CMS-BPH-22-005 ; CERN-EP-2023-297 | ||
Test of lepton flavor universality in $ {\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-} $ and $ {\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mathrm{e}^+\mathrm{e}^- $ decays in proton-proton collisions at $ \sqrt{s} = $ 13 TeV | ||
CMS Collaboration | ||
12 January 2024 | ||
Rep. Prog. Phys. 87 (2024) 077802 | ||
Abstract: A test of lepton flavor universality in $ {\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-} $ and $ {\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mathrm{e}^+\mathrm{e}^- $ decays, as well as a measurement of differential and integrated branching fractions of a nonresonant $ {\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-} $ decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at $ \sqrt{s} = $ 13 TeV recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions $ \mathcal{B}({\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-}) $ to $ \mathcal{B}({\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mathrm{e}^+\mathrm{e}^-) $ is determined from the measured double ratio $ R(\mathrm{K}) $ of these decays to the respective branching fractions of the $ {\mathrm{B}^{\pm}} \!\to\! {\mathrm{J}/\psi} \mathrm{K^{\pm}} $ with $ {\mathrm{J}/\psi} \!\to\!\mu^{+}\mu^{-} $ and $ \mathrm{e}^+\mathrm{e}^- $ decays, which allow for significant cancellation of systematic uncertainties. The ratio $ R(\mathrm{K}) $ is measured in the range 1.1 $ < q^2 < $ 6.0 GeV$^2 $, where $ q $ is the invariant mass of the lepton pair, and is found to be $ R(\mathrm{K})= $ 0.78 $ ^{+0.47}_{-0.23} $, in agreement with the standard model expectation $ R(\mathrm{K}) \approx $ 1. This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the same $ q^2 $ range, $ \mathcal{B}({\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-}) = $ (12.42 $ \pm $ 0.68) $\times$ 10$^{-8} $, is consistent with the present world-average value and has a comparable precision. | ||
Links: e-print arXiv:2401.07090 [hep-ex] (PDF) ; CDS record ; inSPIRE record ; HepData record ; CADI line (restricted) ; |
Figures | |
png pdf |
Figure 1:
Representative Feynman diagrams for the decay of a $ {\mathrm{B}^{+}} $ meson into a $ \mathrm{K^+} $ meson and a lepton pair in the SM (left) and in a BSM scenario that introduces a leptoquark (LQ) with flavor-dependent couplings (right). |
png pdf |
Figure 2:
Analysis BDT output for signal (MC simulation, in black) and background (same-sign dilepton data, in red) for the muon channel (left) and for the PF-PF (center) and PF-LP (right) electron channels. The histograms are normalized to unit area. |
png pdf |
Figure 2-a:
Analysis BDT output for signal (MC simulation, in black) and background (same-sign dilepton data, in red) for the muon channel. The histograms are normalized to unit area. |
png pdf |
Figure 2-b:
Analysis BDT output for signal (MC simulation, in black) and background (same-sign dilepton data, in red) for the PF-PF electron channel. The histograms are normalized to unit area. |
png pdf |
Figure 2-c:
Analysis BDT output for signal (MC simulation, in black) and background (same-sign dilepton data, in red) for the PF-LP electron channel. The histograms are normalized to unit area. |
png pdf |
Figure 3:
Results of an unbinned likelihood fit to the $ \mathrm{K^+}\mu^{+}\mu^{-} $ invariant mass distributions in the low-$ q^2 $ bin (upper), and in the $ {\mathrm{B}^{+}} \!\to\! {\mathrm{J}/\psi} (\mu^{+}\mu^{-})\mathrm{K^+} $ (lower left) and $ {\mathrm{B}^{+}} \!\to\! \psi(2\text{S})(\mu^{+}\mu^{-})\mathrm{K^+} $ (lower right) CRs. The error bars show the statistical uncertainty in data. The lower panels show the distribution of the pull, which is defined as the Poisson probability to observe the number of event counts in data, given the fit function, expressed in terms of the Gaussian significance. |
