| CMS-BPH-23-008 ; CERN-EP-2025-108 | ||
| Search for the rare decay $ \mathrm{D^0}\to\mu^{+}\mu^{-} $ in proton-proton collisions at $ \sqrt{s} = $ 13.6 TeV | ||
| CMS Collaboration | ||
| 6 June 2025 | ||
| Phys. Rev. Lett. 135 (2025) 151803 | ||
| Abstract: A search for the rare decay $ \mathrm{D^0}\to\mu^{+}\mu^{-} $ is reported using proton-proton collision events at $ \sqrt{s} = $ 13.6 TeV collected by the CMS detector in 2022-2023, corresponding to an integrated luminosity of 64.5 fb$ ^{-1} $. This is the first analysis to use a newly developed inclusive dimuon trigger, expanding the scope of the CMS flavor physics program. The search uses $ \mathrm{D^0} $ mesons obtained from $ \mathrm{D}^{*+}\to \mathrm{D^0} \pi^{+} $ decays. No significant excess is observed. A limit on the branching fraction of $ \mathcal{B}(\mathrm{D^0}\to\mu^{+}\mu^{-}) < $ 2.4 $\times$ 10$^{-9} $ at 95% confidence level is set. This is the most stringent upper limit set on any flavor changing neutral current decay in the charm sector. | ||
| Links: e-print arXiv:2506.06152 [hep-ex] (PDF) ; CDS record ; inSPIRE record ; HepData record ; CADI line (restricted) ; | ||
| Figures & Tables | Summary | Additional Figures | References | CMS Publications |
|---|
| Figures | |
|
png pdf |
Figure 1:
The distributions of the dipion invariant mass $ m_{\pi\pi} $ (left) and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (right) along with the associated projections of the full fit (solid curve), the signal contribution (hatched area), and the background contributions (other curves). |
|
png pdf |
Figure 1-a:
The distributions of the dipion invariant mass $ m_{\pi\pi} $ (left) and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (right) along with the associated projections of the full fit (solid curve), the signal contribution (hatched area), and the background contributions (other curves). |
|
png pdf |
Figure 1-b:
The distributions of the dipion invariant mass $ m_{\pi\pi} $ (left) and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (right) along with the associated projections of the full fit (solid curve), the signal contribution (hatched area), and the background contributions (other curves). |
|
png pdf |
Figure 2:
The distributions of $ m_{\mu\mu} $ (left) and $ \Delta m $ (right) of the fit with the requirements 0.145 $ < \Delta m < $ 0.146 GeV and 1.84 $ < m_{\mu\mu} < $ 1.89 GeV, respectively, along with the associated projections of the full fit (solid curve), signal contribution (hatched area), and background contributions (other curves). The $ \mathrm{D^0} $ meson components are scaled up by 20 in the upper panel. The lower panel shows the data and the fit result after subtracting the total background component of the fit. The gray error band represents the statistical and systematic uncertainties in the total background component. |
|
png pdf |
Figure 2-a:
The distributions of $ m_{\mu\mu} $ (left) and $ \Delta m $ (right) of the fit with the requirements 0.145 $ < \Delta m < $ 0.146 GeV and 1.84 $ < m_{\mu\mu} < $ 1.89 GeV, respectively, along with the associated projections of the full fit (solid curve), signal contribution (hatched area), and background contributions (other curves). The $ \mathrm{D^0} $ meson components are scaled up by 20 in the upper panel. The lower panel shows the data and the fit result after subtracting the total background component of the fit. The gray error band represents the statistical and systematic uncertainties in the total background component. |
|
png pdf |
Figure 2-b:
