| CMS-PAS-B2G-22-001 | ||
| A search for a heavy resonance decaying to a top quark and a new scalar in the boosted all-hadronic final state at $ \sqrt{s}= $ 13 TeV | ||
| CMS Collaboration | ||
| 2025-07-28 | ||
| Abstract: A search for a heavy resonance decaying to a top quark and a neutral scalar boson $ \phi $ in the all-hadronic final state is presented, where the $ \phi $ boson candidate is identified by its decay into a bottom quark-antiquark pair. The search is focused on final states in which the decay products of the highly Lorentz-boosted top quark and $ \phi $ boson are each expected to be reconstructed as single, large-radius jets with distinct substructures. The analysis is performed using data from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$ ^{-1} $ recorded by the CMS experiment at the CERN LHC in 2016--2018. The production of a vector-like top quark, $ \mathrm{T}^\prime $, a weak-isospin singlet, is used as a benchmark model and limits are set at the 95% confidence level on the cross section for a heavy resonance decaying to a top quark and $ \phi $ boson. For the case where the neutral scalar is a standard model Higgs boson and the $ \mathrm{T}^\prime $ quark width is 5% of its mass, $ \mathrm{T}^\prime $ quark masses below 1.2 TeV are excluded. | ||
| Links: CDS record (PDF) ; CADI line (restricted) ; | ||
| Figures & Tables | Summary | Additional Figures | References | CMS Publications |
|---|
| Figures | |
|
png pdf |
Figure 1:
Feynman diagram showing the electroweak production of a single top quark partner $ \mathrm{T}^\prime $ at leading order, produced in association with a bottom quark and decaying to a top quark and a new scalar $ \phi $. |
|
png pdf |
Figure 2:
Selection criteria on the top quark and $ \phi $ boson candidate jets for the three analysis regions and their corresponding Pass and Fail tagging regions. |
|
png pdf |
Figure 3:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ (left) and $ m_{\mathrm{T}^\prime}^{\mathrm{rec}} $ (right) axes. The top row shows the distributions in the $ \text{T}_\text{Xbb} $ Fail tagging region, $ \mathrm{SR}_{\mathrm{F}} $, and the bottom in the $ \text{T}_\text{Xbb} $ Pass tagging region, $ \mathrm{SR}_{\mathrm{P}} $. A $ m_{\phi}= $ 175, $ m_{\mathrm{T}^\prime}= $ 1100 GeV signal sample normalized to a cross section of 1 fb is overlaid for visualization. |
|
png pdf |
Figure 3-a:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ (left) and $ m_{\mathrm{T}^\prime}^{\mathrm{rec}} $ (right) axes. The top row shows the distributions in the $ \text{T}_\text{Xbb} $ Fail tagging region, $ \mathrm{SR}_{\mathrm{F}} $, and the bottom in the $ \text{T}_\text{Xbb} $ Pass tagging region, $ \mathrm{SR}_{\mathrm{P}} $. A $ m_{\phi}= $ 175, $ m_{\mathrm{T}^\prime}= $ 1100 GeV signal sample normalized to a cross section of 1 fb is overlaid for visualization. |
|
png pdf |
Figure 3-b:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ (left) and $ m_{\mathrm{T}^\prime}^{\mathrm{rec}} $ (right) axes. The top row shows the distributions in the $ \text{T}_\text{Xbb} $ Fail tagging region, $ \mathrm{SR}_{\mathrm{F}} $, and the bottom in the $ \text{T}_\text{Xbb} $ Pass tagging region, $ \mathrm{SR}_{\mathrm{P}} $. A $ m_{\phi}= $ 175, $ m_{\mathrm{T}^\prime}= $ 1100 GeV signal sample normalized to a cross section of 1 fb is overlaid for visualization. |
|
png pdf |
