CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-B2G-20-014 ; CERN-EP-2024-016
A search for bottom-type vector-like quark pair production in dileptonic and fully hadronic final states in proton-proton collisions at $ \sqrt{s} = $ 13 TeV
Phys. Rev. D 110 (2024) 052004
Abstract: A search is described for the production of a pair of bottom-type vector-like quarks (B VLQs) with mass greater than 1000 GeV. Each B VLQ decays into a b quark and a Higgs boson, a b quark and a Z boson, or a t quark and a W boson. This analysis considers both fully hadronic final states and those containing a charged lepton pair from a Z boson decay. The products of the $ \mathrm{H} \to \mathrm{b}\mathrm{b} $ boson decay and of the hadronic Z or W boson decays can be resolved as two distinct jets or merged into a single jet, so the final states are classified by the number of reconstructed jets. The analysis uses data corresponding to an integrated luminosity of 138 fb$ ^{-1} $ collected in proton-proton collisions at $ \sqrt{s} = $ 13 TeV with the CMS detector at the LHC from 2016 to 2018. No excess over the expected background is observed. Lower limits are set on the B VLQ mass at 95% confidence level. These depend on the B VLQ branching fractions and are 1570 and 1540 GeV for 100% $ {\mathrm{B}} \to \mathrm{b}\mathrm{H} $ and 100% $ {\mathrm{B}} \to \mathrm{b}\mathrm{Z} $, respectively. In most cases, the mass limits obtained exceed previous limits by at least 100 GeV.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Feynman diagrams for the pair production of bottom-type VLQs that decay into a b or t quark or antiquark and either a Higgs, Z, or W boson with fully hadronic final states. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ and $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $; middle row: $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ and $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $; lower row: $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ and $ \mathrm{t}\mathrm{W}\mathrm{t}\mathrm{W} $. The B and $ \overline{\mathrm{B}} $ can be exchanged in the decays.

png pdf
Figure 1-a:
Feynman diagrams for the pair production of bottom-type VLQs that decay into a b or t quark or antiquark and either a Higgs, Z, or W boson with fully hadronic final states. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ and $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $; middle row: $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ and $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $; lower row: $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ and $ \mathrm{t}\mathrm{W}\mathrm{t}\mathrm{W} $. The B and $ \overline{\mathrm{B}} $ can be exchanged in the decays.

png pdf
Figure 1-b:
Feynman diagrams for the pair production of bottom-type VLQs that decay into a b or t quark or antiquark and either a Higgs, Z, or W boson with fully hadronic final states. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ and $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $; middle row: $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ and $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $; lower row: $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ and $ \mathrm{t}\mathrm{W}\mathrm{t}\mathrm{W} $. The B and $ \overline{\mathrm{B}} $ can be exchanged in the decays.

png pdf
Figure 1-c:
Feynman diagrams for the pair production of bottom-type VLQs that decay into a b or t quark or antiquark and either a Higgs, Z, or W boson with fully hadronic final states. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ and $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $; middle row: $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ and $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $; lower row: $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ and $ \mathrm{t}\mathrm{W}\mathrm{t}\mathrm{W} $. The B and $ \overline{\mathrm{B}} $ can be exchanged in the decays.

png pdf
Figure 1-d:
Feynman diagrams for the pair production of bottom-type VLQs that decay into a b or t quark or antiquark and either a Higgs, Z, or W boson with fully hadronic final states. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ and $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $; middle row: $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ and $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $; lower row: $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ and $ \mathrm{t}\mathrm{W}\mathrm{t}\mathrm{W} $. The B and $ \overline{\mathrm{B}} $ can be exchanged in the decays.

png pdf
Figure 1-e:
Feynman diagrams for the pair production of bottom-type VLQs that decay into a b or t quark or antiquark and either a Higgs, Z, or W boson with fully hadronic final states. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ and $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $; middle row: $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ and $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $; lower row: $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ and $ \mathrm{t}\mathrm{W}\mathrm{t}\mathrm{W} $. The B and $ \overline{\mathrm{B}} $ can be exchanged in the decays.

png pdf
Figure 2:
Feynman diagrams of the pair production of bottom-type VLQ quarks that decay into a b quark or antiquark and either a Higgs or Z boson with a dilepton final state: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ mode (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ mode (right). The B and $ \overline{\mathrm{B}} $ can be exchanged in the decays.

png pdf
Figure 2-a:
Feynman diagrams of the pair production of bottom-type VLQ quarks that decay into a b quark or antiquark and either a Higgs or Z boson with a dilepton final state: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ mode (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ mode (right). The B and $ \overline{\mathrm{B}} $ can be exchanged in the decays.

png pdf
Figure 2-b:
Feynman diagrams of the pair production of bottom-type VLQ quarks that decay into a b quark or antiquark and either a Higgs or Z boson with a dilepton final state: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ mode (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ mode (right). The B and $ \overline{\mathrm{B}} $ can be exchanged in the decays.

png pdf
Figure 3:
Reconstructed VLQ mass distributions for simulated events for the channels in the fully hadronic category with $ m_{{\mathrm{B}}} = $ 1400 GeV. Upper row: Channels in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left) and $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (right) decay mode. Middle row: Channels in the $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (right) decay mode. Lower row: Channels in the $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ decay mode. The different colors indicate the different jet multiplicities. A selection of $ \chi^2_\text{mod}/\text{ndf} < $ 5 has been applied. The values represent the expected number of events over the background in the 2016--2018 data sample.

png pdf
Figure 3-a:
Reconstructed VLQ mass distributions for simulated events for the channels in the fully hadronic category with $ m_{{\mathrm{B}}} = $ 1400 GeV. Upper row: Channels in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left) and $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (right) decay mode. Middle row: Channels in the $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (right) decay mode. Lower row: Channels in the $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ decay mode. The different colors indicate the different jet multiplicities. A selection of $ \chi^2_\text{mod}/\text{ndf} < $ 5 has been applied. The values represent the expected number of events over the background in the 2016--2018 data sample.

png pdf
Figure 3-b:
Reconstructed VLQ mass distributions for simulated events for the channels in the fully hadronic category with $ m_{{\mathrm{B}}} = $ 1400 GeV. Upper row: Channels in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left) and $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (right) decay mode. Middle row: Channels in the $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (right) decay mode. Lower row: Channels in the $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ decay mode. The different colors indicate the different jet multiplicities. A selection of $ \chi^2_\text{mod}/\text{ndf} < $ 5 has been applied. The values represent the expected number of events over the background in the 2016--2018 data sample.

png pdf
Figure 3-c:
Reconstructed VLQ mass distributions for simulated events for the channels in the fully hadronic category with $ m_{{\mathrm{B}}} = $ 1400 GeV. Upper row: Channels in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left) and $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (right) decay mode. Middle row: Channels in the $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (right) decay mode. Lower row: Channels in the $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ decay mode. The different colors indicate the different jet multiplicities. A selection of $ \chi^2_\text{mod}/\text{ndf} < $ 5 has been applied. The values represent the expected number of events over the background in the 2016--2018 data sample.