The distributions of $ m_{\mu\mu} $ (left) and $ \Delta m $ (right) of the fit with the requirements 0.145 $ < \Delta m < $ 0.146 GeV and 1.84 $ < m_{\mu\mu} < $ 1.89 GeV, respectively, along with the associated projections of the full fit (solid curve), signal contribution (hatched area), and background contributions (other curves). The $ \mathrm{D^0} $ meson components are scaled up by 20 in the upper panel. The lower panel shows the data and the fit result after subtracting the total background component of the fit. The gray error band represents the statistical and systematic uncertainties in the total background component. |
| Tables | |
|
png pdf |
Table 1:
Summary of systematic uncertainties for the $ \mathrm{D^0}\to\mu^{+}\mu^{-} $ branching fraction measurement with their corresponding contributions in the signal channel. |
|
png pdf |
Table 2:
The post-fit event yields for the signal, the combinatorial background, the $ \mathrm{D^0}\to\pi^{+}\pi^{-} $ background, and the $ \mathrm{D^0}\to \pi^{-}\mu^{+}\nu $ background. The observed numbers of events are given in the Data column. The subrange is in one dimension with a full range in the other dimension. |
| Summary |
| In summary, a search for $ \mathrm{D^0}\to\mu^{+}\mu^{-} $ decays by the CMS experiment, using proton-proton collision data at $ \sqrt{s} = $ 13.6 TeV corresponding to an integrated luminosity of 64.5 fb$ ^{-1} $, is presented. No significant excess above the fitted background is observed. An upper limit of $ \mathcal{B}(\mathrm{D^0}\to\mu^{+}\mu^{-}) < $ 2.4 $\times$ 10$^{-9} $ is set at 95% confidence level. This search is the most sensitive to date and provides a significant improvement over the previous best result [22], setting the most stringent limit on flavor changing neutral currents in the charm sector. It can be used to set constraints on scenarios that modify $ \mathcal{B}(\mathrm{D^0}\to\mu^{+}\mu^{-}) $. The search is made possible by a newly developed inclusive dimuon trigger and represents its first application. The result demonstrates the benefits of this trigger for flavor physics measurements and its potential to enable opportunities for a wide range of studies involving low-mass muon pairs. |
| Additional Figures | |
|
png pdf |
Additional Figure 1:
Distributions of the boosted decision tree discriminator $ d_{\text{MVA}} $ for data and $ \mathrm{D^0}\to\pi^{+}\pi^{-} $ Monte Carlo (MC) samples. The $ \mathrm{D^0}\to\pi^{+}\pi^{-} $ data distribution is extracted using the sPlot technique. The reweighted MC distribution, obtained by applying scale factors derived from a comparison between data and simulation in $ \mathrm{D^0}\to \mathrm{K^-}\pi^{+} $ control samples, is shown for illustration only and is not used in the analysis. The background events are extracted from the data sideband defined by 0.150 $ < \Delta m < $ 0.155 GeV and 1.81 $ < m_{\mu\mu} < $ 2.45 GeV. |
|
png pdf |
Additional Figure 2:
The projection of $ m_{\pi\pi} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.144 GeV, 0.144 $ < \Delta m < $ 0.147 GeV, and 0.144 $ < \Delta m < $ 0.147 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\pi\pi} < $ 1.84 GeV, 1.84 $ < m_{\pi\pi} < $ 1.89 GeV, and 1.89 $ < m_{\pi\pi} < $ 1.94 GeV. |
|
png pdf |
Additional Figure 2-a:
The projection of $ m_{\pi\pi} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.144 GeV, 0.144 $ < \Delta m < $ 0.147 GeV, and 0.144 $ < \Delta m < $ 0.147 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\pi\pi} < $ 1.84 GeV, 1.84 $ < m_{\pi\pi} < $ 1.89 GeV, and 1.89 $ < m_{\pi\pi} < $ 1.94 GeV. |
|
png pdf |