png pdf |
Figure 3-a:
Results of an unbinned likelihood fit to the $ \mathrm{K^+}\mu^{+}\mu^{-} $ invariant mass distributions in the low-$ q^2 $ bin. The error bars show the statistical uncertainty in data. The lower panel shows the distribution of the pull, which is defined as the Poisson probability to observe the number of event counts in data, given the fit function, expressed in terms of the Gaussian significance. |
png pdf |
Figure 3-b:
Results of an unbinned likelihood fit to the $ \mathrm{K^+}\mu^{+}\mu^{-} $ invariant mass distributions in the $ {\mathrm{B}^{+}} \!\to\! {\mathrm{J}/\psi} (\mu^{+}\mu^{-})\mathrm{K^+} $ CR. The error bars show the statistical uncertainty in data. The lower panel shows the distribution of the pull, which is defined as the Poisson probability to observe the number of event counts in data, given the fit function, expressed in terms of the Gaussian significance. |
png pdf |
Figure 3-c:
Results of an unbinned likelihood fit to the $ \mathrm{K^+}\mu^{+}\mu^{-} $ invariant mass distributions in the $ {\mathrm{B}^{+}} \!\to\! \psi(2\text{S})(\mu^{+}\mu^{-})\mathrm{K^+} $ CR. The error bars show the statistical uncertainty in data. The lower panel shows the distribution of the pull, which is defined as the Poisson probability to observe the number of event counts in data, given the fit function, expressed in terms of the Gaussian significance. |
png pdf |
Figure 4:
The $ \mathrm{K^+}\mathrm{e}^+\mathrm{e}^- $ invariant mass spectrum with the results of the fit shown with the red line in the low-$ q^2 $ region (upper row), $ {\mathrm{B}^{+}} \!\to\! {\mathrm{J}/\psi} (\mathrm{e}^+\mathrm{e}^-)\mathrm{K^+} $ CR (middle row), and $ {\mathrm{B}^{+}} \!\to\! \psi(2\text{S})(\mathrm{e}^+\mathrm{e}^-)\mathrm{K^+} $ CR (lower row) for the PF-PF (left column) and PF-LP (right column) categories. The shoulder below the nominal $ {\mathrm{B}^{+}} $ meson mass for the $\psi$(2S) CR is due to the narrow $ q^2 $ range in this bin compared to the size of the radiative tail. Notations are as in Fig. 3. |
png pdf |
Figure 4-a:
The $ \mathrm{K^+}\mathrm{e}^+\mathrm{e}^- $ invariant mass spectrum with the results of the fit shown with the red line in the low-$ q^2 $ region for the PF-PF category. The shoulder below the nominal $ {\mathrm{B}^{+}} $ meson mass for the $\psi$(2S) CR is due to the narrow $ q^2 $ range in this bin compared to the size of the radiative tail. Notations are as in Fig. 3. |
png pdf |
Figure 4-b:
The $ \mathrm{K^+}\mathrm{e}^+\mathrm{e}^- $ invariant mass spectrum with the results of the fit shown with the red line in the low-$ q^2 $ region for the PF-LP category. The shoulder below the nominal $ {\mathrm{B}^{+}} $ meson mass for the $\psi$(2S) CR is due to the narrow $ q^2 $ range in this bin compared to the size of the radiative tail. Notations are as in Fig. 3. |
png pdf |
Figure 4-c:
The $ \mathrm{K^+}\mathrm{e}^+\mathrm{e}^- $ invariant mass spectrum with the results of the fit shown with the red line in the $ {\mathrm{B}^{+}} \!\to\! {\mathrm{J}/\psi} (\mathrm{e}^+\mathrm{e}^-)\mathrm{K^+} $ CR for the PF-PF category. The shoulder below the nominal $ {\mathrm{B}^{+}} $ meson mass for the $\psi$(2S) CR is due to the narrow $ q^2 $ range in this bin compared to the size of the radiative tail. Notations are as in Fig. 3. |
png pdf |
Figure 4-d:
The $ \mathrm{K^+}\mathrm{e}^+\mathrm{e}^- $ invariant mass spectrum with the results of the fit shown with the red line in the $ {\mathrm{B}^{+}} \!\to\! {\mathrm{J}/\psi} (\mathrm{e}^+\mathrm{e}^-)\mathrm{K^+} $ CR for the PF-LP category. The shoulder below the nominal $ {\mathrm{B}^{+}} $ meson mass for the $\psi$(2S) CR is due to the narrow $ q^2 $ range in this bin compared to the size of the radiative tail. Notations are as in Fig. 3. |
png pdf |
Figure 4-e:
The $ \mathrm{K^+}\mathrm{e}^+\mathrm{e}^- $ invariant mass spectrum with the results of the fit shown with the red line in the $ {\mathrm{B}^{+}} \!\to\! \psi(2\text{S})(\mathrm{e}^+\mathrm{e}^-)\mathrm{K^+} $ CR for the PF-PF category. The shoulder below the nominal $ {\mathrm{B}^{+}} $ meson mass for the $\psi$(2S) CR is due to the narrow $ q^2 $ range in this bin compared to the size of the radiative tail. Notations are as in Fig. 3. |
png pdf |
Figure 4-f:
The $ \mathrm{K^+}\mathrm{e}^+\mathrm{e}^- $ invariant mass spectrum with the results of the fit shown with the red line in the $ {\mathrm{B}^{+}} \!\to\! \psi(2\text{S})(\mathrm{e}^+\mathrm{e}^-)\mathrm{K^+} $ CR for the PF-LP category. The shoulder below the nominal $ {\mathrm{B}^{+}} $ meson mass for the $\psi$(2S) CR is due to the narrow $ q^2 $ range in this bin compared to the size of the radiative tail. Notations are as in Fig. 3. |
png pdf |
Figure 5:
Comparison of the measured differential $ {\mathrm{B}^{+}} \!\to\! \mathrm{K^+}\mu^{+}\mu^{-} $ branching fraction with the theoretical predictions obtained using HEPFIT, SUPERISO, FLAVIO, and EOS packages. The HEPFIT predictions are available only for $ q^2 < $ 8 GeV$^2 $. |
png pdf |
Figure 6:
Log likelihood function from the fit profiled as a function of $ R(\mathrm{K})^{-1} $. The dark and light grey area indicates the $ \pm $ 1 and $ \pm $ 2 $ \sigma $ bands respectively. |
png pdf |
Figure A1:
The product of acceptance and efficiency ($ \mathcal{A}\epsilon $) of the $ {\mathrm{B}^{+}} \!\to\! \mathrm{K^+}\mu^{+}\mu^{-} $ channel, as a function of the muon pair $ q^2 $, as measured in simulated signal events, after all the corrections applied. Regions corresponding to resonances are displayed with red markers. |
png pdf |
Figure A2:
Relative uncertainties in the differential branching fraction measurement of $ {\mathrm{B}^{+}} \!\to\! \mathrm{K^+}\mu^{+}\mu^{-} $ per $ q^2 $ bin. Different colors correspond to data statistical, simulation statistical, and systematic uncertainties. |
png pdf |
Figure A3:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in various $ q^2 $ bins, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends for (from upper left to lower right): $ [0,0.98] $, $ [1.1,2.0] $, $ [2.0,3.0]$, $ [3.0,4.0] $, $ [4.0,5.0] $, $ [5.0,6.0] $, $ [6.0,7.0] $, and $ [7.0,8.0] $, $ q^2 $ bins. Notations are as in Fig. 3. |
png pdf |
Figure A3-a:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [0,0.98] $ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. |
png pdf |
Figure A3-b:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [1.1,2.0] $ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. |
png pdf |
Figure A3-c:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [2.0,3.0] $ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. |
png pdf |
Figure A3-d:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $[3.0,4.0] $ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. |
png pdf |
Figure A3-e:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [4.0,5.0] $ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. |
png pdf |
Figure A3-f:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [5.0,6.0] $ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. |
png pdf |
Figure A3-g:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [6.0,7.0] $ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. |
png pdf |
Figure A3-h:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [7.0,8.0] $ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. |
png pdf |
Figure A4:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in various $ q^2 $ bins, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends for (from upper left to lower right): $ [11.0,11.8] $, $ [11.8,12.5] $, $ [14.82,16.0] $, $ [16.0,17.0] $, $ [17.0,18.0] $, $ [18.0,19.24] $, and $ [19.24,22.9]$ GeV$^{2}$ $q^2 $ bin. Notations are as in Fig. 3. |
png pdf |
