CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIN-19-002 ; CERN-EP-2020-039
Measurement of the azimuthal anisotropy of $\Upsilon(\mathrm{1S})$ and $\Upsilon(\mathrm{2S})$ mesons in PbPb collisions at ${\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} = $ 5.02 TeV
Phys. Lett. B 819 (2021) 136385
Abstract: The second-order Fourier coefficients (${v_{2}} $) characterizing the azimuthal distribution of $\Upsilon(\mathrm{1S})$ and $\Upsilon(\mathrm{2S})$ mesons arising from PbPb collisions at ${\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} =$ 5.02 TeV are studied. The $\Upsilon$ mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The data set was collected in 2018 and corresponds to an integrated luminosity of 1.7 nb$^{-1}$. The scalar product method is used to extract the ${v_{2}} $ coefficients of the azimuthal distribution. Results are reported for the rapidity range $|y| < $ 2.4, with the transverse momentum 0 $ < {p_{\mathrm{T}}} < $ 50 GeV/$c$, and in three centrality ranges of 10-30, 30-50 and 50-90%. In contrast to the $\mathrm{J}/\psi$ mesons, no azimuthal anisotropy is observed for the $\Upsilon$ mesons.
Figures Summary References CMS Publications
Figures

png pdf
Figure 1:
Simultaneous fit of the dimuon invariant mass spectrum and the $ {v_{2}} ^{\mathrm {Sig+Bkg}}$ distribution, as defined in Eq. (4), for $ {p_{\mathrm {T}}} < $ 50 GeV/$c$ and with centrality 10-90%. The solid (signal + background) and dashed (background only) blue lines show the result of the mass fit, and the solid and dashed red lines show the corresponding results for the binned $\chi ^2$ fit to the ${v_{2}}$ distribution.

png pdf
Figure 2:
(left) ${p_{\mathrm {T}}}$ integrated ${v_{2}}$ values for $\Upsilon(\mathrm{1S})$ mesons measured in four centrality bins and for the $\Upsilon(\mathrm{2S})$ meson in the 10-90% centrality range. (right) ${v_{2}}$ of $\Upsilon(\mathrm{1S})$ mesons as a function of ${p_{\mathrm {T}}}$ in the 10-90% centrality range compared with model calculations from Du and Rapp [22], Yao [42,43], Hong and Lee [44,45], and Bhaduri, Borghini, Jaiswal and Strickland [46]. All results are for the rapidity range of $ { | y |} < $ 2.4. The vertical bars denote statistical uncertainties, and the rectangular boxes show the total systematic uncertainties.

png pdf
Figure 2-a:
${p_{\mathrm {T}}}$ integrated ${v_{2}}$ values for $\Upsilon(\mathrm{1S})$ mesons measured in four centrality bins and for the $\Upsilon(\mathrm{2S})$ meson in the 10-90% centrality range. All results are for the rapidity range of $ { | y |} < $ 2.4. The vertical bars denote statistical uncertainties, and the rectangular boxes show the total systematic uncertainties.

png pdf
Figure 2-b:
${v_{2}}$ of $\Upsilon(\mathrm{1S})$ mesons as a function of ${p_{\mathrm {T}}}$ in the 10-90% centrality range compared with model calculations from Du and Rapp [22], Yao [42,43], Hong and Lee [44,45], and Bhaduri, Borghini, Jaiswal and Strickland [46]. All results are for the rapidity range of $ { | y |} < $ 2.4. The vertical bars denote statistical uncertainties, and the rectangular boxes show the total systematic uncertainties.

png pdf
Figure 3:
The ${v_{2}}$ coefficients for $\Upsilon(\mathrm{1S})$ mesons as a function of ${p_{\mathrm {T}}}$ in three centrality bins: 10-30% (left), 30-50% (middle) and 50-90% (right). The rapidity range is $ { | y |} < $ 2.4. The vertical lines indicate the statistical uncertainties and the rectangular boxes show the total systematic uncertainties.