Additional Figure 2-b:
The projection of $ m_{\pi\pi} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.144 GeV, 0.144 $ < \Delta m < $ 0.147 GeV, and 0.144 $ < \Delta m < $ 0.147 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\pi\pi} < $ 1.84 GeV, 1.84 $ < m_{\pi\pi} < $ 1.89 GeV, and 1.89 $ < m_{\pi\pi} < $ 1.94 GeV. |
|
png pdf |
Additional Figure 2-c:
The projection of $ m_{\pi\pi} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.144 GeV, 0.144 $ < \Delta m < $ 0.147 GeV, and 0.144 $ < \Delta m < $ 0.147 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\pi\pi} < $ 1.84 GeV, 1.84 $ < m_{\pi\pi} < $ 1.89 GeV, and 1.89 $ < m_{\pi\pi} < $ 1.94 GeV. |
|
png pdf |
Additional Figure 2-d:
The projection of $ m_{\pi\pi} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.144 GeV, 0.144 $ < \Delta m < $ 0.147 GeV, and 0.144 $ < \Delta m < $ 0.147 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\pi\pi} < $ 1.84 GeV, 1.84 $ < m_{\pi\pi} < $ 1.89 GeV, and 1.89 $ < m_{\pi\pi} < $ 1.94 GeV. |
|
png pdf |
Additional Figure 2-e:
The projection of $ m_{\pi\pi} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.144 GeV, 0.144 $ < \Delta m < $ 0.147 GeV, and 0.144 $ < \Delta m < $ 0.147 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\pi\pi} < $ 1.84 GeV, 1.84 $ < m_{\pi\pi} < $ 1.89 GeV, and 1.89 $ < m_{\pi\pi} < $ 1.94 GeV. |
|
png pdf |
Additional Figure 2-f:
The projection of $ m_{\pi\pi} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.144 GeV, 0.144 $ < \Delta m < $ 0.147 GeV, and 0.144 $ < \Delta m < $ 0.147 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\pi\pi} < $ 1.84 GeV, 1.84 $ < m_{\pi\pi} < $ 1.89 GeV, and 1.89 $ < m_{\pi\pi} < $ 1.94 GeV. |
|
png pdf |
Additional Figure 3:
Dipion invariant mass $ m_{\pi\pi} $ (left) and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (right) from the reconstructed candidates from zero bias samples before $ d_{\text{MVA}} $ selection. |
|
png pdf |
Additional Figure 3-a:
Dipion invariant mass $ m_{\pi\pi} $ (left) and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (right) from the reconstructed candidates from zero bias samples before $ d_{\text{MVA}} $ selection. |
|
png pdf |
Additional Figure 3-b:
Dipion invariant mass $ m_{\pi\pi} $ (left) and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (right) from the reconstructed candidates from zero bias samples before $ d_{\text{MVA}} $ selection. |
|
png pdf |
Additional Figure 4:
Invariant mass of $ \mathrm{K}\pi $ system $ m_{\mathrm{K}\pi} $ (left) and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (right) from the reconstructed candidates from zero bias samples after full selection in the $ \mathrm{D^0}\to \mathrm{K^-}\pi^{+} $ channel. |
|
png pdf |
Additional Figure 4-a:
Invariant mass of $ \mathrm{K}\pi $ system $ m_{\mathrm{K}\pi} $ (left) and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (right) from the reconstructed candidates from zero bias samples after full selection in the $ \mathrm{D^0}\to \mathrm{K^-}\pi^{+} $ channel. |
|
png pdf |
Additional Figure 4-b:
Invariant mass of $ \mathrm{K}\pi $ system $ m_{\mathrm{K}\pi} $ (left) and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (right) from the reconstructed candidates from zero bias samples after full selection in the $ \mathrm{D^0}\to \mathrm{K^-}\pi^{+} $ channel. |
|
png pdf |
Additional Figure 5:
The one-dimensional fit to the distribution of $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ in the dimuon channel, where the $ \mathrm{K}\pi $ mass hypothesis is used to reconstruct $ \mathrm{D^0} $ candidate. The signal component represents the contribution from the $ \mathrm{D^0}\to \mathrm{K^-}\pi^{+} $ in which both of the hadrons are misidentified as muons. The semileptonic background comes from the $ \mathrm{D^0}\to \mathrm{K^-}\mu^+\nu $ and $ \mathrm{D^0}\to \pi^{-}\mu^+\nu $ processes. Both the signal and semileptonic background components are modeled using simulations. |
|
png pdf |
Additional Figure 6:
The distribution of $ m_{\mu\mu} $ in 2022-2023 data used to extract the $ \mathrm{K^0_S}\to\pi^{+}\pi^{-} $ contribution, where both pions are misidentified as muons (left), and comparison of the $ m_{\mu\mu} $ modeling for this process extracted from data and simulation (right). |
|
png pdf |
Additional Figure 6-a:
The distribution of $ m_{\mu\mu} $ in 2022-2023 data used to extract the $ \mathrm{K^0_S}\to\pi^{+}\pi^{-} $ contribution, where both pions are misidentified as muons (left), and comparison of the $ m_{\mu\mu} $ modeling for this process extracted from data and simulation (right). |
|
png pdf |
Additional Figure 6-b:
The distribution of $ m_{\mu\mu} $ in 2022-2023 data used to extract the $ \mathrm{K^0_S}\to\pi^{+}\pi^{-} $ contribution, where both pions are misidentified as muons (left), and comparison of the $ m_{\mu\mu} $ modeling for this process extracted from data and simulation (right). |
|
png pdf |
Additional Figure 7:
The projection of $ m_{\mu\mu} $ (left) and $ \Delta m $ (right) of the fit in the full $ m_{\mu\mu} $ and $ \Delta m $ range. The $ \mathrm{D^0} $ meson components are scaled up by 20 in the upper panel. The lower panel shows the data and the fit result after subtracting the total background component of the fit. The gray error band represents the statistical and systematic uncertainties in the total background component. |
|
png pdf |
Additional Figure 7-a:
The projection of $ m_{\mu\mu} $ (left) and $ \Delta m $ (right) of the fit in the full $ m_{\mu\mu} $ and $ \Delta m $ range. The $ \mathrm{D^0} $ meson components are scaled up by 20 in the upper panel. The lower panel shows the data and the fit result after subtracting the total background component of the fit. The gray error band represents the statistical and systematic uncertainties in the total background component. |
|
png pdf |
Additional Figure 7-b:
The projection of $ m_{\mu\mu} $ (left) and $ \Delta m $ (right) of the fit in the full $ m_{\mu\mu} $ and $ \Delta m $ range. The $ \mathrm{D^0} $ meson components are scaled up by 20 in the upper panel. The lower panel shows the data and the fit result after subtracting the total background component of the fit. The gray error band represents the statistical and systematic uncertainties in the total background component. |
|
png pdf |
Additional Figure 8:
The projection of $ m_{\mu\mu} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.145 GeV and 0.145 $ < \Delta m < $ 0.150 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\mu\mu} < $ 1.84 GeV and 1.89 $ < m_{\mu\mu} < $ 1.94 GeV. The $ \mathrm{D^0} $ meson components are scaled by 20 in the upper panel. The lower panel shows the data and the fit result after subtraction of the total background component. The gray error band represents the statistical and systematic uncertainties in the total background component. |
|
png pdf |
Additional Figure 8-a:
The projection of $ m_{\mu\mu} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.145 GeV and 0.145 $ < \Delta m < $ 0.150 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\mu\mu} < $ 1.84 GeV and 1.89 $ < m_{\mu\mu} < $ 1.94 GeV. The $ \mathrm{D^0} $ meson components are scaled by 20 in the upper panel. The lower panel shows the data and the fit result after subtraction of the total background component. The gray error band represents the statistical and systematic uncertainties in the total background component. |