Figure A4-a:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [11.0,11.8] $ GeV$^{2}$ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. Notations are as in Fig. 3. |
png pdf |
Figure A4-b:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [11.8,12.5] $ GeV$^{2}$ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. Notations are as in Fig. 3. |
png pdf |
Figure A4-c:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [14.82,16.0] $ GeV$^{2}$ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. Notations are as in Fig. 3. |
png pdf |
Figure A4-d:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [16.0,17.0] $ GeV$^{2}$ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. Notations are as in Fig. 3. |
png pdf |
Figure A4-e:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [17.0,18.0] $ GeV$^{2}$ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. Notations are as in Fig. 3. |
png pdf |
Figure A4-f:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [18.0,19.24] $ GeV$^{2}$ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. Notations are as in Fig. 3. |
png pdf |
Figure A4-g:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [19.24,22.9]$ GeV$^{2}$ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. Notations are as in Fig. 3. |
png pdf |
Figure A5:
Correlation matrix for the differential branching fraction extraction between different $ q^2 $ bins in the simultaneous fit. |
png pdf |
Figure A6:
Summary of $ R(\mathrm{K}) $ measurements from BaBar [71], Belle [72], and LHCb [10,11,9] experiments, as well as the present CMS measurement. The pink data points of the first three LHCb measurements were superseded by the latest one, shown as the red point. |
Tables | |
png pdf |
Table 1:
Summary of the loosest muon trigger requirements imposed by the L1 and HLT algorithms for each instantaneous luminosity scenario: the L1 and HLT muon transverse momentum thresholds $ p^\mu_{\mathrm{T}} $, and the HLT muon impact parameter significance $ \text{IP}_{\text{sig}} $. Also shown are the trigger purity, peak HLT rate, and $ \int\!\!\!\;{\mathcal L}{\mathrm d}t $. The second trigger was the highest threshold one during early data taking, corresponding to $ \int\!\!\!\;{\mathcal L}{\mathrm d}t = 6.9\mbox{\,\text{fb}^{-1}} $, and then the second-highest for the rest of the data taking, accumulating $ \int\!\!\!\;{\mathcal L}{\mathrm d}t = 26.7\mbox{\,\text{fb}^{-1}} $ out of 34.7 fb$^{-1}$ collected by the highest threshold trigger. |
png pdf |
Table 2:
Input variables used in the muon and electron channel BDTs. |
png pdf |
Table 3:
The product of acceptance, and offline and trigger efficiency ($ \mathcal{A}\epsilon\epsilon_{\text{trig}} $) for the signal in the low-$ q^2 $ region and for the two resonance CRs. In the case of electrons, the trigger efficiency is not included in the quoted $ \mathcal{A}\epsilon $ numbers, as it cancels out in the $ R(\mathrm{K}) $ double ratio. Uncertainties are statistical only. |
png pdf |
Table 4:
Fit functions used for signal and background sources in each $ q^2 $ bin in the muon channel. The $ \text{---} $ symbol indicates this background is not included in this region. |
png pdf |
Table 5:
Signal yields in the muon channel in the low-$ q^2 $ bin and resonant CRs. |
png pdf |
Table 6:
Fit functions used to describe signal and various background components for the electron channel. The $ \text{---} $ symbol indicates this background is not included in this region. |
png pdf |
Table 7:
Signal yields in the electron channel in the low-$ q^2 $ bin and resonant CRs. |
png pdf |
Table 8:
Major sources of uncertainty in the $ {\mathrm{B}^{+}} \!\to\! \mathrm{K^+}\mu^{+}\mu^{-} $/$ {\mathrm{B}^{+}} \!\to\! {\mathrm{J}/\psi} (\mu^{+}\mu^{-})\mathrm{K^+} $ ratio measurement. |
png pdf |
Table 9:
Major sources of uncertainty in the $ {\mathrm{B}^{+}} \!\to\! \mathrm{K^+}\mathrm{e}^+\mathrm{e}^- $/$ {\mathrm{B}^{+}} \!\to\! {\mathrm{J}/\psi} (\mathrm{e}^+\mathrm{e}^-)\mathrm{K^+} $ ratio measurement in the PF-PF and PF-LP categories. The last row shows the statistical uncertainty, which is the same as the total uncertainty within the quoted precision. |
png pdf |
Table 10:
The $ {\mathrm{B}^{+}} \!\to\! \mathrm{K^+}\mu^{+}\mu^{-} $ branching fraction, $ \mathrm{d}{\mathcal{B}({\mathrm{B}^{+}} \!\to\! \mathrm{K^+}\mu^{+}\mu^{-})}{q^2} / \mathrm{d}q^2 $ integrated over the specified $ q^2 $ range, for the individual $ q^2 $ bins.. The uncertainties in the yields are statistical uncertainties from the fit, while the branching fraction uncertainties include both the statistical and systematic components. |
png pdf |
Table 11:
Comparison of the $ \mathcal{B}({\mathrm{B}^{+}} \!\to\! \mathrm{K^+}\mu^{+}\mu^{-}) $ branching fraction measurement in the low-$ q^2 $ range and the theoretical predictions based on the EOS, FLAVIO, SUPERISO, and HEPFIT packages. |
Summary |
We have reported the first test of lepton flavor universality with the CMS experiment at the LHC in $ {\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-} $ and $ {\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mathrm{e}^+\mathrm{e}^- $ decays, as well as a measurement of differential and integrated branching fractions of the nonresonant $ {\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-} $ decay. The analysis has been made possible by a dedicated data set of proton-proton collisions at $ \sqrt{s} = $ 13 TeV recorded in 2018, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions $ \mathcal{B}({\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-}) $ to $ \mathcal{B}({\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mathrm{e}^+\mathrm{e}^-) $ has been is determined from the measured double ratio $ R(\mathrm{K}) $ of these decays to the respective branching fractions of the $ {\mathrm{B}^{\pm}} \!\to\! {\mathrm{J}/\psi} \mathrm{K^{\pm}} ({\mathrm{J}/\psi} \!\to\!\mu^{+}\mu^{-}) $ and $ ({\mathrm{J}/\psi} \!\to\!\mathrm{e}^+\mathrm{e}^-) $ decays, which allow for significant cancellation of systematic uncertainties. The ratio $ R(\mathrm{K}) $ has been measured in the range 1.1 $ < q^2 < $ 6.0 GeV$^2 $, where $ q $ is the invariant mass of the lepton pair, and was found to be $ R(\mathrm{K})= $ 0.78 $ ^{+0.47}_{-0.23} $, in agreement with the standard model expectation of $ \approx $1. This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the same $ q^2 $ range, $ \mathcal{B}({\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-}) = $ (12.42 $ \pm $ 0.68) $\times$ 10$^{-8} $, is consistent with and has a comparable precision to the present world average. This work has demonstrated the flexibility of the CMS trigger and data acquisition system and has paved the way to many other studies of a large unbiased sample of b hadron decays collected by CMS in 2018. |
References | ||||
1 | S. L. Glashow | Partial symmetries of weak interactions | NP 22 (1961) 579 | |
2 | S. Weinberg | A model of leptons | PRL 19 (1967) 1264 | |
3 | A. Salam | Weak and electromagnetic interactions | N. Svartholm (Ed.), Proc. 8-th Nobel Symp., Almquist and Wiksell, Stockholm 1968 | |
4 | Particle Data Group | Review of particle physics | PTEP 2022 (2022) 083C01 | |
5 | ALEPH, DELPHI, L3, OPAL, LEP Electroweak Collaboration | Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP | Phys. Rept. 532 (2013) 119 | 1302.3415 |
6 | ATLAS Collaboration | Test of the universality of $ \tau $ and $ \mu $ lepton couplings in $ W $-boson decays with the ATLAS detector | Nature Phys. 17 (2021) 813 | 2007.14040 |
7 | CMS Collaboration | Precision measurement of the W boson decay branching fractions in proton-proton collisions at $ \sqrt{s} $ = 13 TeV | PRD 105 (2022) 072008 | CMS-SMP-18-011 2201.07861 |