Figure 3-c:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ (left) and $ m_{\mathrm{T}^\prime}^{\mathrm{rec}} $ (right) axes. The top row shows the distributions in the $ \text{T}_\text{Xbb} $ Fail tagging region, $ \mathrm{SR}_{\mathrm{F}} $, and the bottom in the $ \text{T}_\text{Xbb} $ Pass tagging region, $ \mathrm{SR}_{\mathrm{P}} $. A $ m_{\phi}= $ 175, $ m_{\mathrm{T}^\prime}= $ 1100 GeV signal sample normalized to a cross section of 1 fb is overlaid for visualization. |
|
png pdf |
Figure 3-d:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ (left) and $ m_{\mathrm{T}^\prime}^{\mathrm{rec}} $ (right) axes. The top row shows the distributions in the $ \text{T}_\text{Xbb} $ Fail tagging region, $ \mathrm{SR}_{\mathrm{F}} $, and the bottom in the $ \text{T}_\text{Xbb} $ Pass tagging region, $ \mathrm{SR}_{\mathrm{P}} $. A $ m_{\phi}= $ 175, $ m_{\mathrm{T}^\prime}= $ 1100 GeV signal sample normalized to a cross section of 1 fb is overlaid for visualization. |
|
png pdf |
Figure 4:
2D pulls in the $ m_{\phi}^{\mathrm{rec}} $ and $ m_{\mathrm{T}^\prime}^{\mathrm{rec}} $ observables in the $ \text{T}_\text{Xbb} $ Pass tagging region of the $ \mathrm{SR} $ after the maximum likelihood fit to the data. |
|
png pdf |
Figure 5:
Median expected (left) and observed (right) upper limits at the 95% CL on the product of the production cross section for the $ \mathrm{T}^\prime \to t\phi $ channel and the branching fraction $ \mathcal{B}(\mathrm{t}\to \mathrm{b}\mathrm{q}\bar{\mathrm{q}}) $ as a function of $ (m_{\mathrm{T}^\prime},m_{\phi}) $. |
|
png pdf |
Figure 5-a:
Median expected (left) and observed (right) upper limits at the 95% CL on the product of the production cross section for the $ \mathrm{T}^\prime \to t\phi $ channel and the branching fraction $ \mathcal{B}(\mathrm{t}\to \mathrm{b}\mathrm{q}\bar{\mathrm{q}}) $ as a function of $ (m_{\mathrm{T}^\prime},m_{\phi}) $. |
|
png pdf |
Figure 5-b:
Median expected (left) and observed (right) upper limits at the 95% CL on the product of the production cross section for the $ \mathrm{T}^\prime \to t\phi $ channel and the branching fraction $ \mathcal{B}(\mathrm{t}\to \mathrm{b}\mathrm{q}\bar{\mathrm{q}}) $ as a function of $ (m_{\mathrm{T}^\prime},m_{\phi}) $. |
|
png pdf |
Figure 6:
Upper limits at the 95% CL on the product of the production cross section $ \mathrm{p}\mathrm{p}\to\mathrm{T}^\prime\to\mathrm{t}\mathrm{H} $ and branching fraction $ \mathcal{B}(\mathrm{t} \to \mathrm{b}\mathrm{q}\bar{\mathrm{q}},\, \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}}) $ as a function of the $ \mathrm{T}^\prime $ mass for fixed $ m_{\phi}=m_{\mathrm{H}}= $ 125 GeV. The solid red (blue) curves indicate the theoretical cross sections for the singlet $ \mathrm{T}^\prime $ quark model assuming its width is 1% (5%) of its mass. |
|
png pdf |
Figure 7:
Upper limits at the 95% CL on the product of the production cross section for the $ \mathrm{T}^\prime \to t\phi $ channel and the branching fraction $ \mathcal{B}(\mathrm{t}\to \mathrm{b}\mathrm{q}\bar{\mathrm{q}}) $ as a function of $ m_{\mathrm{T}^\prime} $ for all values of $ m_{\phi} $ with official simulations. |
| Tables | |
|
png pdf |
Table 1:
The coupling $ \kappa $ to the H, Z, and W bosons, reduced cross section $ \hat\sigma $ as defined in Ref. [28], and total cross section $ \sigma $ for singlet $ \mathrm{T}^\prime $ quarks with widths of 1% and 5% and mass $ m_{\mathrm{Q}} $. For the singlet scenario, these cross sections are multiplied by the branching fraction $ \mathcal{B}(\mathrm{T}^\prime \to \mathrm{t}\mathrm{H}) $, taken to be 25%. |
