CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-BPH-23-008 ; CERN-EP-2025-108
Search for the rare decay $ \mathrm{D^0}\to\mu^{+}\mu^{-} $ in proton-proton collisions at $ \sqrt{s} = $ 13.6 TeV
Phys. Rev. Lett. 135 (2025) 151803
Abstract: A search for the rare decay $ \mathrm{D^0}\to\mu^{+}\mu^{-} $ is reported using proton-proton collision events at $ \sqrt{s} = $ 13.6 TeV collected by the CMS detector in 2022-2023, corresponding to an integrated luminosity of 64.5 fb$ ^{-1} $. This is the first analysis to use a newly developed inclusive dimuon trigger, expanding the scope of the CMS flavor physics program. The search uses $ \mathrm{D^0} $ mesons obtained from $ \mathrm{D}^{*+}\to \mathrm{D^0} \pi^{+} $ decays. No significant excess is observed. A limit on the branching fraction of $ \mathcal{B}(\mathrm{D^0}\to\mu^{+}\mu^{-}) < $ 2.4 $\times$ 10$^{-9} $ at 95% confidence level is set. This is the most stringent upper limit set on any flavor changing neutral current decay in the charm sector.
Figures & Tables Summary Additional Figures References CMS Publications
Figures

png pdf
Figure 1:
The distributions of the dipion invariant mass $ m_{\pi\pi} $ (left) and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (right) along with the associated projections of the full fit (solid curve), the signal contribution (hatched area), and the background contributions (other curves).

png pdf
Figure 1-a:
The distributions of the dipion invariant mass $ m_{\pi\pi} $ (left) and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (right) along with the associated projections of the full fit (solid curve), the signal contribution (hatched area), and the background contributions (other curves).

png pdf
Figure 1-b:
The distributions of the dipion invariant mass $ m_{\pi\pi} $ (left) and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (right) along with the associated projections of the full fit (solid curve), the signal contribution (hatched area), and the background contributions (other curves).

png pdf
Figure 2:
The distributions of $ m_{\mu\mu} $ (left) and $ \Delta m $ (right) of the fit with the requirements 0.145 $ < \Delta m < $ 0.146 GeV and 1.84 $ < m_{\mu\mu} < $ 1.89 GeV, respectively, along with the associated projections of the full fit (solid curve), signal contribution (hatched area), and background contributions (other curves). The $ \mathrm{D^0} $ meson components are scaled up by 20 in the upper panel. The lower panel shows the data and the fit result after subtracting the total background component of the fit. The gray error band represents the statistical and systematic uncertainties in the total background component.

png pdf
Figure 2-a:
The distributions of $ m_{\mu\mu} $ (left) and $ \Delta m $ (right) of the fit with the requirements 0.145 $ < \Delta m < $ 0.146 GeV and 1.84 $ < m_{\mu\mu} < $ 1.89 GeV, respectively, along with the associated projections of the full fit (solid curve), signal contribution (hatched area), and background contributions (other curves). The $ \mathrm{D^0} $ meson components are scaled up by 20 in the upper panel. The lower panel shows the data and the fit result after subtracting the total background component of the fit. The gray error band represents the statistical and systematic uncertainties in the total background component.

png pdf
Figure 2-b:
The distributions of $ m_{\mu\mu} $ (left) and $ \Delta m $ (right) of the fit with the requirements 0.145 $ < \Delta m < $ 0.146 GeV and 1.84 $ < m_{\mu\mu} < $ 1.89 GeV, respectively, along with the associated projections of the full fit (solid curve), signal contribution (hatched area), and background contributions (other curves). The $ \mathrm{D^0} $ meson components are scaled up by 20 in the upper panel. The lower panel shows the data and the fit result after subtracting the total background component of the fit. The gray error band represents the statistical and systematic uncertainties in the total background component.
Tables

png pdf
Table 1:
Summary of systematic uncertainties for the $ \mathrm{D^0}\to\mu^{+}\mu^{-} $ branching fraction measurement with their corresponding contributions in the signal channel.

