the LHC PRL 117 (2016) 182002 1606.02625
43 CMS Collaboration Measurement of the inelastic proton-proton cross section at $ \sqrt{s}= $ 13 TeV JHEP 07 (2018) 161 CMS-FSQ-15-005
1802.02613
44 D. Krohn, J. Thaler, and L.-T. Wang Jet trimming JHEP 02 (2010) 084 0912.1342
45 H. Qu and L. Gouskos Jet tagging via particle clouds PRD 101 (2020) 056019 1902.08570
46 CMS Collaboration Performance of heavy-flavour jet identification in boosted topologies in proton-proton collisions at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2023
CMS-PAS-BTV-22-001
CMS-PAS-BTV-22-001
47 CMS Collaboration Boosted jet identification using particle candidates and deep neural networks CMS Detector Performance Summary CMS-DP-2017-049, 2017
CDS
48 CMS Collaboration Identification of highly Lorentz-boosted heavy particles using graph neural networks and new mass decorrelation techniques CMS Detector Performance Summary CMS-DP-2020-002, 2020
CDS
49 R. A. Fisher On the interpretation of $ \chi^2 $ from contingency tables, and the calculation of p J. Royal Stat. Soc. 85 (1922) 87
50 J. Butterworth et al. PDF4LHC recommendations for LHC Run II JPG 43 (2016) 023001 1510.03865
51 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
52 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2018
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
53 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2019
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
54 CMS Collaboration The CMS statistical analysis and combination tool: Combine Comput. Softw. Big Sci. 8 (2024) 19 CMS-CAT-23-001
2404.06614
55 W. Verkerke and D. Kirkby The RooFit toolkit for data modeling in Proc. 13th International Conference on Computing in High Energy and Nuclear Physics (CHEP ): La Jolla CA, United States, 2003
link
physics/0306116
56 L. Moneta et al. The RooStats project in Proc. 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT ): Jaipur, India, 2010
link
1009.1003
57 ATLAS and CMS Collaborations, and LHC Higgs Combination Group Procedure for the LHC Higgs boson search combination in Summer 2011 Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011
58 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
59 CMS Collaboration Search for single production of a vector-like T quark decaying to a top quark and a neutral scalar boson in lepton+jets final states at $\sqrt{s}= $ 13 TeV CMS Physics Analysis Summary
CMS-PAS-B2G-23-009
CMS-PAS-B2G-23-009
Compact Muon Solenoid
LHC, CERN