CMS-PAS-EXO-23-013 | ||
Search for low-mass long-lived particles decaying to displaced jets in proton-proton collisions at $ \sqrt{s} = $ 13.6 TeV | ||
CMS Collaboration | ||
26 March 2024 | ||
Abstract: A search for low-mass long-lived particles decaying to displaced jets is presented, using a data sample corresponding to an integrated luminosity of 34.7 fb$ ^{-1} $, collected with the CMS detector at the CERN LHC in 2022. Novel trigger, reconstruction, and machine learning techniques were developed for and employed in this search. Limits are presented on the branching fraction of the Higgs boson to long-lived particles that subsequently decay to quark pairs or tau lepton pairs. Up to a factor of 10 improvement is achieved over previous limits for models with proper decay lengths smaller than 1 m. | ||
Links:
CDS record (PDF) ;
Physics Briefing ;
CADI line (restricted) ;
These preliminary results are superseded in this paper, Submitted to ROPP. The superseded preliminary plots can be found here. |
Figures | |
![]() png pdf |
Figure 1:
The Feynman diagram for the benchmark signal model, in which the SM-like Higgs boson with a mass of 125 GeV decays to two long-lived neutral scalars S, and each of them decays to a pair of SM fermions. |
![]() png pdf |
Figure 2:
The predicted background yields and the number of observed events for the data with $ g_{\text{prompt}} > $ 0.985, shown for different bins of the displaced-dijet GNN score $ g_{\text{displaced}} $. Expected signal yields for the $ \mathrm{H}\to\text{S}\text{S} $, $ \text{S}\to\mathrm{b}\overline{\mathrm{b}} $ signature are also shown for models with $ m_{\text{S}}= $ 40 GeV and $ c\tau_{0}= $ 1, 10, or 100 mm, assuming a branching fraction of 1% for the $ \mathrm{H}\to\text{S}\text{S} $ decay. |
![]() png pdf |
Figure 3:
The 95% CL upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\text{S}\text{S}) $ for $ \text{S}\to\mathrm{b}\overline{\mathrm{b}} $ (upper left), $ \text{S}\to\mathrm{d}\overline{\mathrm{d}} $ (upper right), and $ \text{S}\to\tau\tau $ (lower), for different LLP masses $ m_{\text{S}} $ and proper decay lengths $ c\tau_{0} $. |
![]() png pdf |
Figure 3-a:
The 95% CL upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\text{S}\text{S}) $ for $ \text{S}\to\mathrm{b}\overline{\mathrm{b}} $ (upper left), $ \text{S}\to\mathrm{d}\overline{\mathrm{d}} $ (upper right), and $ \text{S}\to\tau\tau $ (lower), for different LLP masses $ m_{\text{S}} $ and proper decay lengths $ c\tau_{0} $. |
![]() png pdf |
Figure 3-b:
The 95% CL upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\text{S}\text{S}) $ for $ \text{S}\to\mathrm{b}\overline{\mathrm{b}} $ (upper left), $ \text{S}\to\mathrm{d}\overline{\mathrm{d}} $ (upper right), and $ \text{S}\to\tau\tau $ (lower), for different LLP masses $ m_{\text{S}} $ and proper decay lengths $ c\tau_{0} $. |
![]() png pdf |
Figure 3-c:
The 95% CL upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\text{S}\text{S}) $ for $ \text{S}\to\mathrm{b}\overline{\mathrm{b}} $ (upper left), $ \text{S}\to\mathrm{d}\overline{\mathrm{d}} $ (upper right), and $ \text{S}\to\tau\tau $ (lower), for different LLP masses $ m_{\text{S}} $ and proper decay lengths $ c\tau_{0} $. |
![]() png pdf |
Figure 4:
Comparisons of the observed limits from this search and other results, for $ \text{S}\to\mathrm{b}\overline{\mathrm{b}} $, $ m_{\text{S}}= $ 40 GeV (upper left); $ \text{S}\to\mathrm{b}\overline{\mathrm{b}} $, $ m_{\text{S}}= $ 15 GeV (upper right); and $ \text{S}\to\mathrm{d}\overline{\mathrm{d}} $, $ m_{\text{S}}= $ 15 GeV (lower). The other results include the previous CMS displaced-jets search [40] (red dashed lines) and the CMS Z + displaced jets search [41] (green dashed lines). |