png pdf
Table 2:
The post-fit event yields for the signal, the combinatorial background, the $ \mathrm{D^0}\to\pi^{+}\pi^{-} $ background, and the $ \mathrm{D^0}\to \pi^{-}\mu^{+}\nu $ background. The observed numbers of events are given in the Data column. The subrange is in one dimension with a full range in the other dimension.
Summary
In summary, a search for $ \mathrm{D^0}\to\mu^{+}\mu^{-} $ decays by the CMS experiment, using proton-proton collision data at $ \sqrt{s} = $ 13.6 TeV corresponding to an integrated luminosity of 64.5 fb$ ^{-1} $, is presented. No significant excess above the fitted background is observed. An upper limit of $ \mathcal{B}(\mathrm{D^0}\to\mu^{+}\mu^{-}) < $ 2.4 $\times$ 10$^{-9} $ is set at 95% confidence level. This search is the most sensitive to date and provides a significant improvement over the previous best result [22], setting the most stringent limit on flavor changing neutral currents in the charm sector. It can be used to set constraints on scenarios that modify $ \mathcal{B}(\mathrm{D^0}\to\mu^{+}\mu^{-}) $. The search is made possible by a newly developed inclusive dimuon trigger and represents its first application. The result demonstrates the benefits of this trigger for flavor physics measurements and its potential to enable opportunities for a wide range of studies involving low-mass muon pairs.
Additional Figures

png pdf
Additional Figure 1:
Distributions of the boosted decision tree discriminator $ d_{\text{MVA}} $ for data and $ \mathrm{D^0}\to\pi^{+}\pi^{-} $ Monte Carlo (MC) samples. The $ \mathrm{D^0}\to\pi^{+}\pi^{-} $ data distribution is extracted using the sPlot technique. The reweighted MC distribution, obtained by applying scale factors derived from a comparison between data and simulation in $ \mathrm{D^0}\to \mathrm{K^-}\pi^{+} $ control samples, is shown for illustration only and is not used in the analysis. The background events are extracted from the data sideband defined by 0.150 $ < \Delta m < $ 0.155 GeV and 1.81 $ < m_{\mu\mu} < $ 2.45 GeV.

png pdf
Additional Figure 2:
The projection of $ m_{\pi\pi} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.144 GeV, 0.144 $ < \Delta m < $ 0.147 GeV, and 0.144 $ < \Delta m < $ 0.147 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\pi\pi} < $ 1.84 GeV, 1.84 $ < m_{\pi\pi} < $ 1.89 GeV, and 1.89 $ < m_{\pi\pi} < $ 1.94 GeV.

png pdf
Additional Figure 2-a:
The projection of $ m_{\pi\pi} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.144 GeV, 0.144 $ < \Delta m < $ 0.147 GeV, and 0.144 $ < \Delta m < $ 0.147 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\pi\pi} < $ 1.84 GeV, 1.84 $ < m_{\pi\pi} < $ 1.89 GeV, and 1.89 $ < m_{\pi\pi} < $ 1.94 GeV.

png pdf
Additional Figure 2-b:
The projection of $ m_{\pi\pi} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.144 GeV, 0.144 $ < \Delta m < $ 0.147 GeV, and 0.144 $ < \Delta m < $ 0.147 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\pi\pi} < $ 1.84 GeV, 1.84 $ < m_{\pi\pi} < $ 1.89 GeV, and 1.89 $ < m_{\pi\pi} < $ 1.94 GeV.

png pdf
Additional Figure 2-c:
The projection of $ m_{\pi\pi} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.144 GeV, 0.144 $ < \Delta m < $ 0.147 GeV, and 0.144 $ < \Delta m < $ 0.147 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\pi\pi} < $ 1.84 GeV, 1.84 $ < m_{\pi\pi} < $ 1.89 GeV, and 1.89 $ < m_{\pi\pi} < $ 1.94 GeV.

png pdf
Additional Figure 2-d:
The projection of $ m_{\pi\pi} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.144 GeV, 0.144 $ < \Delta m < $ 0.147 GeV, and 0.144 $ < \Delta m < $ 0.147 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\pi\pi} < $ 1.84 GeV, 1.84 $ < m_{\pi\pi} < $ 1.89 GeV, and 1.89 $ < m_{\pi\pi} < $ 1.94 GeV.

