CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-TOP-19-007 ; CERN-EP-2019-189
Running of the top quark mass from proton-proton collisions at ${\sqrt{s}} = $ 13 TeV
Phys. Lett. B 803 (2020) 135263
Abstract: The running of the top quark mass is experimentally investigated for the first time. The mass of the top quark in the modified minimal subtraction (${\mathrm{\overline{MS}}} $) renormalization scheme is extracted from a comparison of the differential top quark-antiquark ($\mathrm{t\bar{t}}$) cross section as a function of the invariant mass of the $\mathrm{t\bar{t}}$ system to next-to-leading-order theoretical predictions. The differential cross section is determined at the parton level by means of a maximum-likelihood fit to distributions of final-state observables. The analysis is performed using $\mathrm{t\bar{t}}$ candidate events in the $\mathrm{e}^{\pm}\mu^{\mp}$ channel in proton-proton collision data at a centre-of-mass energy of 13 TeV recorded by the CMS detector at the CERN LHC in 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The extracted running is found to be compatible with the scale dependence predicted by the corresponding renormalization group equation. In this analysis, the running is probed up to a scale of the order of 1 TeV.
Figures & Tables Summary Additional Figures References CMS Publications
Figures

png pdf
Figure 1:
Distribution of $ {m_{\mathrm{t} {}\mathrm{\bar{t}}} ^{\text {reco}}}$ after the fit to the data, with the same binning as used in the fit. The hatched band corresponds to the total uncertainty in the predicted yields and includes all correlations. The ${\mathrm{t} {}\mathrm{\bar{t}}}$ MC sample is split into four subsamples, denoted with "Signal $({\mu _k})$'', corresponding to bins of ${m_{\mathrm{t} {}\mathrm{\bar{t}}}}$ at the parton level. The first and last bins contain all events with $ {m_{\mathrm{t} {}\mathrm{\bar{t}}} ^{\text {reco}}} < $ 420 GeV and $ {m_{\mathrm{t} {}\mathrm{\bar{t}}} ^{\text {reco}}} > $ 810 GeV, respectively.

png pdf
Figure 2:
Measured values of ${\sigma _{\mathrm{t} {}\mathrm{\bar{t}}} ^{(\mu _k)}}$ (markers) and their uncertainties (vertical error bars) compared to NLO predictions in the ${\mathrm {\overline {MS}}}$ scheme obtained with different values of ${{m_{\mathrm{t}}} ({m_{\mathrm{t}}})}$ (horizontal lines of different styles). The values of ${\sigma _{\mathrm{t} {}\mathrm{\bar{t}}} ^{(\mu _k)}}$ are shown at the representative scale of the process ${\mu _k}$, defined as the centre-of-gravity of the ${m_{\mathrm{t} {}\mathrm{\bar{t}}}}$ spectrum of each bin. The first and last bins contain all events with $ {m_{\mathrm{t} {}\mathrm{\bar{t}}}} < $ 420 GeV and $ {m_{\mathrm{t} {}\mathrm{\bar{t}}}} > $ 810 GeV, respectively.

png pdf
Figure 3:
Extracted running of the top quark mass $ {{m_{\mathrm{t}}} (\mu)} / {{m_{\mathrm{t}}} ({\mu _\text {ref}})} $ compared to the RGE prediction at one-loop precision ($ {n_f} = $ 5) evolved from the initial scale $\mu _0 = {\mu _\text {ref}} = $ 476 GeV (left). The result is compared to the value of $ {{m_{\mathrm{t}}} ^\text {incl}({m_{\mathrm{t}}})} / {{m_{\mathrm{t}}} ({\mu _\text {ref}})} $, where ${{m_{\mathrm{t}}} ^\text {incl}({m_{\mathrm{t}}})}$ is the value of ${{m_{\mathrm{t}}} ({m_{\mathrm{t}}})}$ extracted from the inclusive cross section measured in Ref. [14], which is based on the same data set. The uncertainty in ${{m_{\mathrm{t}}} ^\text {incl}({m_{\mathrm{t}}})}$ is evolved from the initial scale $\mu _0 = {m_{\mathrm{t}}} = $ 163 GeV using the same RGE prediction (right).

png pdf
Figure 3-a:
Extracted running of the top quark mass $ {{m_{\mathrm{t}}} (\mu)} / {{m_{\mathrm{t}}} ({\mu _\text {ref}})} $ compared to the RGE prediction at one-loop precision ($ {n_f} = $ 5) evolved from the initial scale $\mu _0 = {\mu _\text {ref}} = $ 476 GeV. The result is compared to the value of $ {{m_{\mathrm{t}}} ^\text {incl}({m_{\mathrm{t}}})} / {{m_{\mathrm{t}}} ({\mu _\text {ref}})} $, where ${{m_{\mathrm{t}}} ^\text {incl}({m_{\mathrm{t}}})}$ is the value of ${{m_{\mathrm{t}}} ({m_{\mathrm{t}}})}$ extracted from the inclusive cross section measured in Ref. [14], which is based on the same data set.

png pdf
Figure 3-b:
The uncertainty in ${{m_{\mathrm{t}}} ^\text {incl}({m_{\mathrm{t}}})}$ is evolved from the initial scale $\mu _0 = {m_{\mathrm{t}}} = $ 163 GeV using the same RGE prediction.
Tables

png pdf
Table 1:
Bins of ${m_{\mathrm{t} {}\mathrm{\bar{t}}}}$, the corresponding fraction of events in the {powheg} simulation, and the representative scale ${\mu _k}$.
Summary
In this Letter, the first experimental investigation of the running of the top quark mass, ${m_{\mathrm{t}} }$, is presented. The running is extracted from a measurement of the differential top quark-antiquark ($\mathrm{t\bar{t}}$) cross section as a function of the invariant mass of the $\mathrm{t\bar{t}}$ system, $ {m_\mathrm{t\bar{t}}} $. The differential $\mathrm{t\bar{t}}$ cross section, ${{\mathrm{d}}{\sigma_\mathrm{t\bar{t}}} /{\mathrm{d}{m_\mathrm{t\bar{t}}}}} $, is determined at the parton level using a maximum-likelihood fit to distributions of final-state observables, using $\mathrm{t\bar{t}}$ candidate events in the $\mathrm{e}^{\pm}\mu^{\mp}$ channel. This technique allows the nuisance parameters to be constrained simultaneously with the differential cross section in the visible phase space and therefore provides results with significantly improved precision compared to conventional procedures in which the unfolding is performed as a separate step. The analysis is performed using proton-proton collision data at a centre-of-mass energy of 13 TeV recorded by the CMS detector at the CERN LHC in 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$.

The running mass ${m_{\mathrm{t}} (\mu)} $, as defined in the modified minimal subtraction ($ {\mathrm{\overline{MS}}} $) renormalization scheme, is extracted at next-to-leading order (NLO) as a function of $ {m_\mathrm{t\bar{t}}} $ by comparing fixed-order theoretical predictions at NLO to the measured ${{\mathrm{d}}{\sigma_\mathrm{t\bar{t}}} /{\mathrm{d}}{m_\mathrm{t\bar{t}}}} $. The extracted running of ${m_{\mathrm{t}} }$ is found to be in agreement with the prediction of the corresponding renormalization group equation, within {1.1} standard deviations, and the no-running hypothesis is excluded at above 95% confidence level. The running of ${m_{\mathrm{t}} }$ is probed up to a scale of the order of 1 TeV.
Additional Figures

png pdf
Additional Figure 1:
Extracted running of the top quark mass $m_{\mathrm{t}}(\mu_{m})/m_{\mathrm{t}}(\mu_{\text{ref}})$ (dots) compared to the one-loop solution of the corresponding renormalization group equation (RGE, line), assuming five active quark flavours ($n_{f} = $ 5), calculated from the initial scale $\mu_{0} = \mu_{\text{ref}} = $ 238 GeV (hollow dot). In the calculation, the scale $\mu_{m}$ is set to $ \mu_{k} $/2, where $\mu_{k}$ is the centre-of-gravity of the $m_{\mathrm{t\bar{t}}}$ distribution in bin $k$, as defined in Phys. Lett. B 803 (2020) 135263. In this way, $\mu_{m}$ is set independently in each bin of $m_{\mathrm{t\bar{t}}}$ and the value of $m_{\mathrm{t}}(\mu_{k}/2)$ is extracted directly. The values of $\mu_{\text{r}}$ and $\mu_{\text{f}}$ are both set to $m_{\mathrm{t}}(\mu_{m})$. The best-fit value of the parameter $x$ in Eq. 3 of Phys. Lett. B 803 (2020) 135263 is found to be $\hat{x} = $ 1.57 $\pm$ 0.57 (fit) $^{+0.28}_{-0.53}$ (PDF + $\alpha_{\text{S}}$) $^{+0.21}_{-0.46}$ (extr), in good agreement with the RGE prediction, which corresponds to $x =$ 1. The no-running hypothesis, corresponding to $ x =$ 0, is excluded at 96.2% confidence level. The extracted running is compared to the result presented in Phys. Lett. B 803 (2020) 135263, but with the choice of $\mu_{m}$ described above (hollow squares).
References
1 A. Deur, S. J. Brodsky, and G. F. de Teramond The QCD running coupling Prog. Part. NP 90 (2016) 1 1604.08082
2 CMS Collaboration Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at $ \sqrt{s} = $ 8 TeV and cross section ratios to 2.76 and 7 TeV JHEP 03 (2017) 156 CMS-SMP-14-001
1609.05331
3 P. A. Baikov, K. G. Chetyrkin, and J. H. Kuhn Quark mass and field anomalous dimensions to $ {\cal O}(\alpha_{S}^5) $ JHEP 10 (2014) 076 1402.6611
4 T. Luthe, A. Maier, P. Marquard, and Y. Schroder Five-loop quark mass and field anomalous dimensions for a general gauge group JHEP 01 (2017) 081 1612.05512
5 O. Behnke, A. Geiser, and M. Lisovyi Charm, beauty and top at HERA Prog. Part. NP 84 (2015) 1 1506.07519
6 DELPHI Collaboration Study of b-quark mass effects in multijet topologies with the DELPHI detector at LEP EPJC 55 (2008) 525 0804.3883
7 DELPHI Collaboration Determination of the b quark mass at the $ M_{\mathrm{Z}} $ scale with the DELPHI detector at LEP EPJC 46 (2006) 569
8 ALEPH Collaboration A Measurement of the b quark mass from hadronic Z decays EPJC 18 (2000) 1 hep-ex/0008013
9 OPAL Collaboration Determination of the b quark mass at the Z mass scale EPJC 21 (2001) 411 hep-ex/0105046
10 A. Brandenburg et al. Measurement of the running b quark mass using $ \mathrm{e^{+}e^{-}} \to \mathrm{b\bar{b}} \mathrm{g} $ events PLB 468 (1999) 168 hep-ph/9905495
11 ZEUS Collaboration Measurement of beauty and charm production in deep inelastic scattering at HERA and measurement of the beauty-quark mass JHEP 09 (2014) 127 1405.6915
12 A. Gizhko et al. Running of the charm-quark mass from HERA deep-inelastic scattering data PLB 775 (2017) 233 1705.08863
13 L. Mihaila Precision calculations in supersymmetric theories Adv. High Energy Phys. 2013 (2013) 607807 1310.6178
14 CMS Collaboration Measurement of the $ \mathrm{t\bar{t}} $ production cross section, the top quark mass, and the strong coupling constant using dilepton events in pp collisions at $ \sqrt{s} = $ 13 TeV EPJC 79 (2019) 368 CMS-TOP-17-001
1812.10505
15 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
16 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
17 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
18 CMS Collaboration Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P06005 CMS-EGM-13-001
1502.02701
19 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
20 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ {k_{\mathrm{T}}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
21 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
22 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
23 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
24 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
25 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
26 S. Frixione, P. Nason, and G. Ridolfi A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction JHEP 09 (2007) 126 0707.3088
27 T. Sjostrand et al. An introduction to PYTHIA 8.2 CPC 191 (2015) 159 1410.3012
28 CMS Collaboration Investigations of the impact of the parton shower tuning in PYTHIA 8 in the modelling of $ \mathrm{t\bar{t}} $ at $ \sqrt{s}= $ 8 and 13 TeV CMS-PAS-TOP-16-021 CMS-PAS-TOP-16-021
29 P. Skands, S. Carrazza, and J. Rojo Tuning PYTHIA 8.1: the Monash 2013 tune EPJC 74 (2014) 3024 1404.5630
30 NNPDF Collaboration Parton distributions with LHC data NPB 867 (2013) 244 1207.1303
31 CMS Collaboration Measurements of $ \mathrm{t\bar{t}} $ differential cross sections in proton-proton collisions at $ \sqrt{s} = $ 13 TeV using events containing two leptons JHEP 02 (2019) 149 CMS-TOP-17-014
1811.06625
32 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
33 CMS Collaboration Jet algorithms performance in 13 TeV data CMS-PAS-JME-16-003 CMS-PAS-JME-16-003
34 CMS Collaboration CMS luminosity measurements for the 2016 data taking period CMS-PAS-LUM-17-001 CMS-PAS-LUM-17-001
35 M. Cacciari et al. The $ \mathrm{t\bar{t}} $ cross-section at 1.8 TeV and 1.96$ TeV: $ a study of the systematics due to parton densities and scale dependence JHEP 04 (2004) 068 hep-ph/0303085
36 S. Catani, D. de Florian, M. Grazzini, and P. Nason Soft gluon resummation for Higgs boson production at hadron colliders JHEP 07 (2003) 028 hep-ph/0306211
37 S. Dulat et al. New parton distribution functions from a global analysis of quantum chromodynamics PRD 93 (2016) 033006 1506.07443
38 M. G. Bowler $ \mathrm{e^{+}e^{-}} $ production of heavy quarks in the string model Z. Phys. C 11 (1981) 169
39 C. Peterson, D. Schlatter, I. Schmitt, and P. M. Zerwas Scaling violations in inclusive $ \mathrm{e^{+}e^{-}} $ annihilation spectra PRD 27 (1983) 105
40 S. Argyropoulos and T. Sjostrand Effects of color reconnection on $ \mathrm{t\bar{t}} $ final states at the LHC JHEP 11 (2014) 043 1407.6653
41 J. R. Christiansen and P. Z. Skands String formation beyond leading colour JHEP 08 (2015) 003 1505.01681
42 CMS Collaboration Measurement of normalized differential $ \mathrm{t\bar{t}} $ cross sections in the dilepton channel from pp collisions at $ \sqrt{s} = $ 13 TeV JHEP 04 (2018) 060 CMS-TOP-16-007
1708.07638
43 CMS Collaboration Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV PRD 95 (2017) 092001 CMS-TOP-16-008
1610.04191
44 CMS Collaboration Measurement of inclusive and differential Higgs boson production cross sections in the diphoton decay channel in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 01 (2019) 183 CMS-HIG-17-025
1807.03825
45 S. Biswas, K. Melnikov, and M. Schulze Next-to-leading order QCD effects and the top quark mass measurements at the LHC JHEP 08 (2010) 048 1006.0910
46 F. James and M. Roos MINUIT: a system for function minimization and analysis of the parameter errors and correlations CPC 10 (1975) 343
47 M. Dowling and S.-O. Moch Differential distributions for top-quark hadro-production with a running mass EPJC 74 (2014) 3167 1305.6422
48 J. M. Campbell and R. K. Ellis MCFM for the Tevatron and the LHC NPB Proc. Suppl. 205-206 (2010) 10 1007.3492
49 J. M. Campbell and R. K. Ellis Top-quark processes at NLO in production and decay JPG 42 (2015) 015005 1204.1513
50 S. Alekhin, J. Blumlein, and S. Moch NLO PDFs from the ABMP16 fit EPJC 78 (2018) 477 1803.07537
51 R. Barlow Asymmetric errors eConf C030908 (2003) WEMT002 physics/0401042
52 B. Schmidt and M. Steinhauser RunDec: a C++ package for running and decoupling of the strong coupling and quark masses CPC 183 (2012) 1845 1201.6149
53 M. Aliev et al. HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR CPC 182 (2011) 1034 1007.1327
Compact Muon Solenoid
LHC, CERN