CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-BPH-23-005 ; CERN-EP-2024-120
Search for CP violation in $ \mathrm{D^0}\to\mathrm{K^0_S}\mathrm{K^0_S} $ decays in proton-proton collisions at $ \sqrt{s} = $ 13 TeV
Accepted for publication in Eur. Phys. J. C
Abstract: A search is reported for charge-parity CP violation in $ \mathrm{D^0}\to\mathrm{K^0_S}\mathrm{K^0_S} $ decays, using data collected in proton-proton collisions at $ \sqrt{s} = $ 13 TeV recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6 fb$ ^{-1} $, which consists of about 10 billion events containing a pair of b hadrons, nearly all of which decay to charm hadrons. The flavor of the neutral $ \mathrm{D} $ meson is determined by the pion charge in the reconstructed decays $ \mathrm{D}^{*+}\to\mathrm{D^0}\pi^{+} $ and $ \mathrm{D}^{*-}\to\overline{\mathrm{D}}^{0}\pi^{-} $. The CP asymmetry in $ \mathrm{D^0}\to\mathrm{K^0_S}\mathrm{K^0_S} $ is measured to be $ A_{CP}(\mathrm{K^0_S}\mathrm{K^0_S}) = $ (6.2 $ \pm $ 3.0 $ \pm $ 0.2 $ \pm $ 0.8)%, where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the CP asymmetry in the $ \mathrm{D^0}\to\mathrm{K^0_S}\pi^{+}\pi^{-} $ decay. This is the first CP asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
The decay of neutral charm meson to two neutral kaons: exchange (left) and penguin annihilation (right) diagrams.

png pdf
Figure 1-a:
The decay of neutral charm meson to two neutral kaons: exchange (left) and penguin annihilation (right) diagrams.

png pdf
Figure 1-b:
The decay of neutral charm meson to two neutral kaons: exchange (left) and penguin annihilation (right) diagrams.

png pdf
Figure 2:
The $ \mathrm{D^0}\pi^{+} $ (left) and $ \overline{\mathrm{D}}^{0}\pi^{-} $ (right) invariant mass distributions for the $ \mathrm{K^0_S}\pi^{+}\pi^{-} $ channel, with the result of the fit to both distributions.

png pdf
Figure 2-a:
The $ \mathrm{D^0}\pi^{+} $ (left) and $ \overline{\mathrm{D}}^{0}\pi^{-} $ (right) invariant mass distributions for the $ \mathrm{K^0_S}\pi^{+}\pi^{-} $ channel, with the result of the fit to both distributions.

png pdf
Figure 2-b:
The $ \mathrm{D^0}\pi^{+} $ (left) and $ \overline{\mathrm{D}}^{0}\pi^{-} $ (right) invariant mass distributions for the $ \mathrm{K^0_S}\pi^{+}\pi^{-} $ channel, with the result of the fit to both distributions.

png pdf
Figure 3:
The invariant mass distributions for $ \mathrm{D}^{*+} $ candidates (left) and $ \mathrm{D}^{*-} $ candidates (right), with the $ m(\mathrm{D}\pi^{\pm}) $ distributions in the upper row and the $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $ distributions in the lower row. Projections of the simultaneous 2D fit are also shown.

png pdf
Figure 3-a:
The invariant mass distributions for $ \mathrm{D}^{*+} $ candidates (left) and $ \mathrm{D}^{*-} $ candidates (right), with the $ m(\mathrm{D}\pi^{\pm}) $ distributions in the upper row and the $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $ distributions in the lower row. Projections of the simultaneous 2D fit are also shown.

png pdf
Figure 3-b:
The invariant mass distributions for $ \mathrm{D}^{*+} $ candidates (left) and $ \mathrm{D}^{*-} $ candidates (right), with the $ m(\mathrm{D}\pi^{\pm}) $ distributions in the upper row and the $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $ distributions in the lower row. Projections of the simultaneous 2D fit are also shown.

png pdf
Figure 3-c:
The invariant mass distributions for $ \mathrm{D}^{*+} $ candidates (left) and $ \mathrm{D}^{*-} $ candidates (right), with the $ m(\mathrm{D}\pi^{\pm}) $ distributions in the upper row and the $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $ distributions in the lower row. Projections of the simultaneous 2D fit are also shown.

png pdf
Figure 3-d:
The invariant mass distributions for $ \mathrm{D}^{*+} $ candidates (left) and $ \mathrm{D}^{*-} $ candidates (right), with the $ m(\mathrm{D}\pi^{\pm}) $ distributions in the upper row and the $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $ distributions in the lower row. Projections of the simultaneous 2D fit are also shown.