png pdf
Figure 4:
The ${v_{2}}$ for $\Upsilon(\mathrm{1S})$ mesons as a function of ${p_{\mathrm {T}}}$ in the rapidity range $ { | y |} < $ 2.4 compared with the ALICE results for $\Upsilon(\mathrm{1S})$ (open circles) and $\mathrm{J}/\psi$ (full squares) mesons measured in 2.5 $ < y < $ 4 [24]. All results are measured in the range of 0 $ < {p_{\mathrm {T}}} < $ 15 GeV/$c$ and centrality interval 5-60%. The vertical bars denote statistical uncertainties, and the rectangular boxes show the total systematic uncertainties.
Summary
The ${v_{2}} $ coefficients for $\Upsilon(\mathrm{1S})$ and $\Upsilon(\mathrm{2S})$ mesons are measured in PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. Results are reported for the rapidity range $|y| < $ 2.4, with transverse momentum 0 $ < {p_{\mathrm{T}}} < $ 50 GeV/$c$, and in three centrality intervals of 10-30, 30-50, and 50-90% for the $\Upsilon(\mathrm{1S})$ meson, while the centrality interval 10-90% is used for the $\Upsilon(\mathrm{2S})$ meson. The ${v_{2}} $ values are observed to be compatible with zero for the $\Upsilon(\mathrm{1S})$ meson in the measured kinematic bins and centrality intervals. This observation contrasts with the positive ${v_{2}} $ values reported for $\mathrm{J}/\psi$ mesons, suggesting different medium effects for charmonia and bottomonia. The measured values of ${v_{2}} $ are consistent with the predictions of several theoretical models. The ${v_{2}} $ value found for $\Upsilon(\mathrm{2S})$ mesons, which is being reported for the first time, is also consistent with zero. As there are expected to be differences in the various processes through which the QGP affects $\Upsilon(\mathrm{1S})$ and $\Upsilon(\mathrm{2S})$ mesons, these measurements provide new inputs for the study of bottomonia production in heavy ion collisions.
References
1 W. Busza, K. Rajagopal, and W. van der Schee Heavy ion collisions: the big picture and the big questions Annual Review of Nuclear and Particle Science 68 (2018) 339 1802.04801
2 F. Karsch, E. Laermann, and A. Peikert The pressure in 2, 2+1 and 3 flavor QCD PLB 478 (2000) 447 hep-lat/0002003
3 E. V. Shuryak Theory of hadronic plasma Sov. Phys. JETP 47 (1978) 212.[Zh. Eksp. Teor. Fiz., 74 (1978) 408]
4 T. Matsui and H. Satz $ \mathrm{J}/\psi $ suppression by quark-gluon plasma formation PLB 178 (1986) 416
5 CMS Collaboration Observation of sequential Upsilon suppression in PbPb collisions PRL 109 (2012) 222301 CMS-HIN-11-011
1208.2826
6 CMS Collaboration Suppression of $ {\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} $, $ $\Upsilon(\text{2S})$ $, and $ $\Upsilon(\text{3S})$ $ quarkonium states in PbPb collisions at $ {\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} = $ 2.76 TeV PLB 770 (2017) 357 CMS-HIN-15-001
1611.01510
7 ALICE Collaboration $ \Upsilon $ suppression at forward rapidity in Pb-Pb collisions at $ {\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} = $ 5.02 TeV PLB 790 (2019) 89 1805.04387
8 CMS Collaboration Suppression of excited $ \Upsilon $ states relative to the ground state in Pb-Pb collisions at $ {\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} = $ 5.02 TeV PRL 120 (2018) 142301 CMS-HIN-16-008
1706.05984
9 CMS Collaboration Measurement of nuclear modification factors of $ {\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} $, $ $\Upsilon(\text{2S})$ $, and $ $\Upsilon(\text{3S})$ $ mesons in PbPb collisions at $ {\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} = $ 5.02 TeV PLB 790 (2019) 270 CMS-HIN-16-023
1805.09215
10 STAR Collaboration Suppression of $ \Upsilon $ production in d+Au and Au+Au collisions at $ {\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} = $ 200 GeV PLB 735 (2014) 127 1312.3675
11 A. Andronic et al. Heavy-flavour and quarkonium production in the LHC era: from proton--proton to heavy-ion collisions EPJC 76 (2016) 107 1506.03981
12 L. He et al. Anisotropic parton escape is the dominant source of azimuthal anisotropy in transport models PLB 753 (2016) 506 1502.05572
13 N. Borghini and C. Gombeaud Anisotropic flow far from equilibrium EPJC 71 (2011) 1612 1012.0899
14 P. Romatschke Collective flow without hydrodynamics: simulation results for relativistic ion collisions EPJC 75 (2015) 429 1504.02529
15 A. Jaiswal and P. P. Bhaduri Effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions PRC 97 (2018) 044909 1712.02707