|
png pdf |
Table 2:
Sources of systematic uncertainty that are taken into account in the statistical analysis. The correlation of the uncertainty between the data-taking years, and the list of simulated processes affected by the uncertainty are also given. |
|
png pdf |
Table 3:
Run 2 luminosity uncertainty correlation scheme |
| Summary |
| A search for the single production of a vector-like top quark partner $ \mathrm{T}^\prime $ decaying to the third generation SM top quark and a neutral scalar boson $ \phi $ in the fully-hadronic final state is presented using proton-proton collision data recorded by the CMS experiment at $ \sqrt{s}= $ 13 TeV and corresponding to a total integrated luminosity of 138 fb$ ^{-1} $. The hadronic decay products of the top quark and $ \phi $ boson are expected to be highly Lorentz-boosted from the decay of the massive $ \mathrm{T}^\prime $ resonance, resulting in two large-radius jets in the final state. Upper limits at 95% confidence level are set on the product of the production cross section and branching fraction for the decay $ \mathrm{T}^\prime\to \mathrm{t}\phi $, representing the first results for the decay $ \mathrm{T}^\prime \to \mathrm{t}(\mathrm{b}\mathrm{q}\overline{\mathrm{q}})\phi(\mathrm{b}\overline{\mathrm{b}}) $ by the CMS collaboration. For the case where the neutral scalar is the standard model Higgs boson, upper limits are set on the product of the production cross section and the $ \mathrm{T}^\prime \to \mathrm{t}\mathrm{H} $ branching fraction between 300 to 4.6 fb at 95% CL for $ \mathrm{T}^\prime $ quark masses between 0.8 and 3 TeV. They exclude $ \mathrm{T}^\prime $ quark masses below 1.2 TeV assuming the $ \mathrm{T}^\prime $ quark is a weak-isospin singlet with a resonance width 5% of its mass. For other $ \phi $ boson masses, upper limits as low as 1.3 fb are set. |
| Additional Figures | |
|
png pdf |
Additional Figure 1:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ axis for events in the range 800 $ < m_{\mathrm{T}^\prime}^{\mathrm{rec}} < $ 900 GeV. |
|
png pdf |
Additional Figure 2:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ axis for events in the range 900 $ < m_{\mathrm{T}^\prime}^{\mathrm{rec}} < $ 1000 GeV. |
|
png pdf |
Additional Figure 3:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ axis for events in the range 1000 $ < m_{\mathrm{T}^\prime}^{\mathrm{rec}} < $ 1100 GeV. |
|
png pdf |
Additional Figure 4:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ axis for events in the range 1100 $ < m_{\mathrm{T}^\prime}^{\mathrm{rec}} < $ 1200 GeV. |
|
png pdf |
Additional Figure 5:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ axis for events in the range 1200 $ < m_{\mathrm{T}^\prime}^{\mathrm{rec}} < $ 1300 GeV. |
|
png pdf |
Additional Figure 6:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ axis for events in the range 1300 $ < m_{\mathrm{T}^\prime}^{\mathrm{rec}} < $ 1400 GeV. |
|
png pdf |
Additional Figure 7:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ axis for events in the range 1400 $ < m_{\mathrm{T}^\prime}^{\mathrm{rec}} < $ 1500 GeV. |
|
png pdf |
Additional Figure 8:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ axis for events in the range 1500 $ < m_{\mathrm{T}^\prime}^{\mathrm{rec}} < $ 1700 GeV. |
|
png pdf |
Additional Figure 9:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ axis for events in the range 1700 $ < m_{\mathrm{T}^\prime}^{\mathrm{rec}} < $ 2000 GeV. |
|
png pdf |
Additional Figure 10:
Post-fit distributions of data and predicted background in the $ \mathrm{SR} $ under the background-only hypothesis, projected onto the $ m_{\phi}^{\mathrm{rec}} $ axis for events in the range 2000 $ < m_{\mathrm{T}^\prime}^{\mathrm{rec}} < $ 3500 GeV. |
|
png pdf |
Additional Figure 11:
Upper limits at the 95% CL on the product of the production cross section $ \mathrm{pp}\to\mathrm{T}^\prime\to\mathrm{t}\mathrm{H} $ and branching fraction $ \mathcal{B}(\mathrm{t} \to \mathrm{b}\mathrm{q}\bar{\mathrm{q}},\, \mathrm{H}\to\mathrm{b}\overline{\mathrm{b}}) $ as a function of the $ \mathrm{T}^\prime $ mass for fixed $ m_{\phi}=m_{\mathrm{H}}= $ 125 GeV, presented for the purpose of direct comparison with the experimental limits from CMS-PAS-B2G-23-009 [59], a search for single production of a vector-like $ \mathrm{T}^\prime $ quark decaying to a top quark and neutral scalar boson in the lepton+jets final state. The solid red (blue) curves indicate the theoretical cross sections for the singlet $ \mathrm{T}^\prime $ quark model assuming its width is 1% (5%) of its mass, taken from Ref. [59]. |
| References | ||||
| 1 | J. D. Wells | Higgs naturalness and the scalar boson proliferation instability problem | Synthese 194 (2014) 477 | 1603.06131 |
| 2 | Y. Okada and L. Panizzi | LHC signatures of vector-like quarks | Adv. High Energy Phys. 2013 (2013) | 1207.5607 |
| 3 | O. Eberhardt et al. | Joint analysis of Higgs boson decays and electroweak precision observables in the standard model with a sequential fourth generation | PRD 86 (2012) 013011 | |
| 4 | J.-A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer, and M. Pérez-Victoria | A handbook of vector-like quarks: mixing and single production | PRD 88 (2013) 094010 | 1306.0572 |
| 5 | ATLAS Collaboration | Exploration at the high-energy frontier: ATLAS Run 2 searches investigating the exotic jungle beyond the Standard Model | Phys. Rept. 1116 (2025) 301 | 2403.09292 |
| 6 | CMS Collaboration | Review of searches for vector-like quarks, vector-like leptons, and heavy neutral leptons in proton-proton collisions at $ \sqrt{s} = $ 13 TeV at the CMS experiment | Phys. Rept. 1115 (2025) 570 | CMS-EXO-23-006 2405.17605 |
| 7 | A. Bhardwaj, T. Mandal, S. Mitra, and C. Neeraj | Roadmap to explore vectorlike quarks decaying to a new scalar or pseudoscalar | PRD 106 (2022) 095014 | 2203.13753 |
| 8 | S. Fajfer, A. Greljo, J. F. Kamenik, and I. Mustac | Light Higgs and vector-like quarks without prejudice | JHEP 07 (2013) 155 | 1304.4219 |
| 9 | J. A. Aguilar-Saavedra et al. | Exotic vectorlike quark phenomenology in the minimal linear \ensuremath\sigma model | PRD 101 (2020) 035015 | 1911.10202 |
| 10 | G. Cacciapaglia et al. | Exotic decays of top partners: mind the search gap | PLB 798 (2019) 135015 | 1908.07524 |
| 11 | R. Benbrik et al. | Signatures of vector-like top partners decaying into new neutral scalar or pseudoscalar bosons | JHEP 05 (2020) 028 | 1907.05929 |
| 12 | G.-C. Branco et al. | Theory and phenomenology of two-higgs-doublet models | Physics Reports (2012) 1 | 1106.0034 |
| 13 | CMS Collaboration | The CMS experiment at the CERN LHC | JINST 3 (2008) S08004 | |
| 14 | CMS Collaboration | Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV | JINST 15 (2020) P10017 | CMS-TRG-17-001 2006.10165 |
| 15 | CMS Collaboration | The CMS trigger system | JINST 12 (2017) P01020 | CMS-TRG-12-001 1609.02366 |
| 16 | CMS Collaboration | Particle-flow reconstruction and global event description with the CMS detector | JINST 12 (2017) P10003 | CMS-PRF-14-001 1706.04965 |
| 17 | CMS Collaboration | Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid | CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015 CDS |
|
| 18 | M. Cacciari, G. P. Salam, and G. Soyez | The anti-$ k_{\mathrm{T}} $ jet clustering algorithm | JHEP 04 (2008) 063 | 0802.1189 |
| 19 | M. Cacciari, G. P. Salam, and G. Soyez | FastJet user manual | EPJC 72 (2012) 1896 | 1111.6097 |
| 20 | CMS Collaboration | Pileup mitigation at CMS in 13 TeV data | JINST 15 (2020) P09018 | CMS-JME-18-001 2003.00503 |
| 21 | D. Bertolini, P. Harris, M. Low, and N. Tran | Pileup per particle identification | JHEP 10 (2014) 059 | 1407.6013 |
| 22 | CMS Collaboration | Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV | JINST 12 (2017) P02014 | CMS-JME-13-004 1607.03663 |
| 23 | M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam | Towards an understanding of jet substructure | JHEP 09 (2013) 029 | 1307.0007 |
| 24 | J. M. Butterworth, A. R. Davison, M. Rubin, and G. P. Salam | Jet substructure as a new Higgs search channel at the LHC | PRL 100 (2008) 242001 | 0802.2470 |
| 25 | A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler | Soft drop | JHEP 05 (2014) 146 | 1402.2657 |
| 26 | A. Roy, N. Nikiforou, N. Castro, and T. Andeen | Novel interpretation strategy for searches of singly produced vectorlike quarks at the lhc | PRD 101 (2020) 115027 | 2003.00640 |
| 27 | J. Alwall et al. | The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations | JHEP 07 (2014) 079 | 1405.0301 |
| 28 | A. Carvalho et al. | Single production of vectorlike quarks with large width at the Large Hadron Collider | PRD 98 (2018) | 1805.06402 |
| 29 | M. Buchkremer, G. Cacciapaglia, A. Deandrea, and L. Panizzi | Model independent framework for searches of top partners | NPB 876 (2013) 376 | 1305.4172 |
| 30 | M. J. Oreglia | A study of the reactions $ \psi^\prime \to \gamma \gamma \psi $ | PhD thesis, Stanford University, SLAC Report SLAC-R-236, 1980 link |
|
| 31 | A. L. Read | Linear interpolation of histograms | NIM A 425 (1999) 357 | |
| 32 | E. Re | Single-top Wt-channel production matched with parton showers using the POWHEG method | EPJC 71 (2011) 1547 | 1009.2450 |
| 33 | P. Nason | A new method for combining NLO QCD with shower Monte Carlo algorithms | JHEP 11 (2004) 040 | hep-ph/0409146 |
| 34 | S. Frixione, P. Nason, and C. Oleari | Matching NLO QCD computations with parton shower simulations: The POWHEG method | JHEP 11 (2007) 070 | 0709.2092 |
| 35 | S. Alioli, P. Nason, C. Oleari, and E. Re | A general framework for implementing NLO calculations in shower Monte Carlo programs: The POWHEG BOX | JHEP 06 (2010) 043 | 1002.2581 |
| 36 | S. Frixione , G. Ridolfi , and P. Nason | A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction | JHEP 09 (2007) 126 | 0707.3088 |
| 37 | J. Alwall et al. | The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations | JHEP 07 (2014) 079 | 1405.0301 |
| 38 | T. Sjöstrand et al. | An introduction to PYTHIA 8.2 | Comput. Phys. Commun. 191 (2015) 159 | 1410.3012 |