png pdf
Figure 4:
Results of the 2D fit to the $ m(\mathrm{D}\pi^{\pm}) \times m(\mathrm{K^0_S}\mathrm{K^0_S}) $ for the signal channel, $ \mathrm{D}^{*+} $ candidates. Upper and middle rows show 1D projections of the 2D fit on $ m(\mathrm{D^0}\pi^{+}) $ in ranges of $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $: left sideband (upper left), region of $ \mathrm{D}_{s}^{\pm}\to\mathrm{K^0_S}\mathrm{K^0_S}\pi^{\pm} $ contamination (upper right), signal region of $ \mathrm{K^0_S}\mathrm{K^0_S} $ (middle left), and right sideband (middle right). Lower row shows 1D projections of the 2D fit on $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $ in ranges of $ m(\mathrm{D^0}\pi^{+}) $: left sideband (left), signal region of $ \mathrm{D^0}\pi^{+} $ (center), and right sideband (right).

png pdf
Figure 4-a:
Results of the 2D fit to the $ m(\mathrm{D}\pi^{\pm}) \times m(\mathrm{K^0_S}\mathrm{K^0_S}) $ for the signal channel, $ \mathrm{D}^{*+} $ candidates. Upper and middle rows show 1D projections of the 2D fit on $ m(\mathrm{D^0}\pi^{+}) $ in ranges of $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $: left sideband (upper left), region of $ \mathrm{D}_{s}^{\pm}\to\mathrm{K^0_S}\mathrm{K^0_S}\pi^{\pm} $ contamination (upper right), signal region of $ \mathrm{K^0_S}\mathrm{K^0_S} $ (middle left), and right sideband (middle right). Lower row shows 1D projections of the 2D fit on $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $ in ranges of $ m(\mathrm{D^0}\pi^{+}) $: left sideband (left), signal region of $ \mathrm{D^0}\pi^{+} $ (center), and right sideband (right).

png pdf
Figure 4-b:
Results of the 2D fit to the $ m(\mathrm{D}\pi^{\pm}) \times m(\mathrm{K^0_S}\mathrm{K^0_S}) $ for the signal channel, $ \mathrm{D}^{*+} $ candidates. Upper and middle rows show 1D projections of the 2D fit on $ m(\mathrm{D^0}\pi^{+}) $ in ranges of $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $: left sideband (upper left), region of $ \mathrm{D}_{s}^{\pm}\to\mathrm{K^0_S}\mathrm{K^0_S}\pi^{\pm} $ contamination (upper right), signal region of $ \mathrm{K^0_S}\mathrm{K^0_S} $ (middle left), and right sideband (middle right). Lower row shows 1D projections of the 2D fit on $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $ in ranges of $ m(\mathrm{D^0}\pi^{+}) $: left sideband (left), signal region of $ \mathrm{D^0}\pi^{+} $ (center), and right sideband (right).

png pdf
Figure 4-c:
Results of the 2D fit to the $ m(\mathrm{D}\pi^{\pm}) \times m(\mathrm{K^0_S}\mathrm{K^0_S}) $ for the signal channel, $ \mathrm{D}^{*+} $ candidates. Upper and middle rows show 1D projections of the 2D fit on $ m(\mathrm{D^0}\pi^{+}) $ in ranges of $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $: left sideband (upper left), region of $ \mathrm{D}_{s}^{\pm}\to\mathrm{K^0_S}\mathrm{K^0_S}\pi^{\pm} $ contamination (upper right), signal region of $ \mathrm{K^0_S}\mathrm{K^0_S} $ (middle left), and right sideband (middle right). Lower row shows 1D projections of the 2D fit on $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $ in ranges of $ m(\mathrm{D^0}\pi^{+}) $: left sideband (left), signal region of $ \mathrm{D^0}\pi^{+} $ (center), and right sideband (right).

png pdf
Figure 4-d:
Results of the 2D fit to the $ m(\mathrm{D}\pi^{\pm}) \times m(\mathrm{K^0_S}\mathrm{K^0_S}) $ for the signal channel, $ \mathrm{D}^{*+} $ candidates. Upper and middle rows show 1D projections of the 2D fit on $ m(\mathrm{D^0}\pi^{+}) $ in ranges of $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $: left sideband (upper left), region of $ \mathrm{D}_{s}^{\pm}\to\mathrm{K^0_S}\mathrm{K^0_S}\pi^{\pm} $ contamination (upper right), signal region of $ \mathrm{K^0_S}\mathrm{K^0_S} $ (middle left), and right sideband (middle right). Lower row shows 1D projections of the 2D fit on $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $ in ranges of $ m(\mathrm{D^0}\pi^{+}) $: left sideband (left), signal region of $ \mathrm{D^0}\pi^{+} $ (center), and right sideband (right).

png pdf
Figure 4-e:
Results of the 2D fit to the $ m(\mathrm{D}\pi^{\pm}) \times m(\mathrm{K^0_S}\mathrm{K^0_S}) $ for the signal channel, $ \mathrm{D}^{*+} $ candidates. Upper and middle rows show 1D projections of the 2D fit on $ m(\mathrm{D^0}\pi^{+}) $ in ranges of $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $: left sideband (upper left), region of $ \mathrm{D}_{s}^{\pm}\to\mathrm{K^0_S}\mathrm{K^0_S}\pi^{\pm} $ contamination (upper right), signal region of $ \mathrm{K^0_S}\mathrm{K^0_S} $ (middle left), and right sideband (middle right). Lower row shows 1D projections of the 2D fit on $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $ in ranges of $ m(\mathrm{D^0}\pi^{+}) $: left sideband (left), signal region of $ \mathrm{D^0}\pi^{+} $ (center), and right sideband (right).

