CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-EXO-20-003
Search for Higgs boson decays into long-lived particles in associated Z boson production
Abstract: We present a search for long-lived particles (LLPs) produced in association with a Z boson. The search is performed with data from 13 TeV proton-proton collisions recorded by the CMS experiment during 2016-2018, corresponding to an integrated luminosity of 117 fb$^{-1}$. The LLPs are assumed to decay into a pair of standard model fermions inside the tracker volume, which results in displaced jets. A trigger and selections based on Z boson decays to electron or muon pairs provide sensitivity to light (15 GeV or less) LLPs, which have up to now been difficult to access. Decays of LLPs are selected by requiring the presence of displaced jets which are identified using information from the CMS tracking system. The results are interpreted in the context of exotic decays of the Higgs boson to LLPs ($\mathrm{H} \to \mathrm{S}\mathrm{S}$). The search is sensitive to branching fractions $\mathcal{B}( \mathrm{H} \to \mathrm{S}\mathrm{S})$ of 4-5% (less than 20%) for LLP masses of 40 (15) GeV and mean proper decay lengths of 10-100 mm (10-50 mm).
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
A simplified model for the Higgs boson decaying to a pair of long-lived scalars (S). The Higgs boson is produced in association with a Z boson, where the Z boson decays to pair of leptons. The long-lived scalars decay to a pair of fermions (f).

png pdf
Figure 2:
The background estimate and the observed data in the $ {\mathrm {N}_{\mathrm {dis}}^{\mathrm {j}}} \geq$ 2 bins, for each of the seven validation samples along with the signal sample. Two signal model distributions for scalar masses of 15 and 55 GeV are also shown, where the Higgs boson branching ratio to long-lived scalars ($ {\mathcal {B}} (\mathrm{H} \rightarrow {\mathrm {S}} {\mathrm {S}})$) is set to 20%.

png pdf
Figure 3:
95% CL exclusion limits on the Higgs boson branching ratio to long-lived scalars ($ {\mathcal {B}} (\mathrm{H} \rightarrow {\mathrm {S}} {\mathrm {S}})$). Limits are presented for scalar decays to d quarks (left) and b quarks (right) as a function of the mean proper decay length of the scalar. Different scalar masses are shown in different colors for each scalar decay mode.

png pdf
Figure 3-a:
95% CL exclusion limits on the Higgs boson branching ratio to long-lived scalars ($ {\mathcal {B}} (\mathrm{H} \rightarrow {\mathrm {S}} {\mathrm {S}})$). Limits are presented for scalar decays to d quarks as a function of the mean proper decay length of the scalar. Different scalar masses are shown in different colors for each scalar decay mode.

png pdf
Figure 3-b:
95% CL exclusion limits on the Higgs boson branching ratio to long-lived scalars ($ {\mathcal {B}} (\mathrm{H} \rightarrow {\mathrm {S}} {\mathrm {S}})$). Limits are presented for scalar decays to b quarks as a function of the mean proper decay length of the scalar. Different scalar masses are shown in different colors for each scalar decay mode.
Tables