|
png pdf |
Additional Figure 8-b:
The projection of $ m_{\mu\mu} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.145 GeV and 0.145 $ < \Delta m < $ 0.150 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\mu\mu} < $ 1.84 GeV and 1.89 $ < m_{\mu\mu} < $ 1.94 GeV. The $ \mathrm{D^0} $ meson components are scaled by 20 in the upper panel. The lower panel shows the data and the fit result after subtraction of the total background component. The gray error band represents the statistical and systematic uncertainties in the total background component. |
|
png pdf |
Additional Figure 8-c:
The projection of $ m_{\mu\mu} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.145 GeV and 0.145 $ < \Delta m < $ 0.150 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\mu\mu} < $ 1.84 GeV and 1.89 $ < m_{\mu\mu} < $ 1.94 GeV. The $ \mathrm{D^0} $ meson components are scaled by 20 in the upper panel. The lower panel shows the data and the fit result after subtraction of the total background component. The gray error band represents the statistical and systematic uncertainties in the total background component. |
|
png pdf |
Additional Figure 8-d:
The projection of $ m_{\mu\mu} $ (top) of the fit with requirements 0.140 $ < \Delta m < $ 0.145 GeV and 0.145 $ < \Delta m < $ 0.150 GeV, and $ \mathrm{D}^{*} $-$ \mathrm{D^0} $ mass difference $ \Delta m $ (bottom) of the fit with requirements 1.81 $ < m_{\mu\mu} < $ 1.84 GeV and 1.89 $ < m_{\mu\mu} < $ 1.94 GeV. The $ \mathrm{D^0} $ meson components are scaled by 20 in the upper panel. The lower panel shows the data and the fit result after subtraction of the total background component. The gray error band represents the statistical and systematic uncertainties in the total background component. |
|
png pdf |
Additional Figure 9:
The profile likelihood scan as a function of $ \mathrm{D^0}\to\mu^{+}\mu^{-} $ decay branching fraction. |
|
png pdf |
Additional Figure 10:
The upper limits on the $ \mathrm{D^0}\to\mu^{+}\mu^{-} $ branching fraction using the CLs method. |
|
png pdf |
Additional Figure 11:
Historical progression of the upper limit (UL) on the branching fraction of $ \mathrm{D^0}\to\mu^{+}\mu^{-} $, including the CMS result from this analysis. |
|
png pdf |
Additional Figure 12:
Historical progression of the upper limit (UL) on the branching fraction of $ \mathrm{D^0}\to\mu^{+}\mu^{-} $, including the CMS result from this analysis and the standard model (SM) prediction. |
| References | ||||
| 1 | Particle Data Group , S. Navas et al. | Review of particle physics | PRD 110 (2024) 030001 | |
| 2 | CMS Collaboration | Angular analysis of the decay B$ ^+\to $ K$ ^+\mu^+\mu^- $ in proton-proton collisions at $ \sqrt{s} = $ 8 TeV | PRD 98 (2018) 112011 | CMS-BPH-15-001 1806.00636 |
| 3 | CMS Collaboration | Angular analysis of the $ {\mathrm{B}}^0 \to \mathrm{K}^*(892)^{0}\mu^{+}\mu^{-} $ decay in proton-proton collisions at $ \sqrt{s} = $ 13 TeV | PLB 864 (2025) 139406 | CMS-BPH-21-002 2411.11820 |
| 4 | CMS Collaboration | Angular analysis of the decay B$ ^+ \to $ K$ ^* $(892)$ ^+\mu^+\mu^- $ in proton-proton collisions at $ \sqrt{s} = $ 8 TeV | JHEP 04 (2021) 124 | CMS-BPH-15-009 2010.13968 |
| 5 | CMS Collaboration | Test of lepton flavor universality in B$ ^{\pm} \to $ K$ ^{\pm}\mu^+\mu^- $ and B$ ^{\pm} \to $ K$ ^{\pm} $e$ ^+ $e$ ^- $ decays in proton-proton collisions at $ \sqrt{s} $ = 13 TeV | Rept. Prog. Phys. 87 (2024) 077802 | CMS-BPH-22-005 2401.07090 |
| 6 | CMS Collaboration | Measurement of the $ \mathrm{B}_{s}^{0} \to\mu^{+}\mu^{-} $ decay properties and search for the $ {\mathrm{B}^0} \to \mu^{+}\mu^{-} $ decay in proton-proton collisions at $ \sqrt{s} $ = 13 TeV | PLB 842 (2023) 137955 | CMS-BPH-21-006 2212.10311 |
| 7 | LHCb Collaboration | Test of lepton universality in beauty-quark decays | [Addendum: \DOI10./s41567-023-02289-4], 2022 Nature Physics 18 (2022) 277 |
2103.11769 |
| 8 | LHCb Collaboration | Angular analysis of the $ {\mathrm{B}}^{+} \to \mathrm{K}^{*+}\mu^{+}\mu^{-} $ Decay | PRL 126 (2021) 161802 | 2012.13241 |
| 9 | LHCb Collaboration | Measurement of $ CP $-Averaged observables in the $ {\mathrm{B}^0} \to \mathrm{K}^{*0}\mu^{+}\mu^{-} $ Decay | PRL 125 (2020) 011802 | 2003.04831 |
| 10 | LHCb Collaboration | Branching fraction measurements of the rare $ \mathrm{B}_{s}^{0} \to \phi\mu^{+}\mu^{-} $ and $ \mathrm{B}_{s}^{0} \to {f}_{2}^{'}(1525)\mu^{+}\mu^{-} $ decays | PRL 127 (2021) 151801 | 2105.14007 |
| 11 | LHCb Collaboration | Angular analysis of the rare decay $ \mathrm{B}_{s}^{0}\to\phi\mu^{+}\mu^{-} $ | JHEP 11 (2021) 043 | 2107.13428 |
| 12 | LHCb Collaboration | Measurement of the $ \mathrm{B}_{s}^{0} \to\mu^{+}\mu^{-} $ decay properties and search for the $ {\mathrm{B}^0} \to \mu^{+}\mu^{-} $ and $ \mathrm{B}_{s}^{0}\to\mu^{+}\mu^{-}\gamma $ decays | PRD 105 (2022) 012010 | 2108.09283 |
| 13 | LHCb Collaboration | Analysis of neutral $ {\mathrm{B}} $-meson decays into two muons | PRL 128 (2022) 041801 | 2108.09284 |
| 14 | ATLAS Collaboration | Study of the rare decays of $ \mathrm{B}_{s}^{0} $ and $ {\mathrm{B}^0} $ mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector | JHEP 04 (2019) 098 | 1812.03017 |
| 15 | ATLAS Collaboration | Measurement of the $ \mathrm{B}_{s}^{0} \to\mu^{+}\mu^{-} $ effective lifetime with the ATLAS detector | JHEP 09 (2023) 199 | 2308.01171 |
| 16 | Belle-II Collaboration | Evidence for $ {\mathrm{B}^{+}}\to\mathrm{K^+}\nu\overline{\nu} $ decays | PRD 109 (2024) 112006 | 2311.14647 |
| 17 | NA62 Collaboration | A measurement of the $ \mathrm{K^+} \to \pi^{+}\mu^{+}\mu^{-} $ decay | [Addendum: \DOI10./JHEP06()040], 2022 JHEP 11 (2022) 011 |
2209.05076 |
| 18 | G. Burdman, E. Golowich, J. Hewett, and S. Pakvasa | Rare charm decays in the standard model and beyond | PRD 66 (2002) 014009 | hep-ph/0112235 |
| 19 | E. Golowich, J. Hewett, S. Pakvasa, and A. A. Petrov | Relating $ \mathrm{D^0}-\overline{\mathrm{D}}^{0} $ mixing and $ \mathrm{D^0}\to\ell^{+}\ell^{-} $ with new physics | PRD 79 (2009) 114030 | 0903.2830 |
| 20 | S. Fajfer and N. Ko \v s nik | Leptoquarks in flavor changing neutral current charm decays | PRD 79 (2009) 017502 | 0810.4858 |
| 21 | I. Dor \v s ner et al. | Physics of leptoquarks in precision experiments and at particle colliders | Phys. Rept. 641 (2016) 1 | 1603.04993 |
| 22 | LHCb Collaboration | Search for rare decays of $ \mathrm{D^0} $ mesons into two muons | PRL 131 (2023) 041804 | 2212.11203 |
| 23 | CMS Collaboration | Enriching the physics program of the CMS experiment via data scouting and data parking | Phys. Rep. 1115 (2025) 678 | CMS-EXO-23-007 2403.16134 |
| 24 | CMS Collaboration | HEPData record for this analysis | link | |
| 25 | CMS Collaboration | The CMS experiment at the CERN LHC | JINST 3 (2008) S08004 | |
| 26 | CMS Collaboration | Development of the CMS detector for the CERN LHC Run 3 | JINST 19 (2024) P05064 | |