png pdf
Figure 3-d:
Reconstructed VLQ mass distributions for simulated events for the channels in the fully hadronic category with $ m_{{\mathrm{B}}} = $ 1400 GeV. Upper row: Channels in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left) and $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (right) decay mode. Middle row: Channels in the $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (right) decay mode. Lower row: Channels in the $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ decay mode. The different colors indicate the different jet multiplicities. A selection of $ \chi^2_\text{mod}/\text{ndf} < $ 5 has been applied. The values represent the expected number of events over the background in the 2016--2018 data sample.

png pdf
Figure 3-e:
Reconstructed VLQ mass distributions for simulated events for the channels in the fully hadronic category with $ m_{{\mathrm{B}}} = $ 1400 GeV. Upper row: Channels in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left) and $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (right) decay mode. Middle row: Channels in the $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (right) decay mode. Lower row: Channels in the $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ decay mode. The different colors indicate the different jet multiplicities. A selection of $ \chi^2_\text{mod}/\text{ndf} < $ 5 has been applied. The values represent the expected number of events over the background in the 2016--2018 data sample.

png pdf
Figure 4:
Reconstructed VLQ mass distributions for simulated events passing the b tag requirement for the channels in the dileptonic category with $ m_{{\mathrm{B}}} = $ 1400 GeV in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) event modes. A selection of $ \chi^2_\text{mod}/\text{ndf} < $ 5 has been applied. The values represent the expected number of events over the background in the 2016--2018 data sample.

png pdf
Figure 4-a:
Reconstructed VLQ mass distributions for simulated events passing the b tag requirement for the channels in the dileptonic category with $ m_{{\mathrm{B}}} = $ 1400 GeV in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) event modes. A selection of $ \chi^2_\text{mod}/\text{ndf} < $ 5 has been applied. The values represent the expected number of events over the background in the 2016--2018 data sample.

png pdf
Figure 4-b:
Reconstructed VLQ mass distributions for simulated events passing the b tag requirement for the channels in the dileptonic category with $ m_{{\mathrm{B}}} = $ 1400 GeV in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) event modes. A selection of $ \chi^2_\text{mod}/\text{ndf} < $ 5 has been applied. The values represent the expected number of events over the background in the 2016--2018 data sample.

png pdf
Figure 5:
Normalized distributions of the value of the least $ \chi^2_\text{mod}/\text{ndf} $ for simulated signal events and data events in the fully hadronic category before any b tagging requirements are applied in the fully hadronic category. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) decay modes. Lower row: $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (left), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) decay modes. A signal mass of $ m_{{\mathrm{B}}} = $ 1400 GeV is used and compared against all three years of data. All jet multiplicities have been combined together.

png pdf
Figure 5-a:
Normalized distributions of the value of the least $ \chi^2_\text{mod}/\text{ndf} $ for simulated signal events and data events in the fully hadronic category before any b tagging requirements are applied in the fully hadronic category. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) decay modes. Lower row: $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (left), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) decay modes. A signal mass of $ m_{{\mathrm{B}}} = $ 1400 GeV is used and compared against all three years of data. All jet multiplicities have been combined together.

png pdf
Figure 5-b:
Normalized distributions of the value of the least $ \chi^2_\text{mod}/\text{ndf} $ for simulated signal events and data events in the fully hadronic category before any b tagging requirements are applied in the fully hadronic category. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) decay modes. Lower row: $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (left), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) decay modes. A signal mass of $ m_{{\mathrm{B}}} = $ 1400 GeV is used and compared against all three years of data. All jet multiplicities have been combined together.

png pdf
Figure 5-c:
Normalized distributions of the value of the least $ \chi^2_\text{mod}/\text{ndf} $ for simulated signal events and data events in the fully hadronic category before any b tagging requirements are applied in the fully hadronic category. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) decay modes. Lower row: $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (left), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) decay modes. A signal mass of $ m_{{\mathrm{B}}} = $ 1400 GeV is used and compared against all three years of data. All jet multiplicities have been combined together.

png pdf
Figure 5-d:
Normalized distributions of the value of the least $ \chi^2_\text{mod}/\text{ndf} $ for simulated signal events and data events in the fully hadronic category before any b tagging requirements are applied in the fully hadronic category. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) decay modes. Lower row: $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (left), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) decay modes. A signal mass of $ m_{{\mathrm{B}}} = $ 1400 GeV is used and compared against all three years of data. All jet multiplicities have been combined together.

png pdf
Figure 5-e:
Normalized distributions of the value of the least $ \chi^2_\text{mod}/\text{ndf} $ for simulated signal events and data events in the fully hadronic category before any b tagging requirements are applied in the fully hadronic category. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) decay modes. Lower row: $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (left), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) decay modes. A signal mass of $ m_{{\mathrm{B}}} = $ 1400 GeV is used and compared against all three years of data. All jet multiplicities have been combined together.

png pdf
Figure 6:
Normalized distributions of the value of the least $ \chi^2_\text{mod}/\text{ndf} $ for simulated signal events and data events in the leptonic category before any b tagging requirements are applied. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ decay mode, 3-jet (left) and 4-jet (right) events. Lower row: $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ decay mode, 3-jet (left) and 4-jet (right) events. A signal mass of $ m_{{\mathrm{B}}} = $ 1400 GeV is used and compared against all three years of data.

png pdf
Figure 6-a:
Normalized distributions of the value of the least $ \chi^2_\text{mod}/\text{ndf} $ for simulated signal events and data events in the leptonic category before any b tagging requirements are applied. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ decay mode, 3-jet (left) and 4-jet (right) events. Lower row: $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ decay mode, 3-jet (left) and 4-jet (right) events. A signal mass of $ m_{{\mathrm{B}}} = $ 1400 GeV is used and compared against all three years of data.

png pdf
Figure 6-b:
Normalized distributions of the value of the least $ \chi^2_\text{mod}/\text{ndf} $ for simulated signal events and data events in the leptonic category before any b tagging requirements are applied. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ decay mode, 3-jet (left) and 4-jet (right) events. Lower row: $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ decay mode, 3-jet (left) and 4-jet (right) events. A signal mass of $ m_{{\mathrm{B}}} = $ 1400 GeV is used and compared against all three years of data.

png pdf
Figure 6-c:
Normalized distributions of the value of the least $ \chi^2_\text{mod}/\text{ndf} $ for simulated signal events and data events in the leptonic category before any b tagging requirements are applied. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ decay mode, 3-jet (left) and 4-jet (right) events. Lower row: $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ decay mode, 3-jet (left) and 4-jet (right) events. A signal mass of $ m_{{\mathrm{B}}} = $ 1400 GeV is used and compared against all three years of data.

png pdf
Figure 6-d:
Normalized distributions of the value of the least $ \chi^2_\text{mod}/\text{ndf} $ for simulated signal events and data events in the leptonic category before any b tagging requirements are applied. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ decay mode, 3-jet (left) and 4-jet (right) events. Lower row: $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ decay mode, 3-jet (left) and 4-jet (right) events. A signal mass of $ m_{{\mathrm{B}}} = $ 1400 GeV is used and compared against all three years of data.

png pdf
Figure 7:
Distributions of $ m_{\text{VLQ}} $ for the preselected data sample in the fully hadronic category for some selected channels. Upper row: 4-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and 4-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Middle row: 5-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left) and 5-jet $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (right) modes. Lower row: 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left) and 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. The fit to the data (shown by the black points) is given by the red line, and the bottom panel displays the fractional difference between the data and fit, (data-fit)/fit.

png pdf
Figure 7-a:
Distributions of $ m_{\text{VLQ}} $ for the preselected data sample in the fully hadronic category for some selected channels. Upper row: 4-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and 4-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Middle row: 5-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left) and 5-jet $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (right) modes. Lower row: 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left) and 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. The fit to the data (shown by the black points) is given by the red line, and the bottom panel displays the fractional difference between the data and fit, (data-fit)/fit.

png pdf
Figure 7-b:
Distributions of $ m_{\text{VLQ}} $ for the preselected data sample in the fully hadronic category for some selected channels. Upper row: 4-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and 4-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Middle row: 5-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left) and 5-jet $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (right) modes. Lower row: 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left) and 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. The fit to the data (shown by the black points) is given by the red line, and the bottom panel displays the fractional difference between the data and fit, (data-fit)/fit.

png pdf
Figure 7-c:
Distributions of $ m_{\text{VLQ}} $ for the preselected data sample in the fully hadronic category for some selected channels. Upper row: 4-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and 4-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Middle row: 5-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left) and 5-jet $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (right) modes. Lower row: 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left) and 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. The fit to the data (shown by the black points) is given by the red line, and the bottom panel displays the fractional difference between the data and fit, (data-fit)/fit.

png pdf
Figure 7-d:
Distributions of $ m_{\text{VLQ}} $ for the preselected data sample in the fully hadronic category for some selected channels. Upper row: 4-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and 4-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Middle row: 5-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left) and 5-jet $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (right) modes. Lower row: 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left) and 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. The fit to the data (shown by the black points) is given by the red line, and the bottom panel displays the fractional difference between the data and fit, (data-fit)/fit.

png pdf
Figure 7-e:
Distributions of $ m_{\text{VLQ}} $ for the preselected data sample in the fully hadronic category for some selected channels. Upper row: 4-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and 4-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Middle row: 5-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left) and 5-jet $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (right) modes. Lower row: 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left) and 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. The fit to the data (shown by the black points) is given by the red line, and the bottom panel displays the fractional difference between the data and fit, (data-fit)/fit.

png pdf
Figure 7-f:
Distributions of $ m_{\text{VLQ}} $ for the preselected data sample in the fully hadronic category for some selected channels. Upper row: 4-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and 4-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Middle row: 5-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left) and 5-jet $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (right) modes. Lower row: 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left) and 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. The fit to the data (shown by the black points) is given by the red line, and the bottom panel displays the fractional difference between the data and fit, (data-fit)/fit.

png pdf
Figure 8:
Value of BJTF as a function of $ m_{\text{VLQ}} $ in the control region with 12 $ < \chi^2_\text{mod}/\text{ndf} < $ 48 for some selected fully hadronic channels. Upper row: 4-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Middle row: 5-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. Lower row: 6-jet events in the $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. The linear fit is shown by the red line, and the associated uncertainty in the fit is shown by the shaded band.

png pdf
Figure 8-a:
Value of BJTF as a function of $ m_{\text{VLQ}} $ in the control region with 12 $ < \chi^2_\text{mod}/\text{ndf} < $ 48 for some selected fully hadronic channels. Upper row: 4-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Middle row: 5-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. Lower row: 6-jet events in the $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. The linear fit is shown by the red line, and the associated uncertainty in the fit is shown by the shaded band.

png pdf
Figure 8-b:
Value of BJTF as a function of $ m_{\text{VLQ}} $ in the control region with 12 $ < \chi^2_\text{mod}/\text{ndf} < $ 48 for some selected fully hadronic channels. Upper row: 4-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Middle row: 5-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. Lower row: 6-jet events in the $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. The linear fit is shown by the red line, and the associated uncertainty in the fit is shown by the shaded band.

png pdf
Figure 8-c:
Value of BJTF as a function of $ m_{\text{VLQ}} $ in the control region with 12 $ < \chi^2_\text{mod}/\text{ndf} < $ 48 for some selected fully hadronic channels. Upper row: 4-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Middle row: 5-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. Lower row: 6-jet events in the $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. The linear fit is shown by the red line, and the associated uncertainty in the fit is shown by the shaded band.

png pdf
Figure 8-d:
Value of BJTF as a function of $ m_{\text{VLQ}} $ in the control region with 12 $ < \chi^2_\text{mod}/\text{ndf} < $ 48 for some selected fully hadronic channels. Upper row: 4-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Middle row: 5-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. Lower row: 6-jet events in the $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. The linear fit is shown by the red line, and the associated uncertainty in the fit is shown by the shaded band.

png pdf
Figure 8-e:
Value of BJTF as a function of $ m_{\text{VLQ}} $ in the control region with 12 $ < \chi^2_\text{mod}/\text{ndf} < $ 48 for some selected fully hadronic channels. Upper row: 4-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Middle row: 5-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. Lower row: 6-jet events in the $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. The linear fit is shown by the red line, and the associated uncertainty in the fit is shown by the shaded band.

png pdf
Figure 8-f:
Value of BJTF as a function of $ m_{\text{VLQ}} $ in the control region with 12 $ < \chi^2_\text{mod}/\text{ndf} < $ 48 for some selected fully hadronic channels. Upper row: 4-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Middle row: 5-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. Lower row: 6-jet events in the $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. The linear fit is shown by the red line, and the associated uncertainty in the fit is shown by the shaded band.

png pdf
Figure 8-g:
Value of BJTF as a function of $ m_{\text{VLQ}} $ in the control region with 12 $ < \chi^2_\text{mod}/\text{ndf} < $ 48 for some selected fully hadronic channels. Upper row: 4-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Middle row: 5-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. Lower row: 6-jet events in the $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. The linear fit is shown by the red line, and the associated uncertainty in the fit is shown by the shaded band.

png pdf
Figure 8-h:
Value of BJTF as a function of $ m_{\text{VLQ}} $ in the control region with 12 $ < \chi^2_\text{mod}/\text{ndf} < $ 48 for some selected fully hadronic channels. Upper row: 4-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Middle row: 5-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. Lower row: 6-jet events in the $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. The linear fit is shown by the red line, and the associated uncertainty in the fit is shown by the shaded band.

png pdf
Figure 8-i:
Value of BJTF as a function of $ m_{\text{VLQ}} $ in the control region with 12 $ < \chi^2_\text{mod}/\text{ndf} < $ 48 for some selected fully hadronic channels. Upper row: 4-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Middle row: 5-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. Lower row: 6-jet events in the $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (left), $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (center), and $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (right) modes. The linear fit is shown by the red line, and the associated uncertainty in the fit is shown by the shaded band.

png pdf
Figure 9:
Distributions of $ m_{\text{VLQ}} $ for events in the control region for the channels in the leptonic category. Upper row: 3-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Lower row: 4-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. The exponential fit and its uncertainty are shown by the red line and the light red shaded band, respectively. The bottom panel shows the fractional difference between the data and fit, (data-fit)/fit.