8 | D. London and J. Matias | $ B $ flavour anomalies: 2021 theoretical status report | Ann. Rev. Nucl. Part. Sci. 72 (2022) 37 | 2110.13270 |
9 | LHCb Collaboration | Test of lepton universality in beauty-quark decays | Nature Phys. 18 (2022) 277 | 2103.11769 |
10 | CLEO Collaboration | First observation of $ \Upsilon $(3S) $ \to \tau^+ \tau^- $ and tests of lepton universality in $ \Upsilon $ decays | PRL 98 (2007) 052002 | hep-ex/0607019 |
11 | BaBar Collaboration | Test of lepton universality in $ \Upsilon $(1S) decays at BaBar | PRL 104 (2010) 191801 | 1002.4358 |
12 | BaBar Collaboration | Measurement of branching fractions and rate asymmetries in the rare decays $ B \to K^{(*)} \ell^+ \ell^- $ | PRD 86 (2012) 032012 | 1204.3933 |
13 | BESIII Collaboration | Study of the $ \mathrm{D^0}\to \mathrm{K^-}\mu^+\nu_\mu $ dynamics and test of lepton flavor universality with $ \mathrm{K^-}\ell^+\nu_\ell $ decays | PRL 122 (2019) 011804 | 1810.03127 |
14 | Belle Collaboration | Test of lepton-flavor universality in $ {\mathrm{B}}\to \mathrm{K}^\ast\ell^+\ell^- $ decays at Belle | PRL 126 (2021) 161801 | 1904.02440 |
15 | Belle Collaboration | Test of lepton flavor universality and search for lepton flavor violation in $ {\mathrm{B}} \to \mathrm{K}\ell \ell $ decays | JHEP 03 (2021) 105 | 1908.01848 |
16 | Belle Collaboration | First test of lepton flavor universality in the charmed baryon decays $ \Omega_{c}^{0} \to\Omega^{-}\ell^+\nu_\ell $ using data of the Belle experiment | PRD 105 (2022) L091101 | 2112.10367 |
17 | BESIII Collaboration | Study of $ \Lambda_{c}^{+}\to\Lambda \mu^+\nu_{\mu} $ and test of lepton flavor universality with $ \Lambda_{c}^{+}\to \Lambda \ell^+\nu_{\ell} $ decays | 2306.02624 | |
18 | BESIII Collaboration | Test of lepton universality and measurement of the form factors of $ \mathrm{D^0}\to \mathrm{K}^{*}(892)^-\mu^+\nu_\mu $ | 2403.10877 | |
19 | LHCb Collaboration | Test of lepton universality using $ B^+\to K^+\ell^+\ell^- $ decays | PRL 113 (2014) 151601 | 1406.6482 |
20 | LHCb Collaboration | Search for lepton-universality violation in $ B^+\to K^+\ell^+\ell^- $ decays | PRL 122 (2019) 191801 | 1903.09252 |
21 | LHCb Collaboration | Test of lepton universality with $ B^{0} \to K^{*0}\ell^{+}\ell^{-} $ decays | JHEP 08 (2017) 055 | 1705.05802 |
22 | LHCb Collaboration | Tests of lepton universality using $ B^0\to K^0_S \ell^+ \ell^- $ and $ B^+\to K^{*+} \ell^+ \ell^- $ decays | PRL 128 (2022) 191802 | 2110.09501 |
23 | LHCb Collaboration | Measurement of the isospin asymmetry in $ B \to K^{(*)}\mu^+\mu^- $ decays | JHEP 07 (2012) 133 | 1205.3422 |
24 | LHCb Collaboration | Differential branching fractions and isospin asymmetries of $ B \to K^{(*)} \mu^+ \mu^- $ decays | JHEP 06 (2014) 133 | 1403.8044 |
25 | LHCb Collaboration | Measurements of the S-wave fraction in $ B^0\to K^+\pi^-\mu^+\mu^- $ decays and the $ B^{0}\to K^*(892)^0\mu^+\mu^- $ differential branching fraction | JHEP 11 (2016) 047 | 1606.04731 |
26 | LHCb Collaboration | Branching fraction measurements of the rare $ B^0_s\to\phi\mu^+\mu^- $ and $ B^0_s\to f_2^\prime(1525)\mu^+\mu^- $ decays | PRL 127 (2021) 151801 | 2105.14007 |
27 | M. Ciuchini et al. | Charming penguins and lepton universality violation in $ b \to s \ell ^+ \ell ^- $ decays | EPJC 83 (2023) 64 | 2110.10126 |
28 | N. Gubernari, M. Reboud, D. van Dyk, and J. Virto | Dispersive analysis of $ B\to K^{(*)} $ and $ B_s\to \phi $ form factors | 2305.06301 | |
29 | N. Gubernari | Theoretical predictions for $ \mathrm{b}\to \mathrm{s} \mu^+ \mu^- $ decays | in 58th Rencontres de Moriond on Cosmology, 2024 | 2404.10043 |
30 | LHCb Collaboration | Test of lepton universality in $ b \to s \ell^+ \ell^- $ decays | PRL 131 (2023) 051803 | 2212.09152 |
31 | LHCb Collaboration | Measurement of lepton universality parameters in $ B^+\to K^+\ell^+\ell^- $ and $ B^0\to K^{*0}\ell^+\ell^- $ decays | PRD 108 (2023) 032002 | 2212.09153 |
32 | S. Patnaik, L. Nayak, and R. Singh | Assessing lepton flavor universality violations in semileptonic decays | 2308.05677 | |
33 | CMS Collaboration | HEPData record for this analysis | link | |
34 | G. Hiller and F. Kruger | More model-independent analysis of $ b \to s $ processes | PRD 69 (2004) 074020 | hep-ph/0310219 |
35 | M. Bordone, G. Isidori, and A. Pattori | On the Standard Model predictions for $ R_K $ and $ R_{K^*} $ | EPJC 76 (2016) 440 | 1605.07633 |
36 | G. Isidori, S. Nabeebaccus, and R. Zwicky | QED corrections in $ \overline{B}\to \overline{K}{\mathrm{\ell}}^{+}{\mathrm{\ell}}^{-} $ at the double-differential level | JHEP 12 (2020) 104 | 2009.00929 |
37 | G. Isidori, D. Lancierini, S. Nabeebaccus, and R. Zwicky | QED in $ \overline{B} \to \overline{K} \ell^+\ell^- $ LFU ratios: theory versus experiment, a Monte Carlo study | JHEP 10 (2022) 146 | 2205.08635 |
38 | A. Roodman | Blind analysis in particle physics | physics/0312102 | |
39 | CMS Collaboration | Strategies and performance of the CMS silicon tracker alignment during LHC Run 2 | NIM A 1037 (2022) 166795 | CMS-TRK-20-001 2111.08757 |
40 | CMS Tracker Group Collaboration | The CMS Phase-1 pixel detector upgrade | JINST 16 (2021) P02027 | 2012.14304 |
41 | CMS Collaboration | Track impact parameter resolution for the full pseudo rapidity coverage in the 2017 dataset with the CMS Phase-1 pixel detector | CMS Detector Performance Summary CMS-DP-2020-049, 2020 CDS |
|
42 | CMS Collaboration | Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV | JINST 13 (2018) P06015 | CMS-MUO-16-001 1804.04528 |
43 | CMS Collaboration | Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC | JINST 16 (2021) P05014 | CMS-EGM-17-001 2012.06888 |
44 | CMS Collaboration | Enriching the physics program of the CMS experiment via data scouting and data parking | CMS-EXO-23-007 2403.16134 |
|
45 | CMS Collaboration | ECAL 2016 refined calibration and Run 2 summary plots | CMS Detector Performance Summary CMS-DP-2020-021, 2020 CDS |
|
46 | CMS Collaboration | Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13\,TeV | JINST 15 (2020) P10017 | CMS-TRG-17-001 2006.10165 |
47 | CMS Collaboration | The CMS trigger system | JINST 12 (2017) P01020 | CMS-TRG-12-001 1609.02366 |
48 | CMS Collaboration | The CMS experiment at the CERN LHC | JINST 3 (2008) S08004 | |
49 | CMS Collaboration | Description and performance of track and primary-vertex reconstruction with the CMS tracker | JINST 9 (2014) P10009 | CMS-TRK-11-001 1405.6569 |
50 | CMS Collaboration | CMS luminosity measurements for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV | CMS Physics Analysis Summary, 2018 CMS-PAS-LUM-18-001 |
CMS-PAS-LUM-18-001 |
51 | T. Sjöstrand et al. | An introduction to PYTHIA 8.2 | Comput. Phys. Commun. 191 (2015) 159 | 1410.3012 |
52 | D. J. Lange | The EvtGen particle decay simulation package | NIM A 462 (2001) 152 | |
53 | CMS Collaboration | Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements | EPJC 80 (2020) 4 | CMS-GEN-17-001 1903.12179 |
54 | NNPDF Collaboration | Parton distributions from high-precision collider data | EPJC 77 (2017) 663 | 1706.00428 |
55 | E. Barberio and Z. Was | PHOTOS: a universal Monte Carlo for QED radiative corrections. Version 2.0 | Comput. Phys. Commun. 79 (1994) 291 | |
56 | P. Ball and R. Zwicky | $ B_{d,s} \to \rho, \omega, K^*, \phi $ decay form-factors from light-cone sum rules revisited | PRD 71 (2005) 014029 | hep-ph/0412079 |
57 | A. Bharucha, D. M. Straub, and R. Zwicky | $ {\mathrm{B}}\to \mathrm{V}\ell^+\ell^- $ in the Standard Model from light-cone sum rules | JHEP 08 (2016) 098 | 1503.05534 |
58 | N. Gubernari, A. Kokulu, and D. van Dyk | $ {\mathrm{B}}\to \mathrm{P} $ and $ {\mathrm{B}}\to \mathrm{V} $ form factors from $ {\mathrm{B}} $-meson light-cone sum rules beyond leading twist | JHEP 01 (2019) 150 | 1811.00983 |