png pdf
Table 1:
Summary of the systematic uncertainties in the background and signal yield predictions. Dashes indicate that the systematic effect is not applicable for either the signal or the background, or is negligible.
Summary
We have performed a search for long-lived particles that are produced via Higgs boson decays to a pair of scalars in association with a Z boson, resulting in displaced jets. The Higgs boson decay branching ratio is constrained to be below 5-10% for proper decays lengths of 10-100 mm and masses between 40 and 55 GeV. This result yields stringent exclusion limits on exotic Higgs decays to long-lived scalars. In particular, this analysis provides the most stringent CMS limits for the branching fractions $\mathcal{B}( \mathrm{H} \to \mathrm{S}\mathrm{S})$ for low mass scalar particles of around 15 GeV with mean proper decay lengths of 2-30 mm, where the scalars decay to a pair of b quarks.
References
1 A. Arvanitaki, N. Craig, S. Dimopoulos, and G. Villadoro Mini-split JHEP 02 (2013) 126 1210.0555
2 N. Arkani-Hamed et al. Simply unnatural supersymmetry 2012 1212.6971
3 G. F. Giudice and R. Rattazzi Theories with gauge mediated supersymmetry breaking PR 322 (1999) 419 hep-ph/9801271
4 R. Barbier et al. $ R $-parity violating supersymmetry PR 420 (2005) 1 hep-ph/0406039
5 C. Csaki, E. Kuflik, and T. Volansky Dynamical $ R $-parity Violation PRL 112 (2014) 131801 1309.5957
6 J. Fan, M. Reece, and J. T. Ruderman Stealth supersymmetry JHEP 11 (2011) 012 1105.5135
7 J. Fan, M. Reece, and J. T. Ruderman A stealth supersymmetry sampler JHEP 07 (2012) 196 1201.4875
8 G. Burdman, Z. Chacko, H.-S. Goh, and R. Harnik Folded supersymmetry and the LEP paradox JHEP 02 (2007) 009 hep-ph/0609152
9 H. Cai, H.-C. Cheng, and J. Terning A quirky little Higgs model JHEP 05 (2009) 045 0812.0843
10 Z. Chacko, H.-S. Goh, and R. Harnik The Twin Higgs: Natural electroweak breaking from mirror symmetry PRL 96 (2006) 231802 hep-ph/0506256
11 M. J. Strassler and K. M. Zurek Echoes of a hidden valley at hadron colliders PLB 651 (2007) 374 hep-ph/0604261
12 M. J. Strassler and K. M. Zurek Discovering the Higgs through highly-displaced vertices PLB 661 (2008) 263 hep-ph/0605193
13 M. Baumgart et al. Non-Abelian dark sectors and their collider signatures JHEP 04 (2009) 014 0901.0283
14 D. E. Kaplan, M. A. Luty, and K. M. Zurek Asymmetric dark matter PRD 79 (2009) 115016 0901.4117
15 K. R. Dienes and B. Thomas Dynamical dark matter: I. Theoretical overview PRD 85 (2012) 083523 1106.4546
16 K. R. Dienes, S. Su, and B. Thomas Distinguishing dynamical dark matter at the LHC PRD 86 (2012) 054008 1204.4183
17 Y. Cui and B. Shuve Probing baryogenesis with displaced vertices at the LHC JHEP 02 (2015) 049 1409.6729
18 B. Batell, M. Pospelov, and B. Shuve Shedding Light on Neutrino Masses with Dark Forces JHEP 08 (2016) 052 1604.06099
19 Z. Chacko, D. Curtin, and C. B. Verhaaren A quirky probe of neutral naturalness PRD 94 (2016) 011504 1512.05782
20 CMS Collaboration Search for long-lived particles using displaced jets in proton-proton collisions at $ \sqrt{s} = $ 13 TeV Submitted to Rev. D CMS-EXO-19-021
2012.01581
21 ATLAS Collaboration Search for long-lived particles produced in $ pp $ collisions at $ \sqrt{s}= $ 13 TeV that decay into displaced hadronic jets in the ATLAS muon spectrometer PRD 99 (2019) 052005 1811.07370
22 ATLAS Collaboration Search for long-lived neutral particles in $ pp $ collisions at $ \sqrt{s} = $ 13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter EPJC 79 (2019) 481 1902.03094
23 ATLAS Collaboration Search for long-lived neutral particles produced in $ pp $ collisions at $ \sqrt{s} = $ 13 TeV decaying into displaced hadronic jets in the ATLAS inner detector and muon spectrometer PRD 101 (2020) 052013 1911.12575
24 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
25 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
26 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
27 P. Nason A New method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
28 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with Parton Shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
29 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
30 S. Alioli, P. Nason, C. Oleari, and E. Re NLO single-top production matched with shower in POWHEG: s- and t-channel contributions JHEP 09 (2009) 111 0907.4076
31 E. Re Single-top Wt-channel production matched with parton showers using the POWHEG method EPJC 71 (2011) 1547 1009.2450
32 G. Luisoni, P. Nason, C. Oleari, and F. Tramontano $ \mathrm{HW^{\pm} /HZ}$ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO JHEP 10 (2013) 083 1306.2542
33 T. Sjostrand, S. Mrenna, and P. Z. Skands PYTHIA6.4 physics and manual JHEP 05 (2006) 026 hep-ph/0603175
34 LHC Higgs Cross Section Working Group Collaboration Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector 1610.07922
35 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
36 Y. Li and F. Petriello Combining QCD and electroweak corrections to dilepton production in FEWZ PRD 86 (2012) 094034 1208.5967
37 M. Czakon and A. Mitov Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders CPC 185 (2014) 2930 1112.5675
38 P. Kant et al. HatHor for single top-quark production: Updated predictions and uncertainty estimates for single top-quark production in hadronic collisions CPC 191 (2015) 74 1406.4403
39 NNPDF Collaboration Parton distributions for the LHC Run II JHEP 04 (2015) 040 1410.8849
40 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
41 CMS Collaboration Event generator tunes obtained from underlying event and multiparton scattering measurements EPJC 76 (2016), no. 3, 155 CMS-GEN-14-001
1512.00815
42 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
43 J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions EPJC 53 (2008) 473 0706.2569
44 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
45 T. Sjostrand et al. An introduction to PYTHIA 8.2 CPC 191 (2015) 159 1410.3012
46 GEANT4 Collaboration GEANT4: A Simulation toolkit NIMA 506 (2003) 250
47 CMS Collaboration Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P06005 CMS-EGM-13-001
1502.02701
48 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
49 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_t $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
50 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
51 CMS Collaboration Search for new long-lived particles at $ \sqrt{s} = $ 13 TeV PLB 780 (2018) 432 CMS-EXO-16-003
1711.09120
52 CMS Collaboration CMS luminosity measurements for the 2016 data taking period CMS-PAS-LUM-17-001 CMS-PAS-LUM-17-001
53 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV CMS-PAS-LUM-17-004 CMS-PAS-LUM-17-004
54 CMS Collaboration Cms luminosity measurement for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV CMS-PAS-LUM-18-002 CMS-PAS-LUM-18-002
55 A. L. Read Presentation of search results: The CLs technique JPG 28 (2002) 2693
56 T. Junk Confidence level computation for combining searches with small statistics NIMA 434 (1999) 435 hep-ex/9902006
57 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
58 The ATLAS Collaboration, The CMS Collaboration, The LHC Higgs Combination Group Procedure for the LHC Higgs boson search combination in Summer 2011 CMS-NOTE-2011-005
Compact Muon Solenoid
LHC, CERN