![]() png pdf |
Figure 4-a:
Comparisons of the observed limits from this search and other results, for $ \text{S}\to\mathrm{b}\overline{\mathrm{b}} $, $ m_{\text{S}}= $ 40 GeV (upper left); $ \text{S}\to\mathrm{b}\overline{\mathrm{b}} $, $ m_{\text{S}}= $ 15 GeV (upper right); and $ \text{S}\to\mathrm{d}\overline{\mathrm{d}} $, $ m_{\text{S}}= $ 15 GeV (lower). The other results include the previous CMS displaced-jets search [40] (red dashed lines) and the CMS Z + displaced jets search [41] (green dashed lines). |
![]() png pdf |
Figure 4-b:
Comparisons of the observed limits from this search and other results, for $ \text{S}\to\mathrm{b}\overline{\mathrm{b}} $, $ m_{\text{S}}= $ 40 GeV (upper left); $ \text{S}\to\mathrm{b}\overline{\mathrm{b}} $, $ m_{\text{S}}= $ 15 GeV (upper right); and $ \text{S}\to\mathrm{d}\overline{\mathrm{d}} $, $ m_{\text{S}}= $ 15 GeV (lower). The other results include the previous CMS displaced-jets search [40] (red dashed lines) and the CMS Z + displaced jets search [41] (green dashed lines). |
![]() png pdf |
Figure 4-c:
Comparisons of the observed limits from this search and other results, for $ \text{S}\to\mathrm{b}\overline{\mathrm{b}} $, $ m_{\text{S}}= $ 40 GeV (upper left); $ \text{S}\to\mathrm{b}\overline{\mathrm{b}} $, $ m_{\text{S}}= $ 15 GeV (upper right); and $ \text{S}\to\mathrm{d}\overline{\mathrm{d}} $, $ m_{\text{S}}= $ 15 GeV (lower). The other results include the previous CMS displaced-jets search [40] (red dashed lines) and the CMS Z + displaced jets search [41] (green dashed lines). |
![]() png pdf |
Figure 5:
The 95% CL limits on the LLP mass $ m_{\text{S}} $ for different proper decay lengths $ c\tau_{0} $ assuming a branching fraction of 1% for the $ \mathrm{H}\to\text{S}\text{S} $ decay, and with subsequent $ \text{S}\to\mathrm{b}\overline{\mathrm{b}} $ (left) or $ \text{S}\to\mathrm{d}\overline{\mathrm{d}} $ (right) decays. |
![]() png pdf |
Figure 5-a:
The 95% CL limits on the LLP mass $ m_{\text{S}} $ for different proper decay lengths $ c\tau_{0} $ assuming a branching fraction of 1% for the $ \mathrm{H}\to\text{S}\text{S} $ decay, and with subsequent $ \text{S}\to\mathrm{b}\overline{\mathrm{b}} $ (left) or $ \text{S}\to\mathrm{d}\overline{\mathrm{d}} $ (right) decays. |
![]() png pdf |
Figure 5-b:
The 95% CL limits on the LLP mass $ m_{\text{S}} $ for different proper decay lengths $ c\tau_{0} $ assuming a branching fraction of 1% for the $ \mathrm{H}\to\text{S}\text{S} $ decay, and with subsequent $ \text{S}\to\mathrm{b}\overline{\mathrm{b}} $ (left) or $ \text{S}\to\mathrm{d}\overline{\mathrm{d}} $ (right) decays. |
![]() png pdf |
Figure 6:
The 95% CL observed limits on the hidden-sector top partner mass $ m_{{\mathrm{T}} } $ for different hidden glueball masses $ m_{0} $, in the fraternal Twin Higgs model [29] (left) and the folded SUSY model [44] (right). |
![]() png pdf |
Figure 6-a:
The 95% CL observed limits on the hidden-sector top partner mass $ m_{{\mathrm{T}} } $ for different hidden glueball masses $ m_{0} $, in the fraternal Twin Higgs model [29] (left) and the folded SUSY model [44] (right). |
![]() png pdf |
Figure 6-b:
The 95% CL observed limits on the hidden-sector top partner mass $ m_{{\mathrm{T}} } $ for different hidden glueball masses $ m_{0} $, in the fraternal Twin Higgs model [29] (left) and the folded SUSY model [44] (right). |
Tables | |
![]() png pdf |
Table 1:
Summary of the systematic uncertainties in the signal yields. |
Summary |