png pdf
Additional Figure 2-e:
The projection of $ m_{\pi\pi} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.144 GeV, 0.144 $ < \Delta m < $ 0.147 GeV, and 0.144 $ < \Delta m < $ 0.147 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\pi\pi} < $ 1.84 GeV, 1.84 $ < m_{\pi\pi} < $ 1.89 GeV, and 1.89 $ < m_{\pi\pi} < $ 1.94 GeV.

png pdf
Additional Figure 2-f:
The projection of $ m_{\pi\pi} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.144 GeV, 0.144 $ < \Delta m < $ 0.147 GeV, and 0.144 $ < \Delta m < $ 0.147 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\pi\pi} < $ 1.84 GeV, 1.84 $ < m_{\pi\pi} < $ 1.89 GeV, and 1.89 $ < m_{\pi\pi} < $ 1.94 GeV.

png pdf
Additional Figure 3:
Dipion invariant mass $ m_{\pi\pi} $ (left) and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (right) from the reconstructed candidates from zero bias samples before $ d_{\text{MVA}} $ selection.

png pdf
Additional Figure 3-a:
Dipion invariant mass $ m_{\pi\pi} $ (left) and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (right) from the reconstructed candidates from zero bias samples before $ d_{\text{MVA}} $ selection.

png pdf
Additional Figure 3-b:
Dipion invariant mass $ m_{\pi\pi} $ (left) and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (right) from the reconstructed candidates from zero bias samples before $ d_{\text{MVA}} $ selection.

png pdf
Additional Figure 4:
Invariant mass of $ \mathrm{K}\pi $ system $ m_{\mathrm{K}\pi} $ (left) and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (right) from the reconstructed candidates from zero bias samples after full selection in the $ \mathrm{D^0}\to \mathrm{K^-}\pi^{+} $ channel.

png pdf
Additional Figure 4-a:
Invariant mass of $ \mathrm{K}\pi $ system $ m_{\mathrm{K}\pi} $ (left) and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (right) from the reconstructed candidates from zero bias samples after full selection in the $ \mathrm{D^0}\to \mathrm{K^-}\pi^{+} $ channel.

png pdf
Additional Figure 4-b:
Invariant mass of $ \mathrm{K}\pi $ system $ m_{\mathrm{K}\pi} $ (left) and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (right) from the reconstructed candidates from zero bias samples after full selection in the $ \mathrm{D^0}\to \mathrm{K^-}\pi^{+} $ channel.

png pdf
Additional Figure 5:
The one-dimensional fit to the distribution of $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ in the dimuon channel, where the $ \mathrm{K}\pi $ mass hypothesis is used to reconstruct $ \mathrm{D^0} $ candidate. The signal component represents the contribution from the $ \mathrm{D^0}\to \mathrm{K^-}\pi^{+} $ in which both of the hadrons are misidentified as muons. The semileptonic background comes from the $ \mathrm{D^0}\to \mathrm{K^-}\mu^+\nu $ and $ \mathrm{D^0}\to \pi^{-}\mu^+\nu $ processes. Both the signal and semileptonic background components are modeled using simulations.

png pdf
Additional Figure 6:
The distribution of $ m_{\mu\mu} $ in 2022-2023 data used to extract the $ \mathrm{K^0_S}\to\pi^{+}\pi^{-} $ contribution, where both pions are misidentified as muons (left), and comparison of the $ m_{\mu\mu} $ modeling for this process extracted from data and simulation (right).

png pdf
Additional Figure 6-a:
The distribution of $ m_{\mu\mu} $ in 2022-2023 data used to extract the $ \mathrm{K^0_S}\to\pi^{+}\pi^{-} $ contribution, where both pions are misidentified as muons (left), and comparison of the $ m_{\mu\mu} $ modeling for this process extracted from data and simulation (right).

png pdf
Additional Figure 6-b:
The distribution of $ m_{\mu\mu} $ in 2022-2023 data used to extract the $ \mathrm{K^0_S}\to\pi^{+}\pi^{-} $ contribution, where both pions are misidentified as muons (left), and comparison of the $ m_{\mu\mu} $ modeling for this process extracted from data and simulation (right).

png pdf
Additional Figure 7:
The projection of $ m_{\mu\mu} $ (left) and $ \Delta m $ (right) of the fit in the full $ m_{\mu\mu} $ and $ \Delta m $ range. The $ \mathrm{D^0} $ meson components are scaled up by 20 in the upper panel. The lower panel shows the data and the fit result after subtracting the total background component of the fit. The gray error band represents the statistical and systematic uncertainties in the total background component.