59 | HPQCD Collaboration | $ {\mathrm{B}}\to\mathrm{K} $ and $ \mathrm{D}\to\mathrm{K} $ form factors from fully relativistic lattice QCD | PRD 107 (2023) 014510 | 2207.12468 |
60 | GEANT4 Collaboration | GEANT 4---a simulation toolkit | NIM A 506 (2003) 250 | |
61 | CMS Collaboration | Particle-flow reconstruction and global event description with the CMS detector | JINST 12 (2017) P10003 | CMS-PRF-14-001 1706.04965 |
62 | T. Chen and C. Guestrin | XGBoost: a scalable tree boosting system | 1603.02754 | |
63 | CMS Collaboration | Measurements of inclusive W and Z cross sections in pp collisions at $ \sqrt{s}= $ 7 TeV | JHEP 01 (2011) 080 | CMS-EWK-10-002 1012.2466 |
64 | CMS Collaboration | CMS tracking performance results from early LHC operation | EPJC 70 (2010) 1165 | CMS-TRK-10-001 1007.1988 |
65 | K. Prokofiev and T. Speer | A kinematic fit and a decay chain reconstruction library | in Vol1 Proceedings of Computing in High Energy and Nuclear Physics 2004 CERN-2005-002 |
|
66 | M. Pivk and F. R. Le Diberder | $ _{s}\mathcal{P}\text{lot} $: a statistical tool to unfold data distributions | NIM A 555 (2005) 356 | physics/0402083 |
67 | M. Cacciari, M. Greco, and P. Nason | The $ p_{\mathrm{T}} $ spectrum in heavy-flavour hadroproduction | JHEP 05 (1998) 007 | hep-ph/9803400 |
68 | M. Cacciari, S. Frixione, and P. Nason | The $ p_{\mathrm{T}} $ spectrum in heavy-flavour photoproduction | JHEP 03 (2001) 006 | hep-ph/0102134 |
69 | M. Cacciari et al. | Theoretical predictions for charm and bottom production at the LHC | JHEP 10 (2012) 137 | 1205.6344 |
70 | M. Cacciari, M. L. Mangano, and P. Nason | Gluon PDF constraints from the ratio of forward heavy-quark production at the LHC at $ \sqrt{s}= $ 7 and 13 TeV | EPJC 75 (2015) 610 | 1507.06197 |
71 | M. J. Oreglia | A study of the reactions $ \psi^\prime \to \gamma \gamma \psi $ | PhD thesis, Stanford University, SLAC Report SLAC-R-236, 1980 link |
|
72 | J. E. Gaiser | Charmonium spectroscopy from radiative decays of $ \mathrm{J}/\psi $ and $ \psi' $ | PhD thesis, Stanford University, SLAC Report SLAC-R-255, 1982 link |
|
73 | K. S. Cranmer | Kernel estimation in high-energy physics | Comput. Phys. Commun. 136 (2001) 198 | hep-ex/0011057 |
74 | CMS Collaboration | Measurement of the inelastic proton-proton cross section at $ \sqrt{s}= $ 13 TeV | JHEP 07 (2018) 161 | CMS-FSQ-15-005 1802.02613 |
75 | J. de Blas et al. | \textttHEPfit: a code for the combination of indirect and direct constraints on high energy physics models | EPJC 80 (2020) 456 | 1910.14012 |
76 | L. Alasfar et al. | $ B $ anomalies under the lens of electroweak precision | JHEP 12 (2020) 016 | 2007.04400 |
77 | M. Ciuchini et al. | Constraints on lepton universality violation from rare $ {\mathrm{B}} $ decays | PRD 107 (2023) 055036 | 2212.10516 |
78 | F. Mahmoudi | SuperIso: a program for calculating the isospin asymmetry of $ B \to K^* \gamma $ in the MSSM | Comput. Phys. Commun. 178 (2008) 745 | 0710.2067 |
79 | F. Mahmoudi | SuperIso v2.3: a program for calculating flavor physics observables in supersymmetry | Comput. Phys. Commun. 180 (2009) 1579 | 0808.3144 |
80 | D. M. Straub | flavio: a Python package for flavour and precision phenomenology in the Standard Model and beyond | 1810.08132 | |
81 | EOS Collaboration | EOS: a software for flavor physics phenomenology | EPJC 82 (2022) 569 | 2111.15428 |
82 | N. Gubernari, M. Reboud, D. van Dyk, and J. Virto | Improved theory predictions and global analysis of exclusive $ b \to s\mu^+\mu^- $ processes | JHEP 09 (2022) 133 | 2206.03797 |
83 | LHCb Collaboration | Measurement of the phase difference between short- and long-distance amplitudes in the $ B^+\to K^+\mu^+\mu^- $ decay | EPJC 77 (2017) 161 | 1612.06764 |
Compact Muon Solenoid LHC, CERN |