A search for low-mass long-lived particles (LLPs) decaying into jets has been performed using proton-proton collision data corresponding to an integrated luminosity of 34.7 fb$ ^{-1} $, collected with the CMS experiment at a center-of-mass energy of 13.6 TeV in 2022. Novel techniques in trigger, reconstruction, and machine learning were developed for and employed in this search, leading to significant improvements over existing results, despite utilizing a much smaller data set compared to other existing searches. The observed yields are consistent with the background predictions. The best limits to date are set for LLPs with masses between 15 and 55 GeV and with proper decay lengths smaller than $ \approx $1 m. The search provides the first exclusions of hardonically decaying tau leptons with decay lengths smaller than $ \approx $1 m. For the signature where the Higgs boson decays to two LLPs that further decay to bottom (down) quark pairs, branching fractions for the exotic Higgs boson decay larger than 1% are excluded for an LLP mass larger than 40 GeV and mean proper decay lengths between 2 (1) and 370 mm (380 mm), and the branching fraction limits outperform previous results by a factor of up to 10 (8). |
References | ||||
1 | N. Arkani-Hamed and S. Dimopoulos | Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC | JHEP 06 (2005) 073 | hep-th/0405159 |
2 | G. F. Giudice and A. Romanino | Split supersymmetry | NPB 699 (2004) 65 | hep-ph/0406088 |
3 | J. L. Hewett, B. Lillie, M. Masip, and T. G. Rizzo | Signatures of long-lived gluinos in split supersymmetry | JHEP 09 (2004) 070 | hep-ph/0408248 |
4 | N. Arkani-Hamed, S. Dimopoulos, G. F. Giudice, and A. Romanino | Aspects of split supersymmetry | NPB 709 (2005) 3 | hep-ph/0409232 |
5 | P. Gambino, G. F. Giudice, and P. Slavich | Gluino decays in split supersymmetry | NPB 726 (2005) 35 | hep-ph/0506214 |
6 | A. Arvanitaki, N. Craig, S. Dimopoulos, and G. Villadoro | Mini-split | JHEP 02 (2013) 126 | 1210.0555 |
7 | N. Arkani-Hamed et al. | Simply unnatural supersymmetry | 1212.6971 | |
8 | P. Fayet | Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino | NPB 90 (1975) 104 | |
9 | G. R. Farrar and P. Fayet | Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry | PLB 76 (1978) 575 | |
10 | S. Weinberg | Supersymmetry at ordinary energies. 1. Masses and conservation laws | PRD 26 (1982) 287 | |
11 | L. J. Hall and M. Suzuki | Explicit $ R $-parity breaking in supersymmetric models | NPB 231 (1984) 419 | |
12 | R. Barbier et al. | $ R $-parity violating supersymmetry | Phys. Rept. 420 (2005) 1 | hep-ph/0406039 |
13 | G. F. Giudice and R. Rattazzi | Theories with gauge mediated supersymmetry breaking | Phys. Rept. 322 (1999) 419 | hep-ph/9801271 |
14 | P. Meade, N. Seiberg, and D. Shih | General gauge mediation | Prog. Theor. Phys. Suppl. 177 (2009) 143 | 0801.3278 |
15 | M. Buican, P. Meade, N. Seiberg, and D. Shih | Exploring general gauge mediation | JHEP 03 (2009) 016 | 0812.3668 |
16 | J. Fan, M. Reece, and J. T. Ruderman | Stealth supersymmetry | JHEP 11 (2011) 012 | 1105.5135 |
17 | J. Fan, M. Reece, and J. T. Ruderman | A stealth supersymmetry sampler | JHEP 07 (2012) 196 | 1201.4875 |
18 | M. J. Strassler and K. M. Zurek | Echoes of a hidden valley at hadron colliders | PLB 651 (2007) 374 | hep-ph/0604261 |
19 | M. J. Strassler and K. M. Zurek | Discovering the Higgs through highly-displaced vertices | PLB 661 (2008) 263 | hep-ph/0605193 |
20 | T. Han, Z. Si, K. M. Zurek, and M. J. Strassler | Phenomenology of hidden valleys at hadron colliders | JHEP 07 (2008) 008 | 0712.2041 |
21 | D. E. Kaplan, M. A. Luty, and K. M. Zurek | Asymmetric dark matter | PRD 79 (2009) 115016 | 0901.4117 |
22 | L. J. Hall, K. Jedamzik, J. March-Russell, and S. M. West | Freeze-in production of FIMP dark matter | JHEP 03 (2010) 080 | 0911.1120 |
23 | I.-W. Kim and K. M. Zurek | Flavor and collider signatures of asymmetric dark matter | PRD 89 (2014) 035008 | 1310.2617 |