png pdf
Additional Figure 7-a:
The projection of $ m_{\mu\mu} $ (left) and $ \Delta m $ (right) of the fit in the full $ m_{\mu\mu} $ and $ \Delta m $ range. The $ \mathrm{D^0} $ meson components are scaled up by 20 in the upper panel. The lower panel shows the data and the fit result after subtracting the total background component of the fit. The gray error band represents the statistical and systematic uncertainties in the total background component.

png pdf
Additional Figure 7-b:
The projection of $ m_{\mu\mu} $ (left) and $ \Delta m $ (right) of the fit in the full $ m_{\mu\mu} $ and $ \Delta m $ range. The $ \mathrm{D^0} $ meson components are scaled up by 20 in the upper panel. The lower panel shows the data and the fit result after subtracting the total background component of the fit. The gray error band represents the statistical and systematic uncertainties in the total background component.

png pdf
Additional Figure 8:
The projection of $ m_{\mu\mu} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.145 GeV and 0.145 $ < \Delta m < $ 0.150 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\mu\mu} < $ 1.84 GeV and 1.89 $ < m_{\mu\mu} < $ 1.94 GeV. The $ \mathrm{D^0} $ meson components are scaled by 20 in the upper panel. The lower panel shows the data and the fit result after subtraction of the total background component. The gray error band represents the statistical and systematic uncertainties in the total background component.

png pdf
Additional Figure 8-a:
The projection of $ m_{\mu\mu} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.145 GeV and 0.145 $ < \Delta m < $ 0.150 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\mu\mu} < $ 1.84 GeV and 1.89 $ < m_{\mu\mu} < $ 1.94 GeV. The $ \mathrm{D^0} $ meson components are scaled by 20 in the upper panel. The lower panel shows the data and the fit result after subtraction of the total background component. The gray error band represents the statistical and systematic uncertainties in the total background component.

png pdf
Additional Figure 8-b:
The projection of $ m_{\mu\mu} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.145 GeV and 0.145 $ < \Delta m < $ 0.150 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\mu\mu} < $ 1.84 GeV and 1.89 $ < m_{\mu\mu} < $ 1.94 GeV. The $ \mathrm{D^0} $ meson components are scaled by 20 in the upper panel. The lower panel shows the data and the fit result after subtraction of the total background component. The gray error band represents the statistical and systematic uncertainties in the total background component.

png pdf
Additional Figure 8-c:
The projection of $ m_{\mu\mu} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.145 GeV and 0.145 $ < \Delta m < $ 0.150 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\mu\mu} < $ 1.84 GeV and 1.89 $ < m_{\mu\mu} < $ 1.94 GeV. The $ \mathrm{D^0} $ meson components are scaled by 20 in the upper panel. The lower panel shows the data and the fit result after subtraction of the total background component. The gray error band represents the statistical and systematic uncertainties in the total background component.

png pdf
Additional Figure 8-d:
The projection of $ m_{\mu\mu} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.145 GeV and 0.145 $ < \Delta m < $ 0.150 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\mu\mu} < $ 1.84 GeV and 1.89 $ < m_{\mu\mu} < $ 1.94 GeV. The $ \mathrm{D^0} $ meson components are scaled by 20 in the upper panel. The lower panel shows the data and the fit result after subtraction of the total background component. The gray error band represents the statistical and systematic uncertainties in the total background component.

png pdf
Additional Figure 9:
The profile likelihood scan as a function of $ \mathrm{D^0}\to\mu^{+}\mu^{-} $ decay branching fraction.

png pdf
Additional Figure 10:
The upper limits on the $ \mathrm{D^0}\to\mu^{+}\mu^{-} $ branching fraction using the CLs method.

png pdf
Additional Figure 11:
Historical progression of the upper limit (UL) on the branching fraction of $ \mathrm{D^0}\to\mu^{+}\mu^{-} $, including the CMS result from this analysis.