png pdf
Figure 9-a:
Distributions of $ m_{\text{VLQ}} $ for events in the control region for the channels in the leptonic category. Upper row: 3-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Lower row: 4-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. The exponential fit and its uncertainty are shown by the red line and the light red shaded band, respectively. The bottom panel shows the fractional difference between the data and fit, (data-fit)/fit.

png pdf
Figure 9-b:
Distributions of $ m_{\text{VLQ}} $ for events in the control region for the channels in the leptonic category. Upper row: 3-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Lower row: 4-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. The exponential fit and its uncertainty are shown by the red line and the light red shaded band, respectively. The bottom panel shows the fractional difference between the data and fit, (data-fit)/fit.

png pdf
Figure 9-c:
Distributions of $ m_{\text{VLQ}} $ for events in the control region for the channels in the leptonic category. Upper row: 3-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Lower row: 4-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. The exponential fit and its uncertainty are shown by the red line and the light red shaded band, respectively. The bottom panel shows the fractional difference between the data and fit, (data-fit)/fit.

png pdf
Figure 9-d:
Distributions of $ m_{\text{VLQ}} $ for events in the control region for the channels in the leptonic category. Upper row: 3-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. Lower row: 4-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) modes. The exponential fit and its uncertainty are shown by the red line and the light red shaded band, respectively. The bottom panel shows the fractional difference between the data and fit, (data-fit)/fit.

png pdf
Figure 10:
Normalization factor as a function of $ m_{\text{VLQ}} $ for leptonic events in the 5 $ < \chi^2_\text{mod}/\text{ndf} < $ 20 region. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ events in the 3-jet (left) and 4-jet (right) channels. Lower row: $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ events in the 3-jet (left) and 4-jet (right) channels. The fit to a constant value and its uncertainty are shown by the red line and the light red shaded band, respectively.

png pdf
Figure 10-a:
Normalization factor as a function of $ m_{\text{VLQ}} $ for leptonic events in the 5 $ < \chi^2_\text{mod}/\text{ndf} < $ 20 region. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ events in the 3-jet (left) and 4-jet (right) channels. Lower row: $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ events in the 3-jet (left) and 4-jet (right) channels. The fit to a constant value and its uncertainty are shown by the red line and the light red shaded band, respectively.

png pdf
Figure 10-b:
Normalization factor as a function of $ m_{\text{VLQ}} $ for leptonic events in the 5 $ < \chi^2_\text{mod}/\text{ndf} < $ 20 region. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ events in the 3-jet (left) and 4-jet (right) channels. Lower row: $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ events in the 3-jet (left) and 4-jet (right) channels. The fit to a constant value and its uncertainty are shown by the red line and the light red shaded band, respectively.

png pdf
Figure 10-c:
Normalization factor as a function of $ m_{\text{VLQ}} $ for leptonic events in the 5 $ < \chi^2_\text{mod}/\text{ndf} < $ 20 region. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ events in the 3-jet (left) and 4-jet (right) channels. Lower row: $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ events in the 3-jet (left) and 4-jet (right) channels. The fit to a constant value and its uncertainty are shown by the red line and the light red shaded band, respectively.

png pdf
Figure 10-d:
Normalization factor as a function of $ m_{\text{VLQ}} $ for leptonic events in the 5 $ < \chi^2_\text{mod}/\text{ndf} < $ 20 region. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ events in the 3-jet (left) and 4-jet (right) channels. Lower row: $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ events in the 3-jet (left) and 4-jet (right) channels. The fit to a constant value and its uncertainty are shown by the red line and the light red shaded band, respectively.

png pdf
Figure 11:
Normalization factor in the leptonic category as a function of $ m_{\text{VLQ}} $ for simulated Drell--Yan events with $ \chi^2_\text{mod}/\text{ndf} < $ 5. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ events in the 3-jet (left) and 4-jet (right) channels. Lower row: $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ events in the 3-jet (left) and 4-jet (right) channels. The fit to a constant value and its uncertainty are shown by the red line and the light red shaded band, respectively.

png pdf
Figure 11-a:
Normalization factor in the leptonic category as a function of $ m_{\text{VLQ}} $ for simulated Drell--Yan events with $ \chi^2_\text{mod}/\text{ndf} < $ 5. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ events in the 3-jet (left) and 4-jet (right) channels. Lower row: $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ events in the 3-jet (left) and 4-jet (right) channels. The fit to a constant value and its uncertainty are shown by the red line and the light red shaded band, respectively.

png pdf
Figure 11-b:
Normalization factor in the leptonic category as a function of $ m_{\text{VLQ}} $ for simulated Drell--Yan events with $ \chi^2_\text{mod}/\text{ndf} < $ 5. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ events in the 3-jet (left) and 4-jet (right) channels. Lower row: $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ events in the 3-jet (left) and 4-jet (right) channels. The fit to a constant value and its uncertainty are shown by the red line and the light red shaded band, respectively.

png pdf
Figure 11-c:
Normalization factor in the leptonic category as a function of $ m_{\text{VLQ}} $ for simulated Drell--Yan events with $ \chi^2_\text{mod}/\text{ndf} < $ 5. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ events in the 3-jet (left) and 4-jet (right) channels. Lower row: $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ events in the 3-jet (left) and 4-jet (right) channels. The fit to a constant value and its uncertainty are shown by the red line and the light red shaded band, respectively.

png pdf
Figure 11-d:
Normalization factor in the leptonic category as a function of $ m_{\text{VLQ}} $ for simulated Drell--Yan events with $ \chi^2_\text{mod}/\text{ndf} < $ 5. Upper row: $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ events in the 3-jet (left) and 4-jet (right) channels. Lower row: $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ events in the 3-jet (left) and 4-jet (right) channels. The fit to a constant value and its uncertainty are shown by the red line and the light red shaded band, respectively.

png pdf
Figure 12:
Normalization factor in the leptonic category as a function of $ \chi^2_\text{mod}/\text{ndf} $. Upper row: 3-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) decay modes. Lower row: 4-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) decay modes. The fit to a constant value and its uncertainty are shown by the red line and the light red shaded band, respectively.

png pdf
Figure 12-a:
Normalization factor in the leptonic category as a function of $ \chi^2_\text{mod}/\text{ndf} $. Upper row: 3-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) decay modes. Lower row: 4-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) decay modes. The fit to a constant value and its uncertainty are shown by the red line and the light red shaded band, respectively.

png pdf
Figure 12-b:
Normalization factor in the leptonic category as a function of $ \chi^2_\text{mod}/\text{ndf} $. Upper row: 3-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) decay modes. Lower row: 4-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) decay modes. The fit to a constant value and its uncertainty are shown by the red line and the light red shaded band, respectively.

png pdf
Figure 12-c:
Normalization factor in the leptonic category as a function of $ \chi^2_\text{mod}/\text{ndf} $. Upper row: 3-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) decay modes. Lower row: 4-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) decay modes. The fit to a constant value and its uncertainty are shown by the red line and the light red shaded band, respectively.

png pdf
Figure 12-d:
Normalization factor in the leptonic category as a function of $ \chi^2_\text{mod}/\text{ndf} $. Upper row: 3-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) decay modes. Lower row: 4-jet events in the $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (left) and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (right) decay modes. The fit to a constant value and its uncertainty are shown by the red line and the light red shaded band, respectively.

png pdf
Figure 13:
Normalization factor in the low-mass region (450 to 900 GeV) and the high-mass region (800 to 2000 GeV) for events with 5 $ < \chi^2_\text{mod}/\text{ndf} < $ 20 in data (left) and simulated Drell--Yan events with $ \chi^2_\text{mod}/\text{ndf} < $ 5 (right).

png pdf
Figure 13-a:
Normalization factor in the low-mass region (450 to 900 GeV) and the high-mass region (800 to 2000 GeV) for events with 5 $ < \chi^2_\text{mod}/\text{ndf} < $ 20 in data (left) and simulated Drell--Yan events with $ \chi^2_\text{mod}/\text{ndf} < $ 5 (right).

png pdf
Figure 13-b:
Normalization factor in the low-mass region (450 to 900 GeV) and the high-mass region (800 to 2000 GeV) for events with 5 $ < \chi^2_\text{mod}/\text{ndf} < $ 20 in data (left) and simulated Drell--Yan events with $ \chi^2_\text{mod}/\text{ndf} < $ 5 (right).

png pdf
Figure 14:
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic category. The channels shown are 4-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (upper left), 4-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper right), 4-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (lower center). Five signal masses are shown: 1000 (magenta), 1200 (red), 1400 (maroon), 1600 (orange), and 1800 GeV (purple). The signal distributions are normalized to the number of events estimated from the expected VLQ production cross section. The assumed branching fractions are $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 0%. The background distribution is independent of the signal branching fractions. The hatched regions indicate the total systematic uncertainties in the background estimate.

png pdf
Figure 14-a:
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic category. The channels shown are 4-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (upper left), 4-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper right), 4-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (lower center). Five signal masses are shown: 1000 (magenta), 1200 (red), 1400 (maroon), 1600 (orange), and 1800 GeV (purple). The signal distributions are normalized to the number of events estimated from the expected VLQ production cross section. The assumed branching fractions are $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 0%. The background distribution is independent of the signal branching fractions. The hatched regions indicate the total systematic uncertainties in the background estimate.

png pdf
Figure 14-b:
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic category. The channels shown are 4-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (upper left), 4-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper right), 4-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (lower center). Five signal masses are shown: 1000 (magenta), 1200 (red), 1400 (maroon), 1600 (orange), and 1800 GeV (purple). The signal distributions are normalized to the number of events estimated from the expected VLQ production cross section. The assumed branching fractions are $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 0%. The background distribution is independent of the signal branching fractions. The hatched regions indicate the total systematic uncertainties in the background estimate.

png pdf
Figure 14-c:
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic category. The channels shown are 4-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (upper left), 4-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper right), 4-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (lower center). Five signal masses are shown: 1000 (magenta), 1200 (red), 1400 (maroon), 1600 (orange), and 1800 GeV (purple). The signal distributions are normalized to the number of events estimated from the expected VLQ production cross section. The assumed branching fractions are $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 0%. The background distribution is independent of the signal branching fractions. The hatched regions indicate the total systematic uncertainties in the background estimate.

png pdf
Figure 15:
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic category. The channels shown are 5-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (upper left), 5-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper right), 5-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (middle left), 5-jet $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (middle right), and 5-jet $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (lower center). Five signal masses are shown: 1000 (magenta), 1200 (red), 1400 (maroon), 1600 (orange), and 1800 GeV (purple). The signal distributions are normalized to the number of events estimated from the expected VLQ production cross section. The assumed branching fractions are $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 0%. The background distribution is independent of the signal branching fractions. The hatched regions indicate the total systematic uncertainties in the background estimate.

png pdf
Figure 15-a:
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic category. The channels shown are 5-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (upper left), 5-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper right), 5-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (middle left), 5-jet $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (middle right), and 5-jet $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (lower center). Five signal masses are shown: 1000 (magenta), 1200 (red), 1400 (maroon), 1600 (orange), and 1800 GeV (purple). The signal distributions are normalized to the number of events estimated from the expected VLQ production cross section. The assumed branching fractions are $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 0%. The background distribution is independent of the signal branching fractions. The hatched regions indicate the total systematic uncertainties in the background estimate.

png pdf
Figure 15-b:
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic category. The channels shown are 5-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (upper left), 5-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper right), 5-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (middle left), 5-jet $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (middle right), and 5-jet $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (lower center). Five signal masses are shown: 1000 (magenta), 1200 (red), 1400 (maroon), 1600 (orange), and 1800 GeV (purple). The signal distributions are normalized to the number of events estimated from the expected VLQ production cross section. The assumed branching fractions are $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 0%. The background distribution is independent of the signal branching fractions. The hatched regions indicate the total systematic uncertainties in the background estimate.

png pdf
Figure 15-c:
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic category. The channels shown are 5-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (upper left), 5-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper right), 5-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (middle left), 5-jet $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (middle right), and 5-jet $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (lower center). Five signal masses are shown: 1000 (magenta), 1200 (red), 1400 (maroon), 1600 (orange), and 1800 GeV (purple). The signal distributions are normalized to the number of events estimated from the expected VLQ production cross section. The assumed branching fractions are $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 0%. The background distribution is independent of the signal branching fractions. The hatched regions indicate the total systematic uncertainties in the background estimate.

png pdf
Figure 15-d:
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic category. The channels shown are 5-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (upper left), 5-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper right), 5-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (middle left), 5-jet $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (middle right), and 5-jet $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (lower center). Five signal masses are shown: 1000 (magenta), 1200 (red), 1400 (maroon), 1600 (orange), and 1800 GeV (purple). The signal distributions are normalized to the number of events estimated from the expected VLQ production cross section. The assumed branching fractions are $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 0%. The background distribution is independent of the signal branching fractions. The hatched regions indicate the total systematic uncertainties in the background estimate.

png pdf
Figure 15-e:
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic category. The channels shown are 5-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (upper left), 5-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper right), 5-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (middle left), 5-jet $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (middle right), and 5-jet $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (lower center). Five signal masses are shown: 1000 (magenta), 1200 (red), 1400 (maroon), 1600 (orange), and 1800 GeV (purple). The signal distributions are normalized to the number of events estimated from the expected VLQ production cross section. The assumed branching fractions are $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 0%. The background distribution is independent of the signal branching fractions. The hatched regions indicate the total systematic uncertainties in the background estimate.

png pdf
Figure 16:
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic category. The channels shown are 6-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (upper left), 6-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper right), 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (middle left), 6-jet $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (middle right), and 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (lower center). Five signal masses are shown: 1000 (magenta), 1200 (red), 1400 (maroon), 1600 (orange), and 1800 GeV (purple). The signal distributions are normalized to the number of events estimated from the expected VLQ production cross section. The assumed branching fractions are $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 0%. The background distribution is independent of the signal branching fractions. The hatched regions indicate the total systematic uncertainties in the background estimate.

png pdf
Figure 16-a:
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic category. The channels shown are 6-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (upper left), 6-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper right), 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (middle left), 6-jet $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (middle right), and 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (lower center). Five signal masses are shown: 1000 (magenta), 1200 (red), 1400 (maroon), 1600 (orange), and 1800 GeV (purple). The signal distributions are normalized to the number of events estimated from the expected VLQ production cross section. The assumed branching fractions are $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 0%. The background distribution is independent of the signal branching fractions. The hatched regions indicate the total systematic uncertainties in the background estimate.

png pdf
Figure 16-b:
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic category. The channels shown are 6-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (upper left), 6-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper right), 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (middle left), 6-jet $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (middle right), and 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (lower center). Five signal masses are shown: 1000 (magenta), 1200 (red), 1400 (maroon), 1600 (orange), and 1800 GeV (purple). The signal distributions are normalized to the number of events estimated from the expected VLQ production cross section. The assumed branching fractions are $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 0%. The background distribution is independent of the signal branching fractions. The hatched regions indicate the total systematic uncertainties in the background estimate.

png pdf
Figure 16-c:
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic category. The channels shown are 6-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (upper left), 6-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper right), 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (middle left), 6-jet $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (middle right), and 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (lower center). Five signal masses are shown: 1000 (magenta), 1200 (red), 1400 (maroon), 1600 (orange), and 1800 GeV (purple). The signal distributions are normalized to the number of events estimated from the expected VLQ production cross section. The assumed branching fractions are $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 0%. The background distribution is independent of the signal branching fractions. The hatched regions indicate the total systematic uncertainties in the background estimate.

png pdf
Figure 16-d:
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic category. The channels shown are 6-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (upper left), 6-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper right), 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (middle left), 6-jet $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (middle right), and 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (lower center). Five signal masses are shown: 1000 (magenta), 1200 (red), 1400 (maroon), 1600 (orange), and 1800 GeV (purple). The signal distributions are normalized to the number of events estimated from the expected VLQ production cross section. The assumed branching fractions are $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 0%. The background distribution is independent of the signal branching fractions. The hatched regions indicate the total systematic uncertainties in the background estimate.

png pdf
Figure 16-e:
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the hadronic category. The channels shown are 6-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{H} $ (upper left), 6-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper right), 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (middle left), 6-jet $ \mathrm{b}\mathrm{H}\mathrm{t}\mathrm{W} $ (middle right), and 6-jet $ \mathrm{b}\mathrm{Z}\mathrm{t}\mathrm{W} $ (lower center). Five signal masses are shown: 1000 (magenta), 1200 (red), 1400 (maroon), 1600 (orange), and 1800 GeV (purple). The signal distributions are normalized to the number of events estimated from the expected VLQ production cross section. The assumed branching fractions are $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 0%. The background distribution is independent of the signal branching fractions. The hatched regions indicate the total systematic uncertainties in the background estimate.

png pdf
Figure 17:
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the leptonic category. The channels shown are 3-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper left), 4-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper right), 3-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (lower left), and 4-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (lower right). Five signal masses are shown: 1000 (magenta), 1200 (red), 1400 (maroon), 1600 (orange), and 1800 GeV (purple). The signal distributions are normalized to the number of events estimated from the expected VLQ production cross section. The assumed branching fractions are $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 0%. The background distribution is independent of the signal branching fractions. The hatched regions indicate the total systematic uncertainties in the background estimate.

png pdf
Figure 17-a:
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the leptonic category. The channels shown are 3-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper left), 4-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper right), 3-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (lower left), and 4-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (lower right). Five signal masses are shown: 1000 (magenta), 1200 (red), 1400 (maroon), 1600 (orange), and 1800 GeV (purple). The signal distributions are normalized to the number of events estimated from the expected VLQ production cross section. The assumed branching fractions are $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 0%. The background distribution is independent of the signal branching fractions. The hatched regions indicate the total systematic uncertainties in the background estimate.

png pdf
Figure 17-b:
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the leptonic category. The channels shown are 3-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper left), 4-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper right), 3-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (lower left), and 4-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (lower right). Five signal masses are shown: 1000 (magenta), 1200 (red), 1400 (maroon), 1600 (orange), and 1800 GeV (purple). The signal distributions are normalized to the number of events estimated from the expected VLQ production cross section. The assumed branching fractions are $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 0%. The background distribution is independent of the signal branching fractions. The hatched regions indicate the total systematic uncertainties in the background estimate.

png pdf
Figure 17-c:
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the leptonic category. The channels shown are 3-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper left), 4-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper right), 3-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (lower left), and 4-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (lower right). Five signal masses are shown: 1000 (magenta), 1200 (red), 1400 (maroon), 1600 (orange), and 1800 GeV (purple). The signal distributions are normalized to the number of events estimated from the expected VLQ production cross section. The assumed branching fractions are $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 0%. The background distribution is independent of the signal branching fractions. The hatched regions indicate the total systematic uncertainties in the background estimate.

png pdf
Figure 17-d:
Distributions of reconstructed VLQ mass for expected postfit background (blue histogram), signal plus background (colored lines), and observed data (black points) for events in the leptonic category. The channels shown are 3-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper left), 4-jet $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ (upper right), 3-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (lower left), and 4-jet $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ (lower right). Five signal masses are shown: 1000 (magenta), 1200 (red), 1400 (maroon), 1600 (orange), and 1800 GeV (purple). The signal distributions are normalized to the number of events estimated from the expected VLQ production cross section. The assumed branching fractions are $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 0%. The background distribution is independent of the signal branching fractions. The hatched regions indicate the total systematic uncertainties in the background estimate.

png pdf
Figure 18:
The limit at 95% CL on the cross section for VLQ pair production for four different branching fraction hypothesis: $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = $ 100% (upper left), $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 100% (upper right), $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, corresponding to the $ {\mathrm{TB}} $ doublet model with no $ \mathrm{Tt} $ mixing and also to the large VLQ mass $ \mathrm{X}{\mathrm{TB}} $ triplet model (lower left), and $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = 25% $, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 50%, corresponding to the large VLQ mass $ {\mathrm{TBY}} $ triplet model (lower right). The expected limit is shown as the dashed line, with the 68 and 95% uncertainties shown by the green (inner) and yellow (outer) bands, respectively. The theoretical cross section and its uncertainty are shown by the red line and light-red band.

png pdf
Figure 18-a:
The limit at 95% CL on the cross section for VLQ pair production for four different branching fraction hypothesis: $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = $ 100% (upper left), $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 100% (upper right), $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, corresponding to the $ {\mathrm{TB}} $ doublet model with no $ \mathrm{Tt} $ mixing and also to the large VLQ mass $ \mathrm{X}{\mathrm{TB}} $ triplet model (lower left), and $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = 25% $, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 50%, corresponding to the large VLQ mass $ {\mathrm{TBY}} $ triplet model (lower right). The expected limit is shown as the dashed line, with the 68 and 95% uncertainties shown by the green (inner) and yellow (outer) bands, respectively. The theoretical cross section and its uncertainty are shown by the red line and light-red band.

png pdf
Figure 18-b:
The limit at 95% CL on the cross section for VLQ pair production for four different branching fraction hypothesis: $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = $ 100% (upper left), $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 100% (upper right), $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, corresponding to the $ {\mathrm{TB}} $ doublet model with no $ \mathrm{Tt} $ mixing and also to the large VLQ mass $ \mathrm{X}{\mathrm{TB}} $ triplet model (lower left), and $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = 25% $, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 50%, corresponding to the large VLQ mass $ {\mathrm{TBY}} $ triplet model (lower right). The expected limit is shown as the dashed line, with the 68 and 95% uncertainties shown by the green (inner) and yellow (outer) bands, respectively. The theoretical cross section and its uncertainty are shown by the red line and light-red band.

png pdf
Figure 18-c:
The limit at 95% CL on the cross section for VLQ pair production for four different branching fraction hypothesis: $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = $ 100% (upper left), $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 100% (upper right), $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, corresponding to the $ {\mathrm{TB}} $ doublet model with no $ \mathrm{Tt} $ mixing and also to the large VLQ mass $ \mathrm{X}{\mathrm{TB}} $ triplet model (lower left), and $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = 25% $, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 50%, corresponding to the large VLQ mass $ {\mathrm{TBY}} $ triplet model (lower right). The expected limit is shown as the dashed line, with the 68 and 95% uncertainties shown by the green (inner) and yellow (outer) bands, respectively. The theoretical cross section and its uncertainty are shown by the red line and light-red band.

png pdf
Figure 18-d:
The limit at 95% CL on the cross section for VLQ pair production for four different branching fraction hypothesis: $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = $ 100% (upper left), $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 100% (upper right), $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = $ 50%, corresponding to the $ {\mathrm{TB}} $ doublet model with no $ \mathrm{Tt} $ mixing and also to the large VLQ mass $ \mathrm{X}{\mathrm{TB}} $ triplet model (lower left), and $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = 25% $, $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = $ 50%, corresponding to the large VLQ mass $ {\mathrm{TBY}} $ triplet model (lower right). The expected limit is shown as the dashed line, with the 68 and 95% uncertainties shown by the green (inner) and yellow (outer) bands, respectively. The theoretical cross section and its uncertainty are shown by the red line and light-red band.

png pdf
Figure 19:
Median expected exclusion limits on the VLQ mass at 95% CL as a function of the branching fractions $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) $ and $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) $, with $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = 1 - \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) - \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) $. The gray area corresponds to the region where the exclusion limit is less than 1000 GeV.

png pdf
Figure 20:
Observed exclusion limits on the VLQ mass at 95% CL as a function of the branching fractions $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) $ and $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) $, with $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = 1 - \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) - \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) $. The gray area corresponds to the region where the exclusion limit is less than 1000 GeV.
Tables

png pdf
Table 1:
Summary of channels considered for each category and jet multiplicity. Although events with a jet from ISR or FSR are included in the leptonic category, for these events the extra jet is not included in the categorization of the jet multiplicity of the event.

png pdf
Table 2:
Required minimum number of single ($ N_{\mathrm{b}} $) and double ($ N_{\mathrm{b}\overline{\mathrm{b}}} $) b tags, and working points (WPs) used for each category, decay mode, and jet multiplicity. The working points are described in the text. For a given event mode, there can be several jet multiplicities depending on the number of merged jets.

png pdf
Table 3:
Optimized upper limit values of the $ \chi^2_\text{mod}/\text{ndf} $ selection as a function of jet multiplicity and decay mode.

png pdf
Table 4:
Values of the BJTF for data events in the control region with 500 $ < m_{\text{VLQ}} < $ 800 GeV for each of the fully hadronic channels considered. The uncertainties shown are statistical.

png pdf
Table 5:
Values of the b-tag to b-veto ratio for events in the mass range 450 $ < m_{\text{VLQ}} < $ 900 GeV with $ \chi^2_\text{mod}/\text{ndf} < $ 5, for each of the dileptonic channels. The uncertainties shown are statistical only.

png pdf
Table 6:
Systematic uncertainties for the fully hadronic channels for a simulated signal mass of 1400 GeV and branching fractions of $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = 40% $, $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = 40% $, and $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = 20% $. The only parameters in the fits that have significant uncertainties ($ > $0.01%) are the scaling parameters (denoted by $ p_0 $).

png pdf
Table 7:
Systematic uncertainties for the dileptonic $ \mathrm{b}\mathrm{H}\mathrm{b}\mathrm{Z} $ and $ \mathrm{b}\mathrm{Z}\mathrm{b}\mathrm{Z} $ channels for a simulated signal mass of 1400 GeV and branching fractions of $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) = 40% $, $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) = 40% $, and $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) = 20% $.
Summary
A search for bottom-type vector-like quarks (B VLQs) has been presented, using data from proton-proton collisions collected by the CMS detector in 2016--2018 at $ \sqrt{s} = $ 13 TeV. Results are combined from the fully hadronic category, where each B VLQ decays into either a b quark and a Higgs boson (H), a b quark and a Z boson, or a t quark and a W boson, and the leptonic category, where each B VLQ decays into a b quark and either an H or a Z boson, and at least one decay includes a Z boson that decays into a pair of charged leptons. To account for the fact that the two jets from an H, Z, or W boson decay may be reconstructed separately, or may be merged into a single reconstructed jet due to a high Lorentz boost, events are separated into different jet multiplicity categories and reconstructed appropriately. Backgrounds are estimated from data and limits are set on the VLQ mass at 95% confidence level as a function of the branching fractions $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{H}) $, $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) $, and $ \mathcal{B}({\mathrm{B}} \to \mathrm{t}\mathrm{W}) $. The most significant improvement over previous results is an increased sensitivity for scenarios with large $ \mathcal{B}({\mathrm{B}} \to \mathrm{b}\mathrm{Z}) $ due to the inclusion of events with leptonic Z boson decays. The current results represent the most stringent limits on B VLQs to date.
References
1 G. 't Hooft Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking NATO Sci. Ser. B 59 (1980) 135
2 ATLAS Collaboration Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
3 CMS Collaboration Observation of a new boson at a mass of 125GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
4 CMS Collaboration Observation of a new boson with mass near 125GeV in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
5 CMS Collaboration A measurement of the Higgs boson mass in the diphoton decay channel PLB 805 (2020) 135425 CMS-HIG-19-004
2002.06398
6 H. Georgi and A. Pais Calculability and naturalness in gauge theories PRD 10 (1974) 539
7 J. Wess and B. Zumino A Lagrangian model invariant under supergauge transformations PLB 49 (1974) 52
8 P. Fayet and S. Ferrara Supersymmetry Phys. Rept. 32 (1977) 249
9 D. B. Kaplan, H. Georgi, and S. Dimopoulos Composite Higgs scalars PLB 136 (1984) 187
10 K. Agashe, R. Contino, and A. Pomarol The minimal composite Higgs model NPB 719 (2005) 165 hep-ph/0412089
11 N. Arkani-Hamed, A. G. Cohen, and H. Georgi Electroweak symmetry breaking from dimensional deconstruction PLB 513 (2001) 232 hep-ph/0105239
12 N. Arkani-Hamed, A. G. Cohen, E. Katz, and A. E. Nelson The littlest Higgs JHEP 07 (2002) 034 hep-ph/0206021
13 M. Schmaltz Physics beyond the standard model (theory): Introducing the little Higgs Nucl. Phys. B Proc. Suppl. 117 (2003) 40 hep-ph/0210415
14 F. del Aguila and M. J. Bowick The possibility of new fermions with $ \Delta I = $ 0 mass NPB 224 (1983) 107
15 ATLAS Collaboration Combined measurements of Higgs boson production and decay using up to 80 fb$ ^{-1} $ of proton-proton collision data at $ \sqrt{s}= $ 13 TeV collected with the ATLAS experiment PRD 101 (2020) 012002 1909.02845
16 CMS Collaboration Measurement and interpretation of differential cross sections for Higgs boson production at $ \sqrt{s} = $ 13 TeV PLB 792 (2019) 369 CMS-HIG-17-028
1812.06504
17 J. A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer, and M. P é rez-Victoria Handbook of vectorlike quarks: Mixing and single production PRD 88 (2013) 094010 1306.0572
18 A. Atre, M. Carena, T. Han, and J. Santiago Heavy quarks above the top at the Tevatron PRD 79 (2009) 054018 0806.3966
19 A. Atre et al. Model-independent searches for new quarks at the LHC JHEP 08 (2011) 080 1102.1987
20 F. del Aguila, M. P é rez-Victoria, and J. Santiago Observable contributions of new exotic quarks to quark mixing JHEP 09 (2000) 011 hep-ph/0007316
21 J. A. Aguilar-Saavedra Mixing with vector-like quarks: constraints and expectations EPJ Web Conf. 60 (2013) 16012 1306.4432
22 CMS Collaboration A search for bottom-type, vector-like quark pair production in a fully hadronic final state in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PRD 102 (2020) 112004 2008.09835
23 ATLAS Collaboration Combination of the searches for pair-produced vector-like partners of the third-generation quarks at $ \sqrt{s} = $ 13 TeV with the ATLAS detector PRL 121 (2018) 211801 1808.02343
24 ATLAS Collaboration Search for pair-production of vector-like quarks in pp collision events at $ \sqrt{s}= $ 13 TeV with at least one leptonically decaying Z boson and a third-generation quark with the ATLAS detector PLB 843 (2023) 138019 2210.15413
25 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
26 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} $ = 13 TeV CMS Physics Analysis Summary, 2018
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
27 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2019
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
28 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) P05014 CMS-EGM-17-001
2012.06888
29 CMS Collaboration ECAL 2016 refined calibration and Run2 summary plots CMS Detector Performance Summary CMS-DP-2020-021, 2020
CDS
30 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
31 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13\,TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
32 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
33 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
34 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
35 NNPDF Collaboration Parton distributions for the LHC Run II JHEP 04 (2015) 040 1410.8849
36 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
37 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
38 CMS Collaboration Event generator tunes obtained from underlying event and multiparton scattering measurements EPJC 76 (2016) 155 CMS-GEN-14-001
1512.00815
39 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
40 M. Czakon, P. Fiedler, and A. Mitov Total top-quark pair-production cross section at hadron colliders through $ O(\alpha^4_S) $ PRL 110 (2013) 252004 1303.6254
41 M. Czakon and A. Mitov Top++: A program for the calculation of the top-pair cross-section at hadron colliders Comput. Phys. Commun. 185 (2014) 2930 1112.5675
42 M. Cacciari et al. Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation PLB 710 (2012) 612 1111.5869
43 M. R. Whalley, D. Bourilkov, and R. C. Group The Les Houches accord PDFs (LHAPDF) and LHAGLUE in HERA and the LHC: A workshop on the implications of HERA for LHC physics. Proceedings, Part B, 2005 hep-ph/0508110
44 D. Bourilkov, R. C. Group, and M. R. Whalley LHAPDF: PDF use from the Tevatron to the LHC in TeV4LHC Workshop - 4th meeting Batavia, Illinois, -22,, 2005
October 2 (2005) 0
hep-ph/0605240
45 CMS Collaboration Search for vector-like T and B quark pairs in final states with leptons at $ \sqrt{s} = $ 13 TeV JHEP 08 (2018) 177 1805.04758
46 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
47 J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions EPJC 53 (2008) 473 0706.2569
48 CMS Collaboration Measurement of the inelastic proton-proton cross section at $ \sqrt{s}= $ 13 TeV JHEP 07 (2018) 161 CMS-FSQ-15-005
1802.02613
49 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
50 J. Allison et al. Geant4 developments and applications IEEE Trans. Nucl. Sci. 53 (2006) 270
51 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
52 CMS Collaboration Performance of the DeepJet b tagging algorithm using 41.9/fb of data from proton-proton collisions at 13 TeV with phase 1 CMS detector CMS Detector Performance Summary CMS-DP-2018-058, 2018
CDS
53 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
54 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
55 CMS Collaboration Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015
CDS
56 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
57 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
58 CMS Collaboration Pileup mitigation at CMS in 13 TeV data JINST 15 (2020) P09018 CMS-JME-18-001
2003.00503
59 D. Bertolini, P. Harris, M. Low, and N. Tran Pileup per particle identification JHEP 10 (2014) 059 1407.6013
60 Y. L. Dokshitzer, G. D. Leder, S. Moretti, and B. R. Webber Better jet clustering algorithms JHEP 08 (1997) 001 hep-ph/9707323
61 M. Wobisch and T. Wengler Hadronization corrections to jet cross-sections in deep inelastic scattering in Proceedings of the Workshop on Monte Carlo Generators for HERA Physics, Hamburg, Germany, 1998
link
hep-ph/9907280
62 M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam Towards an understanding of jet substructure JHEP 09 (2013) 029 1307.0007
63 J. M. Butterworth, A. R. Davison, M. Rubin, and G. P. Salam Jet substructure as a new Higgs search channel at the LHC PRL 100 (2008) 242001 0802.2470
64 A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler Soft drop JHEP 05 (2014) 146 1402.2657
65 E. Bols et al. Jet flavour classification using DeepJet JINST 15 (2020) P12012 2008.10519
66 CMS Collaboration Performance of the CMS muon trigger system in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 16 (2021) P07001 CMS-MUO-19-001
2102.04790
67 CMS Collaboration Search for pair production of vectorlike quarks in the fully hadronic final state PRD 100 (2019) 072001 1906.11903
68 ATLAS Collaboration Search for pair production of heavy vector-like quarks decaying into hadronic final states in $ pp $ collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector PRD 98 (2018) 092005 1808.01771
69 J. Butterworth et al. PDF4LHC recommendations for LHC Run II JPG 43 (2016) 023001 1510.03865
70 S. Catani, D. de Florian, M. Grazzini, and P. Nason Soft gluon resummation for Higgs boson production at hadron colliders JHEP 07 (2003) 028 hep-ph/0306211
71 CMS Collaboration The CMS statistical analysis and combination tool: \textscCombine Submitted to \emphComput. Softw. Big Sci., 2024 CMS-CAT-23-001
2404.06614
72 CMS Collaboration HEPData record for this analysis link
73 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435 hep-ex/9902006
74 A. L. Read Presentation of search results: The CL$ _{\text{s}} $ technique JPG 28 (2002) 2693
75 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
Compact Muon Solenoid
LHC, CERN