24 | R. T. Co, F. D'Eramo, L. J. Hall, and D. Pappadopulo | Freeze-in dark matter with displaced signatures at colliders | JCAP 12 (2015) 024 | 1506.07532 |
25 | L. Calibbi, L. Lopez-Honorez, S. Lowette, and A. Mariotti | Singlet-doublet dark matter freeze-in: LHC displaced signatures versus cosmology | JHEP 09 (2018) 037 | 1805.04423 |
26 | Z. Chacko, H.-S. Goh, and R. Harnik | The twin Higgs: Natural electroweak breaking from mirror symmetry | PRL 96 (2006) 231802 | hep-ph/0506256 |
27 | H. Cai, H.-C. Cheng, and J. Terning | A quirky little Higgs model | JHEP 05 (2009) 045 | 0812.0843 |
28 | N. Craig, S. Knapen, and P. Longhi | Neutral naturalness from orbifold Higgs models | PRL 114 (2015) 061803 | 1410.6808 |
29 | N. Craig, A. Katz, M. Strassler, and R. Sundrum | Naturalness in the dark at the LHC | JHEP 07 (2015) 105 | 1501.05310 |
30 | D. Curtin and C. B. Verhaaren | Discovering uncolored naturalness in exotic Higgs decays | JHEP 12 (2015) 072 | 1506.06141 |
31 | S. Alipour-Fard et al. | The second Higgs at the lifetime frontier | JHEP 07 (2020) 029 | 1812.09315 |
32 | A. Atre, T. Han, S. Pascoli, and B. Zhang | The search for heavy Majorana neutrinos | JHEP 05 (2009) 030 | 0901.3589 |
33 | M. Drewes | The phenomenology of right handed neutrinos | Int. J. Mod. Phys. E 22 (2013) 1330019 | 1303.6912 |
34 | F. F. Deppisch, P. S. Bhupal Dev, and A. Pilaftsis | Neutrinos and collider physics | New J. Phys. 17 (2015) 075019 | 1502.06541 |
35 | Y. Cai, T. Han, T. Li, and R. Ruiz | Lepton number violation: Seesaw models and their collider tests | Front. Phys. 6 (2018) 40 | 1711.02180 |
36 | Y. Cui, L. Randall, and B. Shuve | A WIMPy baryogenesis miracle | JHEP 04 (2012) 075 | 1112.2704 |
37 | Y. Cui and R. Sundrum | Baryogenesis for weakly interacting massive particles | PRD 87 (2013) 116013 | 1212.2973 |
38 | Y. Cui and B. Shuve | Probing baryogenesis with displaced vertices at the LHC | JHEP 02 (2015) 049 | 1409.6729 |
39 | CMS Collaboration | The CMS experiment at the CERN LHC | JINST 3 (2008) S08004 | |
40 | CMS Collaboration | Search for long-lived particles using displaced jets in proton-proton collisions at $ \sqrt{s} = $ 13 TeV | PRD 104 (2021) 012015 | CMS-EXO-19-021 2012.01581 |
41 | CMS Collaboration | Search for long-lived particles produced in association with a Z boson in proton-proton collisions at $ \sqrt{s} = $ 13 TeV | JHEP 03 (2022) 160 | CMS-EXO-20-003 2110.13218 |
42 | ATLAS Collaboration | Search for exotic decays of the Higgs boson into long-lived particles in $ pp $ collisions at $ \sqrt{s} = $ 13 TeV using displaced vertices in the ATLAS inner detector | JHEP 11 (2021) 229 | 2107.06092 |
43 | B. Patt and F. Wilczek | Higgs-field portal into hidden sectors | hep-ph/0605188 | |
44 | G. Burdman, Z. Chacko, H.-S. Goh, and R. Harnik | Folded supersymmetry and the LEP paradox | JHEP 02 (2007) 009 | hep-ph/0609152 |
45 | LHC Higgs Cross Section Working Group | Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector | CERN Report CERN-2017-002-M, 2016 link |
1610.07922 |
46 | CMS Tracker Group Collaboration | The CMS phase-1 pixel detector upgrade | JINST 16 (2021) P02027 | 2012.14304 |
47 | CMS Collaboration | Track impact parameter resolution for the full pseudo rapidity coverage in the 2017 dataset with the CMS phase-1 pixel detector | CMS Detector Performance Summary CMS-DP-2020-049, 2020 CDS |
|
48 | CMS Collaboration | Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV | JINST 15 (2020) P10017 | CMS-TRG-17-001 2006.10165 |
49 | CMS Collaboration | The CMS trigger system | JINST 12 (2017) P01020 | CMS-TRG-12-001 1609.02366 |
50 | P. Nason | A new method for combining NLO QCD with shower Monte Carlo algorithms | JHEP 11 (2004) 040 | hep-ph/0409146 |