png pdf
Additional Figure 12:
Historical progression of the upper limit (UL) on the branching fraction of $ \mathrm{D^0}\to\mu^{+}\mu^{-} $, including the CMS result from this analysis and the standard model (SM) prediction.
References
1 Particle Data Group , S. Navas et al. Review of particle physics PRD 110 (2024) 030001
2 CMS Collaboration Angular analysis of the decay B$ ^+\to $ K$ ^+\mu^+\mu^- $ in proton-proton collisions at $ \sqrt{s} = $ 8 TeV PRD 98 (2018) 112011 CMS-BPH-15-001
1806.00636
3 CMS Collaboration Angular analysis of the $ {\mathrm{B}}^0 \to \mathrm{K}^*(892)^{0}\mu^{+}\mu^{-} $ decay in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PLB 864 (2025) 139406 CMS-BPH-21-002
2411.11820
4 CMS Collaboration Angular analysis of the decay B$ ^+ \to $ K$ ^* $(892)$ ^+\mu^+\mu^- $ in proton-proton collisions at $ \sqrt{s} = $ 8 TeV JHEP 04 (2021) 124 CMS-BPH-15-009
2010.13968
5 CMS Collaboration Test of lepton flavor universality in B$ ^{\pm} \to $ K$ ^{\pm}\mu^+\mu^- $ and B$ ^{\pm} \to $ K$ ^{\pm} $e$ ^+ $e$ ^- $ decays in proton-proton collisions at $ \sqrt{s} $ = 13 TeV Rept. Prog. Phys. 87 (2024) 077802 CMS-BPH-22-005
2401.07090
6 CMS Collaboration Measurement of the $ \mathrm{B}_{s}^{0} \to\mu^{+}\mu^{-} $ decay properties and search for the $ {\mathrm{B}^0} \to \mu^{+}\mu^{-} $ decay in proton-proton collisions at $ \sqrt{s} $ = 13 TeV PLB 842 (2023) 137955 CMS-BPH-21-006
2212.10311
7 LHCb Collaboration Test of lepton universality in beauty-quark decays [Addendum: \DOI10./s41567-023-02289-4], 2022
Nature Physics 18 (2022) 277
2103.11769
8 LHCb Collaboration Angular analysis of the $ {\mathrm{B}}^{+} \to \mathrm{K}^{*+}\mu^{+}\mu^{-} $ Decay PRL 126 (2021) 161802 2012.13241
9 LHCb Collaboration Measurement of $ CP $-Averaged observables in the $ {\mathrm{B}^0} \to \mathrm{K}^{*0}\mu^{+}\mu^{-} $ Decay PRL 125 (2020) 011802 2003.04831
10 LHCb Collaboration Branching fraction measurements of the rare $ \mathrm{B}_{s}^{0} \to \phi\mu^{+}\mu^{-} $ and $ \mathrm{B}_{s}^{0} \to {f}_{2}^{'}(1525)\mu^{+}\mu^{-} $ decays PRL 127 (2021) 151801 2105.14007
11 LHCb Collaboration Angular analysis of the rare decay $ \mathrm{B}_{s}^{0}\to\phi\mu^{+}\mu^{-} $ JHEP 11 (2021) 043 2107.13428
12 LHCb Collaboration Measurement of the $ \mathrm{B}_{s}^{0} \to\mu^{+}\mu^{-} $ decay properties and search for the $ {\mathrm{B}^0} \to \mu^{+}\mu^{-} $ and $ \mathrm{B}_{s}^{0}\to\mu^{+}\mu^{-}\gamma $ decays PRD 105 (2022) 012010 2108.09283
13 LHCb Collaboration Analysis of neutral $ {\mathrm{B}} $-meson decays into two muons PRL 128 (2022) 041801 2108.09284
14 ATLAS Collaboration Study of the rare decays of $ \mathrm{B}_{s}^{0} $ and $ {\mathrm{B}^0} $ mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector JHEP 04 (2019) 098 1812.03017
15 ATLAS Collaboration Measurement of the $ \mathrm{B}_{s}^{0} \to\mu^{+}\mu^{-} $ effective lifetime with the ATLAS detector JHEP 09 (2023) 199 2308.01171
16 Belle-II Collaboration Evidence for $ {\mathrm{B}^{+}}\to\mathrm{K^+}\nu\overline{\nu} $ decays PRD 109 (2024) 112006 2311.14647
17 NA62 Collaboration A measurement of the $ \mathrm{K^+} \to \pi^{+}\mu^{+}\mu^{-} $ decay [Addendum: \DOI10./JHEP06()040], 2022
JHEP 11 (2022) 011
2209.05076
18 G. Burdman, E. Golowich, J. Hewett, and S. Pakvasa Rare charm decays in the standard model and beyond PRD 66 (2002) 014009 hep-ph/0112235
19 E. Golowich, J. Hewett, S. Pakvasa, and A. A. Petrov Relating $ \mathrm{D^0}-\overline{\mathrm{D}}^{0} $ mixing and $ \mathrm{D^0}\to\ell^{+}\ell^{-} $ with new physics PRD 79 (2009) 114030 0903.2830