16 S. Voloshin and Y. Zhang Flow study in relativistic nuclear collisions by fourier expansion of azimuthal particle distributions Z. Phys. C 70 (1996) 665 hep-ph/9407282
17 ALICE Collaboration Search for collectivity with azimuthal $ \mathrm{J}/\psi $-hadron correlations in high multiplicity p-Pb collisions at $ {\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} = $ 5.02 and 8.16 TeV PLB 780 (2018) 7 1709.06807
18 ALICE Collaboration $ \mathrm{J}/\psi $ elliptic flow in Pb-Pb collisions at $ {\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} = $ 5.02 TeV PRL 119 (2017) 242301 1709.05260
19 CMS Collaboration Suppression and azimuthal anisotropy of prompt and nonprompt $ \mathrm{J}/\psi $ production in PbPb collisions at $ {\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} = $ 2.76 TeV EPJC 77 (2017) 252 CMS-HIN-14-005
1610.00613
20 B. Krouppa and M. Strickland Predictions for bottomonia suppression in 5.023 TeV Pb--Pb collisions Universe 2 (2016) 16 1605.03561
21 N. Brambilla, M. A. Escobedo, J. Soto, and A. Vairo Quarkonium suppression in heavy-ion collisions: an open quantum system approach PRD 96 (2017) 034021 1612.07248
22 X. Du, R. Rapp, and M. He Color screening and regeneration of bottomonia in high-energy heavy-ion collisions PRC 96 (2017) 054901 1706.08670
23 A. Emerick, X. Zhao, and R. Rapp Bottomonia in the quark-gluon plasma and their production at RHIC and LHC EPJA 48 (2012) 72 1111.6537
24 ALICE Collaboration Measurement of $ {\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} $ elliptic flow at forward rapidity in Pb-Pb collisions at $ {\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} = $ 5.02 TeV PRL 123 (2019) 192301 1907.03169
25 M. Luzum and J.-Y. Ollitrault Eliminating experimental bias in anisotropic-flow measurements of high-energy nuclear collisions PRC 87 (2013) 044907 1209.2323
26 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
27 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
28 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
29 CMS Collaboration Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at $ \sqrt{s} = $ 0.9 and 2.36 TeV JHEP 02 (2010) 041 CMS-QCD-09-010
1002.0621
30 T. Sjostrand et al. An introduction to PYTHIA 8.2 CPC 191 (2015) 159 1410.3012
31 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
32 R. Baier and R. Ruckl Hadronic collisions: a quarkonium factory Z. Phys. C 19 (1983) 251
33 R. Gastmans, W. Troost, and T. T. Wu Cross-sections for gluon + gluon $ \rightarrow $ heavy quarkonium + gluon PLB 184 (1987) 257
34 P. L. Cho and A. K. Leibovich Color-octet quarkonia production. II. PRD 53 (1996) 6203 hep-ph/9511315
35 GEANT4 Collaboration GEANT4--a simulation toolkit NIMA 506 (2003) 250
36 I. P. Lokhtin et al. Heavy ion event generator HYDJET++ (hydrodynamics plus jets) CPC 180 (2009) 779 0809.2708
37 CMS Collaboration Measurements of inclusive W and Z cross sections in pp collisions at $ \sqrt{s} = $ 7 TeV JHEP 01 (2011) 080 CMS-EWK-10-002
1012.2466
38 CMS Collaboration Performance of CMS muon reconstruction in pp collision events at $ \sqrt{s}= $ 7 TeV JINST 7 (2012) P10002 CMS-MUO-10-004
1206.4071
39 CMS Collaboration Measurement of prompt $ D^0 $ meson azimuthal anisotropy in Pb-Pb collisions at $ {\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} = $ 5.02 TeV PRL 120 (2018) 202301 CMS-HIN-16-007
1708.03497
40 M. J. Oreglia A study of the reactions $\psi' \to \gamma\gamma \psi$ PhD thesis, Stanford University, 1980 SLAC Report SLAC-R-236, see A
41 Particle Data Group, M. Tanabashi et al. Review of particle physics PRD 98 (2018) 030001
42 X. Yao et al. Coupled Boltzmann transport equations of heavy quarks and quarkonia in quark-gluon plasma 2004.06746
43 X. Yao and B. Muller Quarkonium inside the quark-gluon plasma: diffusion, dissociation, recombination, and energy loss PRD 100 (2019) 014008 1811.09644
44 J. Hong and S. H. Lee $ {\sqrt {\smash [b]{s_{_{\mathrm {NN}}}}}} $ transverse momentum spectra through dissociation and regeneration in heavy ion collisions PLB 801 (2020) 135147 1909.07696
45 W. Ke, Y. Xu, and S. A. Bass Linearized Boltzmann-Langevin model for heavy quark transport in hot and dense QCD matter PRC 98 (2018) 064901 1806.08848
46 P. P. Bhaduri, N. Borghini, A. Jaiswal, and M. Strickland Anisotropic escape mechanism and elliptic flow of bottomonia PRC 100 (2019) 051901 1809.06235
Compact Muon Solenoid
LHC, CERN