| 27 | CMS Collaboration | Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV | JINST 15 (2020) P10017 | CMS-TRG-17-001 2006.10165 |
| 28 | CMS Collaboration | The CMS trigger system | JINST 12 (2017) P01020 | CMS-TRG-12-001 1609.02366 |
| 29 | CMS Collaboration | Performance of the CMS high-level trigger during LHC run 2 | JINST 19 (2024) P11021 | CMS-TRG-19-001 2410.17038 |
| 30 | CMS Collaboration | Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC | JINST 16 (2021) P05014 | CMS-EGM-17-001 2012.06888 |
| 31 | CMS Collaboration | Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV | JINST 13 (2018) P06015 | CMS-MUO-16-001 1804.04528 |
| 32 | CMS Collaboration | Description and performance of track and primary-vertex reconstruction with the CMS tracker | JINST 9 (2014) P10009 | CMS-TRK-11-001 1405.6569 |
| 33 | CMS Collaboration | Particle-flow reconstruction and global event description with the CMS detector | JINST 12 (2017) P10003 | CMS-PRF-14-001 1706.04965 |
| 34 | T. Sjöstrand et al. | An introduction to PYTHIA 8.2 | Comput. Phys. Commun. 191 (2015) 159 | 1410.3012 |
| 35 | CMS Collaboration | Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements | EPJC 80 (2020) 4 | CMS-GEN-17-001 1903.12179 |
| 36 | GEANT4 Collaboration | GEANT 4---a simulation toolkit | NIM A 506 (2003) 250 | |
| 37 | D. J. Lange | The EvtGen particle decay simulation package | NIM A 462 (2001) 152 | |
| 38 | N. Davidson, T. Przedzinski, and Z. Was | PHOTOS interface in C++: technical and physics documentation | Comput. Phys. Commun. 199 (2016) 86 | 1011.0937 |
| 39 | K. Prokofiev and T. Speer | A kinematic and a decay chain reconstruction library | in \it \/, 2005 Proceedings of Computing in High Energy and Nuclear Physics 200 (2005) 411 |
|
| 40 | E. Gross and O. Vitells | Trial factors for the look elsewhere effect in high energy physics | EPJC 70 (2010) 525 | 1005.1891 |
| 41 | T. Chen and C. Guestrin | XGBoost: A scalable tree boosting system | in \it nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining\/, KDD '16, . ACM, New York, NY, USA, 2016 Proc. 2 (2016) 785 |
|
| 42 | A. Blum, A. Kalai, and J. Langford | Beating the hold-out: Bounds for k-fold and progressive cross-validation | in th Ann. Conf. on Computational Learning Theory, COLT '99, 1999 Proc. 1 (1999) 203 |
|
| 43 | S. Bernstein | Démonstration du théor\ème de Weierstrass fondée sur le calcul des probabilitiés | Comm. Soc. Math. Kharkov 13 (1912) 1 | |
| 44 | P. D. Dauncey, M. Kenzie, N. Wardle, and G. J. Davies | Handling uncertainties in background shapes: the discrete profiling method | JINST 10 (2015) P04015 | 1408.6865 |
| 45 | CMS Collaboration | Performance of CMS muon reconstruction in pp collision events at $ \sqrt{s} = $ 7 TeV | JINST 7 (2012) P10002 | CMS-MUO-10-004 1206.4071 |
| 46 | CMS Collaboration | Tracking performances for charged pions with Run 2 legacy data | CMS Detector Performance Note CMS-DP-2022-012, 2022 CDS |
|
| 47 | CMS Collaboration | The CMS statistical analysis and combination tool: COMBINE | Comput. Softw. Big Sci. 8 (2024) 19 | CMS-CAT-23-001 2404.06614 |
| 48 | T. Junk | Confidence level computation for combining searches with small statistics | NIM A 434 (1999) 435 | hep-ex/9902006 |
| 49 | A. L. Read | Presentation of search results: The $ \text{CL}_\text{s} $ technique | JPG 28 (2002) 2693 | |
| 50 | CMS Collaboration | Identification of low-momentum muons in the CMS detector using multivariate techniques in proton-proton collisions at $ \sqrt{s}= $ 13.6 TeV | JINST 20 (2025) P04021 | CMS-MUO-24-001 2412.17590 |
|
Compact Muon Solenoid LHC, CERN |
|
|
|
|
|
|