51 | S. Frixione, P. Nason, and C. Oleari | Matching NLO QCD computations with parton shower simulations: The POWHEG method | JHEP 11 (2007) 070 | 0709.2092 |
52 | S. Alioli, P. Nason, C. Oleari, and E. Re | A general framework for implementing NLO calculations in shower Monte Carlo programs: The POWHEG BOX | JHEP 06 (2010) 043 | 1002.2581 |
53 | E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini | Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM | JHEP 02 (2012) 088 | 1111.2854 |
54 | C. Bierlich et al. | A comprehensive guide to the physics and usage of PYTHIA 8.3 | SciPost Phys. Codeb. 2022 (2022) 8 | 2203.11601 |
55 | CMS Collaboration | Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements | EPJC 80 (2020) 4 | CMS-GEN-17-001 1903.12179 |
56 | NNPDF Collaboration | Parton distributions from high-precision collider data | EPJC 77 (2017) 663 | 1706.00428 |
57 | GEANT4 Collaboration | GEANT 4---A simulation toolkit | NIM A 506 (2003) 250 | |
58 | M. Cacciari, G. P. Salam, and G. Soyez | The anti-$ k_{\mathrm{T}} $ jet clustering algorithm | JHEP 04 (2008) 063 | 0802.1189 |
59 | M. Cacciari, G. P. Salam, and G. Soyez | FastJet user manual | EPJC 72 (2012) 1896 | 1111.6097 |
60 | CMS Collaboration | Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid | CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015 CDS |
|
61 | CMS Collaboration | Description and performance of track and primary-vertex reconstruction with the CMS tracker | JINST 9 (2014) P10009 | CMS-TRK-11-001 1405.6569 |
62 | W. Waltenberger | Adaptive vertex reconstruction | CMS Note CMS-NOTE-2008-033, 2008 | |
63 | A. Strandlie and R. Fruhwirth | Track and vertex reconstruction: From classical to adaptive methods | Rev. Mod. Phys. 82 (2010) 1419 | |
64 | R. Frühwirth, W. Waltenberger, and P. Vanlaer | Adaptive vertex fitting | JPG 34 (2007) N343 | |
65 | P. Battaglia et al. | Interaction networks for learning about objects, relations and physics | in Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS'16, Curran Associates Inc., Red Hook, NY, USA, 2016 | 1612.00222 |
66 | J. Gilmer et al. | Neural message passing for quantum chemistry | in Proceedings of the 34th International Conference on Machine Learning, D. Precup and Y. W. Teh, eds., volume 70 of Proceedings of Machine Learning Research, PMLR, 2017 link |
1704.01212 |
67 | M. Abadi et al. | TensorFlow: A system for large-scale machine learning | in Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI'16, USENIX Association, USA, 2016 | 1605.08695 |
68 | G. Punzi | Sensitivity of searches for new signals and its optimization | in Statistical Problems in Particle Physics, Astrophysics, and Cosmology, L. Lyons, R. Mount, and R. Reitmeyer, eds, 2003 | physics/0308063 |
69 | S. Choi and H. Oh | Improved extrapolation methods of data-driven background estimations in high energy physics | EPJC 81 (2021) 643 | 1906.10831 |
70 | CMS Collaboration | Luminosity measurement in proton-proton collisions at 13.6 TeV in 2022 at CMS | CMS Physics Analysis Summary, 2024 CMS-PAS-LUM-22-001 |
CMS-PAS-LUM-22-001 |
71 | T. Junk | Confidence level computation for combining searches with small statistics | NIM A 434 (1999) 435 | hep-ex/9902006 |
72 | A. L. Read | Presentation of search results: The $ \text{CL}_\text{s} $ technique | JPG 28 (2002) 2693 | |
73 | ATLAS and CMS Collaborations, The LHC Higgs Combination group | Procedure for the LHC Higgs boson search combination in Summer 2011 | Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011 CDS |
|
74 | G. Cowan, K. Cranmer, E. Gross, and O. Vitells | Asymptotic formulae for likelihood-based tests of new physics | EPJC 71 (2011) 1554 | 1007.1727 |
![]() |
Compact Muon Solenoid LHC, CERN |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |