CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-SMP-19-006
Study of hard color singlet exchange in dijet events with proton-proton collisions at $\sqrt{s}= $ 13 TeV
Abstract: This note presents a study of proton-proton collision events where the two leading jets are separated by a large pseudorapidity interval devoid of particle activity, known as jet-gap-jet events. Both jets have transverse momentum $p_\text{T, jet} > $ 40 GeV and pseudorapidity 1.4 $ < |\eta_\text{jet}| < $ 4.7, with $\eta_\text{jet-1}\times \eta_\text{jet-2} < $ 0. The analysis is based on data collected by the CMS experiment in proton-proton collisions during a low luminosity, high-$\beta^*$ run in 2015 at $\sqrt{s} = $ 13 TeV, with an integrated luminosity of 0.66 pb$^{-1}$. The number of charged particles detected with transverse momentum $p_\text{T} > $ 200 MeV in the fixed pseudorapidity interval $-1 < \eta < 1$ between the jets is used to discriminate jet-gap-jet events from color exchange dijet events. The fraction of jet-gap-jet events to all dijet events with similar kinematics, $f_\text{CSE}$, is presented as a function of the pseudorapidity difference between the leading two jets, the transverse momentum of the subleading jet, and the azimuthal angle separation between the leading two jets. The results are compared to previous measurements and to perturbative quantum chromodynamics predictions. In addition, the note presents the first study of jet-gap-jet events with a leading proton, interpreted as a proton-gap-jet-gap-jet topology, using a subsample of events collected by the CMS and TOTEM experiments with an integrated luminosity of 0.40 pb$^{-1}$. The leading protons are detected with the Roman pot detectors of the TOTEM experiment. The ratio $f_\text{CSE}$ in this sample is found to be 2.91 $\pm$ 0.70 (stat) $^{+ 1.02}_{- 0.94}$ (syst) times larger than that for inclusive dijet production for dijets with similar kinematics.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
(Left) Schematic diagram of $t$-channel two-gluon exchange in pp collisions, which yields the jet-gap-jet signature reconstructed in the CMS detector. The lines adjacent to the protons represent the proton breakup. (Right) Jet-gap-jet event signature in the $\eta $-$\phi $ plane. The filled circles represent final-state particles. The filled area between the jets denotes the fixed pseudorapidity region $|\eta | < $ 1 devoid of charged particle tracks.

png pdf
Figure 1-a:
(Left) Schematic diagram of $t$-channel two-gluon exchange in pp collisions, which yields the jet-gap-jet signature reconstructed in the CMS detector. The lines adjacent to the protons represent the proton breakup. (Right) Jet-gap-jet event signature in the $\eta $-$\phi $ plane. The filled circles represent final-state particles. The filled area between the jets denotes the fixed pseudorapidity region $|\eta | < $ 1 devoid of charged particle tracks.

png pdf
Figure 1-b:
(Left) Schematic diagram of $t$-channel two-gluon exchange in pp collisions, which yields the jet-gap-jet signature reconstructed in the CMS detector. The lines adjacent to the protons represent the proton breakup. (Right) Jet-gap-jet event signature in the $\eta $-$\phi $ plane. The filled circles represent final-state particles. The filled area between the jets denotes the fixed pseudorapidity region $|\eta | < $ 1 devoid of charged particle tracks.

png pdf
Figure 2:
(Left) Schematic diagram of the production of jet-gap-jet event with a leading proton in pp collisions. The jet-gap-jet signature is observed in the CMS detector, while the leading proton is detected with the forward proton spectrometer of the TOTEM experiment. (Right) Proton-gap-jet-gap-jet event signature in the $\eta $-$\phi $ plane. The filled circles represent final-state particles. The filled areas denote the central gap region $|\eta | < $ 1 where the charged particle track multiplicity is measured, and the forward rapidity gap which is inferred from the forward proton detection.

png pdf
Figure 2-a:
(Left) Schematic diagram of the production of jet-gap-jet event with a leading proton in pp collisions. The jet-gap-jet signature is observed in the CMS detector, while the leading proton is detected with the forward proton spectrometer of the TOTEM experiment. (Right) Proton-gap-jet-gap-jet event signature in the $\eta $-$\phi $ plane. The filled circles represent final-state particles. The filled areas denote the central gap region $|\eta | < $ 1 where the charged particle track multiplicity is measured, and the forward rapidity gap which is inferred from the forward proton detection.

png pdf
Figure 2-b:
(Left) Schematic diagram of the production of jet-gap-jet event with a leading proton in pp collisions. The jet-gap-jet signature is observed in the CMS detector, while the leading proton is detected with the forward proton spectrometer of the TOTEM experiment. (Right) Proton-gap-jet-gap-jet event signature in the $\eta $-$\phi $ plane. The filled circles represent final-state particles. The filled areas denote the central gap region $|\eta | < $ 1 where the charged particle track multiplicity is measured, and the forward rapidity gap which is inferred from the forward proton detection.

png pdf
Figure 3:
Side-view of detectors configuration during the 2015 CMS-TOTEM combined run. The horizontal dashed line indicates the beamline. The CMS detector is denoted by the filled circle in the center. The leading proton(s) are transported via the accelerator magnetic fields (blue rectangles), eventually passing through the silicon detectors housed in the Roman pots (black rectangles) of the TOTEM experiment. Sector 45 and sector 56 are located towards the positive and negative pseudorapidities in the CMS coordinate system, respectively.

png pdf
Figure 4:
Distributions of the ratio of subleading jet transverse momentum to leading jet transverse momentum $p_\text {T, jet-2}/p_\text {T, jet-1}$ (left), azimuthal angle separation between leading two jets $\Delta \phi _\text {jj}$(right), and number of additional jets $N_\text {extra-jets}$ with $p_\text {T,extra-jet} > $ 15 GeV (bottom), for jet-gap-jet candidates with $N_\text {Tracks} = $ 0 in $|\eta | < $ 1 (black) and the color exchange dijet candidates $N_\text {Tracks} \geq $ 3 in $|\eta | < $ 1 (red). The distributions are normalized to unity.

png pdf
Figure 4-a:
Distributions of the ratio of subleading jet transverse momentum to leading jet transverse momentum $p_\text {T, jet-2}/p_\text {T, jet-1}$ (left), azimuthal angle separation between leading two jets $\Delta \phi _\text {jj}$(right), and number of additional jets $N_\text {extra-jets}$ with $p_\text {T,extra-jet} > $ 15 GeV (bottom), for jet-gap-jet candidates with $N_\text {Tracks} = $ 0 in $|\eta | < $ 1 (black) and the color exchange dijet candidates $N_\text {Tracks} \geq $ 3 in $|\eta | < $ 1 (red). The distributions are normalized to unity.

png pdf
Figure 4-b:
Distributions of the ratio of subleading jet transverse momentum to leading jet transverse momentum $p_\text {T, jet-2}/p_\text {T, jet-1}$ (left), azimuthal angle separation between leading two jets $\Delta \phi _\text {jj}$(right), and number of additional jets $N_\text {extra-jets}$ with $p_\text {T,extra-jet} > $ 15 GeV (bottom), for jet-gap-jet candidates with $N_\text {Tracks} = $ 0 in $|\eta | < $ 1 (black) and the color exchange dijet candidates $N_\text {Tracks} \geq $ 3 in $|\eta | < $ 1 (red). The distributions are normalized to unity.

png pdf
Figure 4-c:
Distributions of the ratio of subleading jet transverse momentum to leading jet transverse momentum $p_\text {T, jet-2}/p_\text {T, jet-1}$ (left), azimuthal angle separation between leading two jets $\Delta \phi _\text {jj}$(right), and number of additional jets $N_\text {extra-jets}$ with $p_\text {T,extra-jet} > $ 15 GeV (bottom), for jet-gap-jet candidates with $N_\text {Tracks} = $ 0 in $|\eta | < $ 1 (black) and the color exchange dijet candidates $N_\text {Tracks} \geq $ 3 in $|\eta | < $ 1 (red). The distributions are normalized to unity.

png pdf
Figure 5:
Charged particle multiplicity distribution in the fixed pseudorapidity region $|\eta | < $ 1 for charged particle tracks with ${p_{\mathrm {T}}} > $ 200 MeV for dijet events with 40 $ < p_\text {T, jet-2} < $ 50 GeV. Opposite side (OS) dijet events satisfy $\eta _\text {jet-1}\times \eta _\text {jet-2} < $ 0. Vertical bars, which represent statistical uncertainties, are smaller than the markers for most data points. Results from color exchange dijet background estimation based on the equal side (ES) dijet events and the negative binomial distribution (NBD) function fit are shown on the left and right panels, respectively. The NBD function is fit in 3 $ \leq N_\text {Tracks} \leq $ 35, and extrapolated down to $N_\text {Tracks} = $ 0. The vertical dashed line represents the jet-gap-jet signal region used in the analysis, $N_\text {Tracks} < $ 3. The fraction $f_\text {CSE}$ corresponds to the ratio of the excess of events at low multiplicities relative to the integrated number of events, as described in text. The dashed curve in $N_\text {Tracks} > $ 35 on the right panel is an extrapolation of the NBD fit.

png pdf
Figure 5-a:
Charged particle multiplicity distribution in the fixed pseudorapidity region $|\eta | < $ 1 for charged particle tracks with ${p_{\mathrm {T}}} > $ 200 MeV for dijet events with 40 $ < p_\text {T, jet-2} < $ 50 GeV. Opposite side (OS) dijet events satisfy $\eta _\text {jet-1}\times \eta _\text {jet-2} < $ 0. Vertical bars, which represent statistical uncertainties, are smaller than the markers for most data points. Results from color exchange dijet background estimation based on the equal side (ES) dijet events and the negative binomial distribution (NBD) function fit are shown on the left and right panels, respectively. The NBD function is fit in 3 $ \leq N_\text {Tracks} \leq $ 35, and extrapolated down to $N_\text {Tracks} = $ 0. The vertical dashed line represents the jet-gap-jet signal region used in the analysis, $N_\text {Tracks} < $ 3. The fraction $f_\text {CSE}$ corresponds to the ratio of the excess of events at low multiplicities relative to the integrated number of events, as described in text. The dashed curve in $N_\text {Tracks} > $ 35 on the right panel is an extrapolation of the NBD fit.

png pdf
Figure 5-b:
Charged particle multiplicity distribution in the fixed pseudorapidity region $|\eta | < $ 1 for charged particle tracks with ${p_{\mathrm {T}}} > $ 200 MeV for dijet events with 40 $ < p_\text {T, jet-2} < $ 50 GeV. Opposite side (OS) dijet events satisfy $\eta _\text {jet-1}\times \eta _\text {jet-2} < $ 0. Vertical bars, which represent statistical uncertainties, are smaller than the markers for most data points. Results from color exchange dijet background estimation based on the equal side (ES) dijet events and the negative binomial distribution (NBD) function fit are shown on the left and right panels, respectively. The NBD function is fit in 3 $ \leq N_\text {Tracks} \leq $ 35, and extrapolated down to $N_\text {Tracks} = $ 0. The vertical dashed line represents the jet-gap-jet signal region used in the analysis, $N_\text {Tracks} < $ 3. The fraction $f_\text {CSE}$ corresponds to the ratio of the excess of events at low multiplicities relative to the integrated number of events, as described in text. The dashed curve in $N_\text {Tracks} > $ 35 on the right panel is an extrapolation of the NBD fit.

png pdf
Figure 6:
Distribution of $\xi _p(\text {PF}) - \xi _p(\text {RP})$ in sector 45 (left) and sector 56 (right) in data, where $\xi _p(\text {PF})$ and $\xi _p(\text {RP})$ denote the fractional momentum loss of the proton reconstructed with the particle-flow (PF) candidates of CMS and the Roman pots (RP) of TOTEM, respectively. Vertical bars indicate statistical uncertainties only. The estimated background contamination (beam background events) is represented by the filled histogram, and is estimated from the data, as described in text. No central pseudorapidity gap is required for this plot. The vertical dashed line represents the requirement applied in the analysis to remove most of the beam background contribution.

png pdf
Figure 6-a:
Distribution of $\xi _p(\text {PF}) - \xi _p(\text {RP})$ in sector 45 (left) and sector 56 (right) in data, where $\xi _p(\text {PF})$ and $\xi _p(\text {RP})$ denote the fractional momentum loss of the proton reconstructed with the particle-flow (PF) candidates of CMS and the Roman pots (RP) of TOTEM, respectively. Vertical bars indicate statistical uncertainties only. The estimated background contamination (beam background events) is represented by the filled histogram, and is estimated from the data, as described in text. No central pseudorapidity gap is required for this plot. The vertical dashed line represents the requirement applied in the analysis to remove most of the beam background contribution.

png pdf
Figure 6-b:
Distribution of $\xi _p(\text {PF}) - \xi _p(\text {RP})$ in sector 45 (left) and sector 56 (right) in data, where $\xi _p(\text {PF})$ and $\xi _p(\text {RP})$ denote the fractional momentum loss of the proton reconstructed with the particle-flow (PF) candidates of CMS and the Roman pots (RP) of TOTEM, respectively. Vertical bars indicate statistical uncertainties only. The estimated background contamination (beam background events) is represented by the filled histogram, and is estimated from the data, as described in text. No central pseudorapidity gap is required for this plot. The vertical dashed line represents the requirement applied in the analysis to remove most of the beam background contribution.

png pdf
Figure 7:
Charged particle multiplicity distribution in the fixed pseudorapidity region $|\eta | < $ 1 after the dijet selection and proton selection. Opposite side (OS) dijet events satisfy $\eta _\text {jet-1}\times \eta _\text {jet-2} < $ 0. Vertical bars indicate statistical uncertainties. The filled histogram represents the residual beam related contamination. The contribution of proton-gap-jet-jet events which feature a central gap is modeled with the equal side (ES) dijet events (left) and with the negative binomial distribution (NBD) function fit (right), as described in text. The NBD function is fit in 2 $ \leq N_\text {Tracks} \leq $ 25, and extrapolated down to $N_\text {Tracks} = $ 0. The vertical dashed line represents the jet-gap-jet signal region used in the analysis, $N_\text {Tracks} < $ 2. An excess is observed in the lowest charged particle multiplicity bins, which corresponds to the presence of proton-gap-jet-gap-jet events in the sample. The dashed curve on the right panel represents an extrapolation of the NBD fit to $N_\text {Tracks} > $ 25.

png pdf
Figure 7-a:
Charged particle multiplicity distribution in the fixed pseudorapidity region $|\eta | < $ 1 after the dijet selection and proton selection. Opposite side (OS) dijet events satisfy $\eta _\text {jet-1}\times \eta _\text {jet-2} < $ 0. Vertical bars indicate statistical uncertainties. The filled histogram represents the residual beam related contamination. The contribution of proton-gap-jet-jet events which feature a central gap is modeled with the equal side (ES) dijet events (left) and with the negative binomial distribution (NBD) function fit (right), as described in text. The NBD function is fit in 2 $ \leq N_\text {Tracks} \leq $ 25, and extrapolated down to $N_\text {Tracks} = $ 0. The vertical dashed line represents the jet-gap-jet signal region used in the analysis, $N_\text {Tracks} < $ 2. An excess is observed in the lowest charged particle multiplicity bins, which corresponds to the presence of proton-gap-jet-gap-jet events in the sample. The dashed curve on the right panel represents an extrapolation of the NBD fit to $N_\text {Tracks} > $ 25.

png pdf
Figure 7-b:
Charged particle multiplicity distribution in the fixed pseudorapidity region $|\eta | < $ 1 after the dijet selection and proton selection. Opposite side (OS) dijet events satisfy $\eta _\text {jet-1}\times \eta _\text {jet-2} < $ 0. Vertical bars indicate statistical uncertainties. The filled histogram represents the residual beam related contamination. The contribution of proton-gap-jet-jet events which feature a central gap is modeled with the equal side (ES) dijet events (left) and with the negative binomial distribution (NBD) function fit (right), as described in text. The NBD function is fit in 2 $ \leq N_\text {Tracks} \leq $ 25, and extrapolated down to $N_\text {Tracks} = $ 0. The vertical dashed line represents the jet-gap-jet signal region used in the analysis, $N_\text {Tracks} < $ 2. An excess is observed in the lowest charged particle multiplicity bins, which corresponds to the presence of proton-gap-jet-gap-jet events in the sample. The dashed curve on the right panel represents an extrapolation of the NBD fit to $N_\text {Tracks} > $ 25.

png pdf
Figure 8:
Fraction of color singlet exchange dijet events, $f_\text {CSE}$, measured as a function of $\Delta \eta _\text {jj}$, $p_\text {T,jet-2}$, and $\Delta \phi _\text {jj}$ in pp collisions at $\sqrt {s} = $ 13 TeV. Vertical bars represent statistical uncertainties, while boxes represent the combination of statistical and systematic uncertainties in quadrature. The results are plotted at the mean values of $\Delta \eta _\text {jj}$, $p_\text {T, jet-2}$, and $\Delta \phi _\text {jj}$ in the bin. The results on $f_\text {CSE}$ versus $\Delta \eta _\text {jj}$ and $p_\text {T,jet-2}$ are integrated over $\Delta \phi _\text {jj}$. The solid curve corresponds to theoretical predictions by the Royon, Marquet, Kepka (RMK) model [70,71] with survival probability of $|\mathcal {S}|^2 = $ 10%. The hatched band represents the associated theoretical uncertainties.

png pdf
Figure 8-a:
Fraction of color singlet exchange dijet events, $f_\text {CSE}$, measured as a function of $\Delta \eta _\text {jj}$, $p_\text {T,jet-2}$, and $\Delta \phi _\text {jj}$ in pp collisions at $\sqrt {s} = $ 13 TeV. Vertical bars represent statistical uncertainties, while boxes represent the combination of statistical and systematic uncertainties in quadrature. The results are plotted at the mean values of $\Delta \eta _\text {jj}$, $p_\text {T, jet-2}$, and $\Delta \phi _\text {jj}$ in the bin. The results on $f_\text {CSE}$ versus $\Delta \eta _\text {jj}$ and $p_\text {T,jet-2}$ are integrated over $\Delta \phi _\text {jj}$. The solid curve corresponds to theoretical predictions by the Royon, Marquet, Kepka (RMK) model [70,71] with survival probability of $|\mathcal {S}|^2 = $ 10%. The hatched band represents the associated theoretical uncertainties.

png pdf
Figure 8-b:
Fraction of color singlet exchange dijet events, $f_\text {CSE}$, measured as a function of $\Delta \eta _\text {jj}$, $p_\text {T,jet-2}$, and $\Delta \phi _\text {jj}$ in pp collisions at $\sqrt {s} = $ 13 TeV. Vertical bars represent statistical uncertainties, while boxes represent the combination of statistical and systematic uncertainties in quadrature. The results are plotted at the mean values of $\Delta \eta _\text {jj}$, $p_\text {T, jet-2}$, and $\Delta \phi _\text {jj}$ in the bin. The results on $f_\text {CSE}$ versus $\Delta \eta _\text {jj}$ and $p_\text {T,jet-2}$ are integrated over $\Delta \phi _\text {jj}$. The solid curve corresponds to theoretical predictions by the Royon, Marquet, Kepka (RMK) model [70,71] with survival probability of $|\mathcal {S}|^2 = $ 10%. The hatched band represents the associated theoretical uncertainties.

png pdf
Figure 8-c:
Fraction of color singlet exchange dijet events, $f_\text {CSE}$, measured as a function of $\Delta \eta _\text {jj}$, $p_\text {T,jet-2}$, and $\Delta \phi _\text {jj}$ in pp collisions at $\sqrt {s} = $ 13 TeV. Vertical bars represent statistical uncertainties, while boxes represent the combination of statistical and systematic uncertainties in quadrature. The results are plotted at the mean values of $\Delta \eta _\text {jj}$, $p_\text {T, jet-2}$, and $\Delta \phi _\text {jj}$ in the bin. The results on $f_\text {CSE}$ versus $\Delta \eta _\text {jj}$ and $p_\text {T,jet-2}$ are integrated over $\Delta \phi _\text {jj}$. The solid curve corresponds to theoretical predictions by the Royon, Marquet, Kepka (RMK) model [70,71] with survival probability of $|\mathcal {S}|^2 = $ 10%. The hatched band represents the associated theoretical uncertainties.

png pdf
Figure 9:
Fraction of color singlet exchange dijet events, $f_\text {CSE}$, measured as a function of the subleading jet transverse momentum $p_\text {T,jet-2}$ by the D0 and CDF Collaborations [42,43,40] at $\sqrt {s} = $ 0.63 (red symbols) and 1.8 TeV (green symbols), and by the CMS Collaboration [44] at 7 TeV (magenta symbol) and the present results at 13 TeV (blue band). The central gap is defined by means of the particle activity in the fixed pseudorapidity interval $|\eta | < $ 1 in these measurements.

png pdf
Figure 10:
Fraction of color singlet exchange dijet events, $f_\text {CSE}$, measured as a function of $\Delta \eta _\text {jj}$ by CMS at 7 TeV [44] and the present measurement at 13 TeV. The 7 TeV measurement was performed in three bins of the transverse momentum of the subleading jet $p_\text {T, jet-2} = $ 40-60, 60-100, 100-200 GeV, which are represented by the open circle, square, and cross symbols, respectively.

png pdf
Figure 11:
Gap fraction, $f_\text {CSE}$, measured as a function of $\Delta \eta _\text {jj}$ and $p_\text {T, jet-2}$ in inclusive dijet event production (labeled CMS, represented by the circle marker) and in dijet events with a leading proton at 13 TeV (labeled CMS-TOTEM, represented by the cross marker). Vertical bars represent statistical uncertainties, while boxes represent the combination of statistical and systematic uncertainties in quadrature. The CMS-TOTEM results are plotted at the mean values of $\Delta \eta _\text {jj}$ and $p_\text {T, jet-2}$ in the bin. Most of the CMS-TOTEM events considered here have separations 3 $ < \Delta \eta _\text {jj} < $ 6.5, and transverse momenta 40 $ < p_\text {T, jet-2} < $ 100 GeV, as indicated in the figure.

png pdf
Figure 11-a:
Gap fraction, $f_\text {CSE}$, measured as a function of $\Delta \eta _\text {jj}$ and $p_\text {T, jet-2}$ in inclusive dijet event production (labeled CMS, represented by the circle marker) and in dijet events with a leading proton at 13 TeV (labeled CMS-TOTEM, represented by the cross marker). Vertical bars represent statistical uncertainties, while boxes represent the combination of statistical and systematic uncertainties in quadrature. The CMS-TOTEM results are plotted at the mean values of $\Delta \eta _\text {jj}$ and $p_\text {T, jet-2}$ in the bin. Most of the CMS-TOTEM events considered here have separations 3 $ < \Delta \eta _\text {jj} < $ 6.5, and transverse momenta 40 $ < p_\text {T, jet-2} < $ 100 GeV, as indicated in the figure.

png pdf
Figure 11-b:
Gap fraction, $f_\text {CSE}$, measured as a function of $\Delta \eta _\text {jj}$ and $p_\text {T, jet-2}$ in inclusive dijet event production (labeled CMS, represented by the circle marker) and in dijet events with a leading proton at 13 TeV (labeled CMS-TOTEM, represented by the cross marker). Vertical bars represent statistical uncertainties, while boxes represent the combination of statistical and systematic uncertainties in quadrature. The CMS-TOTEM results are plotted at the mean values of $\Delta \eta _\text {jj}$ and $p_\text {T, jet-2}$ in the bin. Most of the CMS-TOTEM events considered here have separations 3 $ < \Delta \eta _\text {jj} < $ 6.5, and transverse momenta 40 $ < p_\text {T, jet-2} < $ 100 GeV, as indicated in the figure.
Tables

png pdf
Table 1:
Relative systematic uncertainties in percentage for the measurements of $f_\text {CSE}$ in jet-gap-jet events and proton-gap-jet-gap-jet events. The jet-gap-jet results summarize the systematic uncertainties found in bins of the kinematic variables of interest $p_\text {T, jet-2}$, $\Delta \eta _\text {jj}$, and $\Delta \phi _\text {jj}$. When an uncertainty range is given, the range of values is representative of the variation found in the jet-gap-jet fraction in bins of the kinematic variables of interest.

png pdf
Table 2:
Measured values of the jet-gap-jet fraction $f_\text {CSE}$ in bins of pseudorapidity difference between the leading two jets $\Delta \eta _\text {jj}$. The first column indicates the $\Delta \eta _\text {jj}$ intervals and the last column represents the measured fraction. The first and second uncertainties correspond to the statistical and systematic components, respectively. The results are for jets satisfying $p_\text {T, jet} > $ 40 GeV and 0 $ < \Delta \phi _\text {jj} < \pi $. The mean values of $\Delta \eta _\text {jj}$ in the bin are given in the middle column.

png pdf
Table 3:
Measured values of the jet-gap-jet fraction $f_\text {CSE}$ in bins of the subleading jet transverse momentum $p_\text {T,jet-2}$. The first column indicates the $p_\text {T,jet-2}$ bin intervals and the last column represents the measured fraction. The first and second uncertainties correspond to the statistical and systematic components, respectively. The results are for jets satisfying 1.4 $ < |\eta _\text {jet}| < $ 4.7 and 0 $ < \Delta \phi _\text {jj} < \pi $. The mean values of $p_\text {T,jet-2}$ in the bin are given in the middle column.

png pdf
Table 4:
Measured values of the jet-gap-jet fraction $f_\text {CSE}$ in bins of azimuthal angle difference between the leading two jets $\Delta \phi _\text {jj}$. The first column indicates the $\Delta \phi _\text {jj}$ bin intervals and the last column represents the measured fraction. The first and second uncertainties correspond to the statistical and systematic components, respectively. The results are for jets satisfying $p_\text {T, jet} > $ 40 GeV and 1.4 $ < |\eta _\text {jet} | < $ 4.7. The mean values of $\Delta \phi _\text {jj}$ in the bin are given in the middle column.
Summary
Events with two leading jets separated by a large pseudorapidity gap have been studied in pp collisions at $\sqrt{s}=$ 13 TeV with the CMS detector. The "gap'' is determined by the absence of charged particles with ${p_{\mathrm{T}}} > $ 200 MeV in the pseudorapidity range $|\eta| < $ 1 produced in the collision. Each of the two leading jets has pseudorapidity values of 1.4 $ < |\eta_\text{jet}| < $ 4.7 and transverse momentum of $p_\text{T, jet} > $ 40 GeV, with $\eta_\text{jet-1} \times \eta_\text{jet-2} < $ 0. The pseudorapidity gap signature is indicative of an underlying hard color singlet exchange, which is described in terms of two-gluon exchange in perturbative quantum chromodynamics. Jet-gap-jet events appear as an excess of events over the expected charged particle multiplicity of color exchange dijet events at the lowest charged particle multiplicity counts. The fraction of jet-gap-jet events to events where the two jets have similar kinematics, $f_\text{CSE}$, has been measured as a function of the pseudorapidity difference between the leading two jets, $\Delta\eta_\text{jj} \equiv |\eta_\text{jet-1} - \eta_\text{jet-2}|$, the transverse momentum of the subleading jet, $p_\text{T, jet-2}$, and the azimuthal angle separation between the leading two jets, $\Delta\phi_\text{jj} \equiv |\phi_\text{jet-1} - \phi_\text{jet-2}|$.

The fraction $f_\text{CSE}$ has values of 0.6-1%. It increases with $\Delta\eta_\text{jj}$, is only weakly dependent on $p_\text{T, jet-2}$, and increases as $\Delta\phi_\text{jj}$ approaches $\pi$. No significant difference in $f_\text{CSE}$ is observed comparing the present results at 13 TeV with those presented by the CMS Collaboration at 7 TeV. This is in contrast to the trend found at lower collision energies of 0.63 and 1.8 TeV by the D0 and CDF Collaborations, where a significant decrease with increasing energy was observed. The results are compared with calculations based on the Balitsky-Fadin-Kuraev-Lipatov framework with resummation of large logarithms of energy at next-to-leading logarithm accuracy, leading order impact factors, and a constant survival probability factor. The implementation by Royon, Marquet, and Kepka describes some features of the data, but is not able to simultaneously describe all aspects of the measurement. The present disagreement between theory and data provides guidance for further improvements on the perturbative and nonperturbative treatment for pseudorapidity gap formation and destruction mechanisms.

Complementary to the jet-gap-jet study, a sample of dijet events with leading protons collected by the CMS and TOTEM experiments in 2015 is used to study jet-gap-jet events with leading protons, which correspond to proton-gap-jet-gap-jet topologies. This is the first study of this diffractive event topology. The gap fraction extracted in this sample is found to be 2.91 $\pm$ 0.70 (stat) $^{+ 1.02}_{- 0.94}$ (syst) times larger than that found in inclusive dijet production, pointing to a larger abundance of jets with a central gap in events with leading protons. This can be interpreted in terms of a lower spectator parton activity in events with leading protons, which decreases the likelihood of the central gap signature being spoiled.
References
1 Particle Data Group Collaboration Review of Particle Physics PRD 98 (2018) 030001
2 E. A. Kuraev, L. N. Lipatov, and V. S. Fadin The Pomeranchuk singularity in nonabelian gauge theories Sov. Phys. JETP 45 (1977)199
3 I. I. Balitsky and L. N. Lipatov The Pomeranchuk singularity in quantum chromodynamics Sov. J. NP 28 (1978)822
4 L. N. Lipatov The bare pomeron in quantum chromodynamics Sov. Phys. JETP 63 (1986)904
5 V. S. Fadin and L. N. Lipatov BFKL pomeron in the next-to-leading approximation PLB 429 (1998) 127 hep-ph/9802290
6 M. Ciafaloni and G. Camici Energy scale(s) and next-to-leading BFKL equation PLB 430 (1998) 349 hep-ph/9803389
7 CMS Collaboration Azimuthal decorrelation of jets widely separated in rapidity in pp collisions at $ \sqrt{s}= $ 7 TeV JHEP 08 (2016) 139 CMS-FSQ-12-002
1601.06713
8 LHCb Collaboration Updated measurements of exclusive $ \mathrm{J}/\psi $ and $ \psi $(2S) production cross-sections in pp collisions at $ \sqrt{s}= $ 7 TeV JPG 41 (2014) 055002 1401.3288
9 LHCb Collaboration Measurement of the exclusive Y production cross-section in pp collisions at $ {\sqrt{s}=7} $ TeV and 8 TeV JHEP 09 (2015) 084 1505.08139
10 ALICE Collaboration Coherent $ J/\psi $ photoproduction in ultra-peripheral Pb-Pb collisions at $ \sqrt{s_{NN}} = $ 2.76 TeV PLB 718 (2013) 1273 1209.3715
11 ALICE Collaboration Exclusive $ \mathrm{J/}\psi $ photoproduction off protons in ultra-peripheral p-Pb collisions at $ \sqrt{s_{\rm NN}}= $ 5.02 TeV PRL 113 (2014) 232504 1406.7819
12 ALICE Collaboration Coherent $ \rho^{0} $ photoproduction in ultra-peripheral Pb-Pb collisions at $ \sqrt{s_{\mathrm{NN}}}= $ 2.76 TeV JHEP 09 (2015) 095 1503.09177
13 CMS Collaboration Measurement of exclusive $ \Upsilon $ photoproduction from protons in pPb collisions at $ \sqrt{s_\mathrm{NN}} = $ 5.02 TeV EPJC 79 (2019) 277 CMS-FSQ-13-009
1809.11080
14 CMS Collaboration Measurement of exclusive $ \rho(770)^0 $ photoproduction in ultraperipheral pPb collisions at $ \sqrt{s_\mathrm{NN}} = $ 5.02 TeV EPJC 79 (2019) 702 CMS-FSQ-16-007
1902.01339
15 V. N. Gribov and L. N. Lipatov Deep inelastic ep scattering in perturbation theory Sov. J. NP 15 (1972)438
16 G. Altarelli and G. Parisi Asymptotic freedom in parton language NPB 126 (1977) 298
17 Y. L. Dokshitzer Calculation of the structure functions for deep inelastic scattering and e$ ^{+} $ e$ ^{-} $ annihilation by perturbation theory in quantum chromodynamics Sov. Phys. JETP 46 (1977)641
18 CMS Collaboration Measurement of the differential dijet production cross section in proton-proton collisions at $ \sqrt{s}= $ 7 TeV PLB 700 (2011) 187 CMS-QCD-10-025
1104.1693
19 CMS Collaboration Measurement of the inclusive production cross sections for forward jets and for dijet events with one forward and one central jet in pp collisions at $ \sqrt{s}= $ 7 TeV JHEP 06 (2012) 036 CMS-FWD-11-002
1202.0704
20 CMS Collaboration Ratios of dijet production cross sections as a function of the absolute difference in rapidity between jets in proton-proton collisions at $ \sqrt{s}= $ 7 TeV EPJC 72 (2012) 2216 CMS-FWD-10-014
1204.0696
21 CMS Collaboration Measurement of the inclusive jet cross section in pp collisions at $ \sqrt{s} = $ 2.76 TeV EPJC 76 (2016) 265 CMS-SMP-14-017
1512.06212
22 CMS Collaboration Measurement of dijet azimuthal decorrelation in pp collisions at $ \sqrt{s}= $ 8 TeV EPJC 76 (2016) 536 CMS-SMP-14-015
1602.04384
23 CMS Collaboration Measurement of the double-differential inclusive jet cross section in proton-proton collisions at $ \sqrt{s} = $ 13 TeV EPJC 76 (2016) 451 CMS-SMP-15-007
1605.04436
24 CMS Collaboration Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at $ \sqrt{s}= $ 8 TeV and cross section ratios to 2.76 and 7 TeV JHEP 03 (2017) 156 CMS-SMP-14-001
1609.05331
25 CMS Collaboration Azimuthal correlations for inclusive 2-jet, 3-jet, and 4-jet events in pp collisions at $ \sqrt{s}= $ 13 TeV EPJC 78 (2018) 566 CMS-SMP-16-014
1712.05471
26 CMS Collaboration Measurement of inclusive very forward jet cross sections in proton-lead collisions at $ \sqrt{s_{\mathrm{NN}}} = $ 5.02 TeV JHEP 05 (2019) 043 CMS-FSQ-17-001