| 39 | NNPDF Collaboration | Parton distributions from high-precision collider data | EPJC 77 (2017) 663 | 1706.00428 |
| 40 | CMS Collaboration | Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements | EPJC 80 (2020) 4 | CMS-GEN-17-001 1903.12179 |
| 41 | GEANT4 Collaboration | GEANT 4---a simulation toolkit | NIM A 506 (2003) 250 | |
| 42 | ATLAS Collaboration | Measurement of the inelastic proton-proton cross section at $ \sqrt{s} = $ 13 TeV with the ATLAS Detector at the LHC | PRL 117 (2016) 182002 | 1606.02625 |
| 43 | CMS Collaboration | Measurement of the inelastic proton-proton cross section at $ \sqrt{s}= $ 13 TeV | JHEP 07 (2018) 161 | CMS-FSQ-15-005 1802.02613 |
| 44 | D. Krohn, J. Thaler, and L.-T. Wang | Jet trimming | JHEP 02 (2010) 084 | 0912.1342 |
| 45 | H. Qu and L. Gouskos | Jet tagging via particle clouds | PRD 101 (2020) 056019 | 1902.08570 |
| 46 | CMS Collaboration | Performance of heavy-flavour jet identification in boosted topologies in proton-proton collisions at $ \sqrt{s} = $ 13 TeV | CMS Physics Analysis Summary, 2023 CMS-PAS-BTV-22-001 |
CMS-PAS-BTV-22-001 |
| 47 | CMS Collaboration | Boosted jet identification using particle candidates and deep neural networks | CMS Detector Performance Summary CMS-DP-2017-049, 2017 CDS |
|
| 48 | CMS Collaboration | Identification of highly Lorentz-boosted heavy particles using graph neural networks and new mass decorrelation techniques | CMS Detector Performance Summary CMS-DP-2020-002, 2020 CDS |
|
| 49 | R. A. Fisher | On the interpretation of $ \chi^2 $ from contingency tables, and the calculation of p | J. Royal Stat. Soc. 85 (1922) 87 | |
| 50 | J. Butterworth et al. | PDF4LHC recommendations for LHC Run II | JPG 43 (2016) 023001 | 1510.03865 |
| 51 | CMS Collaboration | Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS | EPJC 81 (2021) 800 | CMS-LUM-17-003 2104.01927 |
| 52 | CMS Collaboration | CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV | CMS Physics Analysis Summary, 2018 CMS-PAS-LUM-17-004 |
CMS-PAS-LUM-17-004 |
| 53 | CMS Collaboration | CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV | CMS Physics Analysis Summary, 2019 CMS-PAS-LUM-18-002 |
CMS-PAS-LUM-18-002 |
| 54 | CMS Collaboration | The CMS statistical analysis and combination tool: Combine | Comput. Softw. Big Sci. 8 (2024) 19 | CMS-CAT-23-001 2404.06614 |
| 55 | W. Verkerke and D. Kirkby | The RooFit toolkit for data modeling | in Proc. 13th International Conference on Computing in High Energy and Nuclear Physics (CHEP ): La Jolla CA, United States, 2003 link |
physics/0306116 |
| 56 | L. Moneta et al. | The RooStats project | in Proc. 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT ): Jaipur, India, 2010 link |
1009.1003 |
| 57 | ATLAS and CMS Collaborations, and LHC Higgs Combination Group | Procedure for the LHC Higgs boson search combination in Summer 2011 | Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011 | |
| 58 | G. Cowan, K. Cranmer, E. Gross, and O. Vitells | Asymptotic formulae for likelihood-based tests of new physics | EPJC 71 (2011) 1554 | 1007.1727 |
| 59 | CMS Collaboration | Search for single production of a vector-like T quark decaying to a top quark and a neutral scalar boson in lepton+jets final states at $\sqrt{s}= $ 13 TeV | CMS Physics Analysis Summary CMS-PAS-B2G-23-009 |
CMS-PAS-B2G-23-009 |
|
Compact Muon Solenoid LHC, CERN |
|
|
|
|
|
|