20 S. Fajfer and N. Ko \v s nik Leptoquarks in flavor changing neutral current charm decays PRD 79 (2009) 017502 0810.4858
21 I. Dor \v s ner et al. Physics of leptoquarks in precision experiments and at particle colliders Phys. Rept. 641 (2016) 1 1603.04993
22 LHCb Collaboration Search for rare decays of $ \mathrm{D^0} $ mesons into two muons PRL 131 (2023) 041804 2212.11203
23 CMS Collaboration Enriching the physics program of the CMS experiment via data scouting and data parking Phys. Rep. 1115 (2025) 678 CMS-EXO-23-007
2403.16134
24 CMS Collaboration HEPData record for this analysis link
25 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
26 CMS Collaboration Development of the CMS detector for the CERN LHC Run 3 JINST 19 (2024) P05064
27 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
28 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
29 CMS Collaboration Performance of the CMS high-level trigger during LHC run 2 JINST 19 (2024) P11021 CMS-TRG-19-001
2410.17038
30 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) P05014 CMS-EGM-17-001
2012.06888
31 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
32 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
33 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
34 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
35 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
36 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
37 D. J. Lange The EvtGen particle decay simulation package NIM A 462 (2001) 152
38 N. Davidson, T. Przedzinski, and Z. Was PHOTOS interface in C++: technical and physics documentation Comput. Phys. Commun. 199 (2016) 86 1011.0937
39 K. Prokofiev and T. Speer A kinematic and a decay chain reconstruction library in \it \/, 2005
Proceedings of Computing in High Energy and Nuclear Physics 200 (2005) 411
40 E. Gross and O. Vitells Trial factors for the look elsewhere effect in high energy physics EPJC 70 (2010) 525 1005.1891
41 T. Chen and C. Guestrin XGBoost: A scalable tree boosting system in \it nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining\/, KDD '16, . ACM, New York, NY, USA, 2016
Proc. 2 (2016) 785
42 A. Blum, A. Kalai, and J. Langford Beating the hold-out: Bounds for k-fold and progressive cross-validation in th Ann. Conf. on Computational Learning Theory, COLT '99, 1999
Proc. 1 (1999) 203
43 S. Bernstein Démonstration du théor\ème de Weierstrass fondée sur le calcul des probabilitiés Comm. Soc. Math. Kharkov 13 (1912) 1
44 P. D. Dauncey, M. Kenzie, N. Wardle, and G. J. Davies Handling uncertainties in background shapes: the discrete profiling method JINST 10 (2015) P04015 1408.6865
45 CMS Collaboration Performance of CMS muon reconstruction in pp collision events at $ \sqrt{s} = $ 7 TeV JINST 7 (2012) P10002 CMS-MUO-10-004
1206.4071
46 CMS Collaboration Tracking performances for charged pions with Run 2 legacy data CMS Detector Performance Note CMS-DP-2022-012, 2022
CDS
47 CMS Collaboration The CMS statistical analysis and combination tool: COMBINE Comput. Softw. Big Sci. 8 (2024) 19 CMS-CAT-23-001
2404.06614
48 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435 hep-ex/9902006
49 A. L. Read Presentation of search results: The $ \text{CL}_\text{s} $ technique JPG 28 (2002) 2693
50 CMS Collaboration Identification of low-momentum muons in the CMS detector using multivariate techniques in proton-proton collisions at $ \sqrt{s}= $ 13.6 TeV JINST 20 (2025) P04021 CMS-MUO-24-001
2412.17590
Compact Muon Solenoid
LHC, CERN