1812.01691
27 ATLAS Collaboration Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector EPJC 71 (2011) 1512 1009.5908
28 ATLAS Collaboration Measurement of dijet production with a veto on additional central jet activity in pp collisions at $ \sqrt{s}= $ 7 TeV using the ATLAS detector JHEP 09 (2011) 053 1107.1641
29 ATLAS Collaboration Measurement of inclusive jet and dijet production in pp collisions at $ \sqrt{s}= $ 7 TeV using the ATLAS detector PRD 86 (2012) 014022 1112.6297
30 ATLAS Collaboration Measurement of dijet cross sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector JHEP 05 (2014) 059 1312.3524
31 ATLAS Collaboration Measurements of jet vetoes and azimuthal decorrelations in dijet events produced in pp collisions at $ \sqrt{s}= $ 7 TeV using the ATLAS detector EPJC 74 (2014) 3117 1407.5756
32 ATLAS Collaboration Measurement of the inclusive jet cross-sections in proton-proton collisions at $ \sqrt{s}= $ 8 TeV with the ATLAS detector JHEP 09 (2017) 020 1706.03192
33 ATLAS Collaboration Measurement of dijet azimuthal decorrelations in pp collisions at $ \sqrt{s}= $ 8 TeV with the ATLAS detector and determination of the strong coupling PRD 98 (2018) 092004 1805.04691
34 R. D. Ball et al. Parton distributions with small-$ x $ resummation: evidence for BFKL dynamics in HERA data EPJC 78 (2018) 321 1710.05935
35 A. Mueller and W.-K. Tang High energy parton-parton elastic scattering in QCD PLB 284 (1992) 123
36 H1 Collaboration Energy flow and rapidity gaps between jets in photoproduction at HERA EPJC 24 (2002) 517 hep-ex/0203011
37 ZEUS Collaboration Rapidity gaps between jets in photoproduction at HERA PLB 369 (1996) 55 hep-ex/9510012
38 D0 Collaboration Rapidity gaps between jets in p$ \bar{\mathrm{p}} $ collisions at $ \sqrt{s} = $ 1.8 TeV PRL 72 (1994) 2332
39 D0 Collaboration Jet production via strongly-interacting color-singlet exchange in p$ \bar{\mathrm{p}} $ collisions PRL 76 (1996) 734 hep-ex/9509013
40 D0 Collaboration Probing hard color-singlet exchange in p$ \bar{\mathrm{p}} $ collisions at $ \sqrt{s} = $ 630 GeV and 1800 GeV PLB 440 (1998) 189 hep-ex/9809016
41 CDF Collaboration Observation of rapidity gaps in $ \bar{\mathrm{p}} $p collisions at 1.8 TeV PRL 74 (1995) 855
42 CDF Collaboration Dijet production by color-singlet exchange at the Fermilab Tevatron PRL 80 (1998) 1156
43 CDF Collaboration Events with a rapidity gap between jets in $ \bar{\mathrm{p}} $p collisions at $ \sqrt{s} = $ 630 GeV PRL 81 (1998) 5278
44 CMS Collaboration Study of dijet events with a large rapidity gap between the two leading jets in pp collisions at $ \sqrt{s}= $ 7 TeV EPJC 78 (2018) 242 CMS-FSQ-12-001
1710.02586
45 J. D. Bjorken Rapidity gaps and jets as a new-physics signature in very-high-energy hadron-hadron collisions PRD 47 (1993) 101
46 V. Barone and E. Predazzi High-energy particle diffraction Springer, Berlin
47 S. Donnachie, G. Dosch, P. Landshoff, and O. Nachtmann Pomeron physics and QCD Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology. Cambridge University Press
48 J. R. Forshaw and D. A. Ross Quantum chromodynamics and the pomeron Cambridge Lecture Notes in Physics. Cambridge University Press
49 J. Bjorken A full-acceptance detector for SSC physics at low and intermediate mass scales: an expression of interest to the SSC International Journal of Modern Physics A 07 (1992) 4189
50 E. Gotsman, E. Levin, and U. Maor Energy dependence of the survival probability of large rapidity gaps PLB 438 (1998) 229 hep-ph/9804404
51 V. A. Khoze, A. D. Martin, and M. G. Ryskin Diffraction at the LHC EPJC 73 (2013) 2503 1306.2149
52 E. Gotsman, E. Levin, and U. Maor CGC/saturation approach for soft interactions at high energy: survival probability of central exclusive production EPJC 76 (2016) 177 1510.07249
53 V. A. Khoze, A. D. Martin, and M. G. Ryskin Multiple interactions and rapidity gap survival JPG 45 (2018) 053002 1710.11505
54 R. Enberg, G. Ingelman, and L. Motyka Hard color singlet exchange and gaps between jets at the Tevatron PLB 524 (2002) 273 hep-ph/0111090
55 I. Babiarz, R. Staszewski, and A. Szczurek Multi-parton interactions and rapidity gap survival probability in jet-gap-jet processes PLB 771 (2017) 532 1704.00546
56 C. Marquet, C. Royon, M. Trzebi\ifmmode \acuten\else \'n\fiski, and R. \ifmmode \checkZ\else \vZ\fileb\ifmmode \checkc\else \vc\fi\'\ik Gaps between jets in double-Pomeron-exchange processes at the LHC PRD 87 (2013) 034010 1212.2059
57 TOTEM Collaboration The TOTEM experiment at the CERN Large Hadron Collider Journal of Instrumentation 3 (2008) S08007
58 O. S. Broning et al. LHC design report CERN Yellow Reports: Monographs. CERN
59 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
60 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
61 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_t $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
62 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
63 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
64 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
65 TOTEM Collaboration LHC optics measurement with proton tracks detected by the Roman pots of the TOTEM experiment New J. Phys. 16 (2014) 103041 1406.0546
66 TOTEM Collaboration Performance of the TOTEM detectors at the LHC Int. J. Mod. Phys. A 28 (2013) 1330046 1310.2908
67 H. Niewiadomski Reconstruction of protons in the TOTEM Roman pot detectors at the LHC PhD thesis, Manchester U., 2008 CERN-THESIS-2008-080
68 CMS and TOTEM Collaborations Measurement of single-diffractive dijet production in proton-proton collisions at $ \sqrt{s} = $ 8 TeV with the CMS and TOTEM experiments Submitted to EPJC 2002.12146
69 B. Cox, J. R. Forshaw, and L. Lonnblad Hard color singlet exchange at the Tevatron JHEP 10 (1999) 023 hep-ph/9908464
70 F. Chevallier, O. Kepka, C. Marquet, and C. Royon Gaps between jets at hadron colliders in the next-to-leading BFKL framework PRD 79 (2009) 094019 0903.4598
71 O. Kepka, C. Marquet, and C. Royon Gaps between jets in hadronic collisions PRD 83 (2011) 034036 1012.3849
72 A. Giovannini and L. Van Hove Negative binomial multiplicity distributions in high energy hadron collisions Zeitschrift f\"ur Physik C Particles and Fields 30 (1986) 391
73 P. Ghosh Negative binomial multiplicity distribution in proton-proton collisions in limited pseudorapidity intervals at LHC up to $ \sqrt{s} = $ 7 TeV and the clan model PRD 85 (2012) 054017 1202.4221
74 UA5 Collaboration Multiplicity distributions in different pseudorapidity intervals at a c.o.m. energy of 540 GeV PLB 160 (1985) 193
75 UA5 Collaboration Charged particle multiplicity distributions at 200 GeV and 900 GeV c.m. energy Z. Phys. C 43 (1989) 357
76 ALICE Collaboration Charged-particle multiplicities in proton-proton collisions at $ \sqrt{s} = $ 0.9 to 8 TeV EPJC 77 (2017) 33 1509.07541
77 T. Sjostrand et al. An introduction to PYTHIA 8.2 CPC 191 (2015) 159 1410.3012
78 NNPDF Collaboration Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO NPB 855 (2012) 153 1107.2652
79 NNPDF Collaboration Parton distributions with QED corrections NPB 877 (2013) 290 1308.0598
80 B. Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand Parton fragmentation and string dynamics PR 97 (1983) 31
81 CMS Collaboration Event generator tunes obtained from underlying event and multiparton scattering measurements EPJC 76 (2016) 155 CMS-GEN-14-001
1512.00815
82 G. Corcella et al. HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes) JHEP 01 (2001) 010 hep-ph/0011363
83 J. Pumplin et al. New generation of parton distributions with uncertainties from global QCD analysis JHEP 07 (2002) 012 hep-ph/0201195
84 B. R. Webber A QCD model for jet fragmentation including soft gluon interference NPB 238 (1984) 492
85 J. M. Butterworth, J. R. Forshaw, and M. H. Seymour Multiparton interactions in photoproduction at HERA Z. Phys. C 72 (1996) 637 hep-ph/9601371
86 GEANT4 Collaboration GEANT4---a simulation toolkit NIMA 506 (2003) 250
87 D0 Collaboration Hard single diffraction in $ \mathrm{\bar{p}}{\mathrm{p}} $ collisions at $ \sqrt{s} = $ 630 GeV and 1800 GeV PLB 531 (2002) 52 hep-ex/9912061
88 CDF Collaboration Diffractive dijets with a leading antiproton in $ \mathrm{\bar{p}}{\mathrm{p}} $ collisions at $ \sqrt{s} = $ 1800 GeV PRL 84 (2000) 5043
89 CDF Collaboration Diffractive dijet production at $ \sqrt{s} = $ 630 GeV and 1800 GeV at the Fermilab Tevatron PRL 88 (2002) 151802 hep-ex/0109025
90 CDF Collaboration Observation of exclusive dijet production at the Fermilab Tevatron $ \mathrm{\bar{p}}{\mathrm{p}} $ Collider PRD 77 (2008) 052004 0712.0604
91 CDF Collaboration Diffractive Dijet Production in $ \mathrm{\bar{p}}{\mathrm{p}} $ Collisions at $ \sqrt{s}= $ 1.96 TeV PRD 86 (2012) 032009 1206.3955
92 H1 Collaboration Diffractive dijet production with a leading proton in $ \rm{e}{\mathrm{p}} $ collisions at HERA JHEP 05 (2015) 056 1502.01683
93 P. \ifmmode \acuteS\else \'S\fiwierska and M. Trzebi\ifmmode \acuten\else \'n\fiski BFKL amplitude parametrization for the jet-gap-jet events at the LHC energies Acta Phys. Polon. B 46 (2015) 2477 1504.06271
94 M. Hentschinski, J. D. Madrigal Mart\ifmmode \acutei\else \'i\finez, B. Murdaca, and A. Sabio Vera The next-to-leading order vertex for a forward jet plus a rapidity gap at high energies PLB 735 (2014) 168 1404.2937
95 M. Hentschinski, J. D. Madrigal Mart\ifmmode \acutei\else \'i\finez, B. Murdaca, and A. Sabio Vera The gluon-induced Mueller-Tang jet impact factor at next-to-leading order Nuclear Physics B 889 (2014) 549 1409.6704
96 CDF Collaboration Dijet production by double pomeron exchange at the Fermilab Tevatron PRL 85 (2000) 4215
Compact Muon Solenoid
LHC, CERN