png pdf
Figure 4-f:
Results of the 2D fit to the $ m(\mathrm{D}\pi^{\pm}) \times m(\mathrm{K^0_S}\mathrm{K^0_S}) $ for the signal channel, $ \mathrm{D}^{*+} $ candidates. Upper and middle rows show 1D projections of the 2D fit on $ m(\mathrm{D^0}\pi^{+}) $ in ranges of $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $: left sideband (upper left), region of $ \mathrm{D}_{s}^{\pm}\to\mathrm{K^0_S}\mathrm{K^0_S}\pi^{\pm} $ contamination (upper right), signal region of $ \mathrm{K^0_S}\mathrm{K^0_S} $ (middle left), and right sideband (middle right). Lower row shows 1D projections of the 2D fit on $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $ in ranges of $ m(\mathrm{D^0}\pi^{+}) $: left sideband (left), signal region of $ \mathrm{D^0}\pi^{+} $ (center), and right sideband (right).

png pdf
Figure 4-g:
Results of the 2D fit to the $ m(\mathrm{D}\pi^{\pm}) \times m(\mathrm{K^0_S}\mathrm{K^0_S}) $ for the signal channel, $ \mathrm{D}^{*+} $ candidates. Upper and middle rows show 1D projections of the 2D fit on $ m(\mathrm{D^0}\pi^{+}) $ in ranges of $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $: left sideband (upper left), region of $ \mathrm{D}_{s}^{\pm}\to\mathrm{K^0_S}\mathrm{K^0_S}\pi^{\pm} $ contamination (upper right), signal region of $ \mathrm{K^0_S}\mathrm{K^0_S} $ (middle left), and right sideband (middle right). Lower row shows 1D projections of the 2D fit on $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $ in ranges of $ m(\mathrm{D^0}\pi^{+}) $: left sideband (left), signal region of $ \mathrm{D^0}\pi^{+} $ (center), and right sideband (right).

png pdf
Figure 5:
Results of the 2D fit to the $ m(\mathrm{D}\pi^{\pm}) \times m(\mathrm{K^0_S}\mathrm{K^0_S}) $ for the signal channel, $ \mathrm{D}^{*-} $ candidates. Upper and middle rows show 1D projections of the 2D fit on $ m(\overline{\mathrm{D}}^{0}\pi^{-}) $ in ranges of $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $: left sideband (upper left), region of $ \mathrm{D}_{s}^{\pm}\to\mathrm{K^0_S}\mathrm{K^0_S}\pi^{\pm} $ contamination (upper right), signal region of $ \mathrm{K^0_S}\mathrm{K^0_S} $ (middle left), and right sideband (middle right). Lower row shows 1D projections of the 2D fit on $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $ in ranges of $ m(\overline{\mathrm{D}}^{0}\pi^{-}) $: left sideband (left), signal region of $ \overline{\mathrm{D}}^{0}\pi^{-} $ (center), and right sideband (right).

png pdf
Figure 5-a:
Results of the 2D fit to the $ m(\mathrm{D}\pi^{\pm}) \times m(\mathrm{K^0_S}\mathrm{K^0_S}) $ for the signal channel, $ \mathrm{D}^{*-} $ candidates. Upper and middle rows show 1D projections of the 2D fit on $ m(\overline{\mathrm{D}}^{0}\pi^{-}) $ in ranges of $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $: left sideband (upper left), region of $ \mathrm{D}_{s}^{\pm}\to\mathrm{K^0_S}\mathrm{K^0_S}\pi^{\pm} $ contamination (upper right), signal region of $ \mathrm{K^0_S}\mathrm{K^0_S} $ (middle left), and right sideband (middle right). Lower row shows 1D projections of the 2D fit on $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $ in ranges of $ m(\overline{\mathrm{D}}^{0}\pi^{-}) $: left sideband (left), signal region of $ \overline{\mathrm{D}}^{0}\pi^{-} $ (center), and right sideband (right).

png pdf
Figure 5-b:
Results of the 2D fit to the $ m(\mathrm{D}\pi^{\pm}) \times m(\mathrm{K^0_S}\mathrm{K^0_S}) $ for the signal channel, $ \mathrm{D}^{*-} $ candidates. Upper and middle rows show 1D projections of the 2D fit on $ m(\overline{\mathrm{D}}^{0}\pi^{-}) $ in ranges of $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $: left sideband (upper left), region of $ \mathrm{D}_{s}^{\pm}\to\mathrm{K^0_S}\mathrm{K^0_S}\pi^{\pm} $ contamination (upper right), signal region of $ \mathrm{K^0_S}\mathrm{K^0_S} $ (middle left), and right sideband (middle right). Lower row shows 1D projections of the 2D fit on $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $ in ranges of $ m(\overline{\mathrm{D}}^{0}\pi^{-}) $: left sideband (left), signal region of $ \overline{\mathrm{D}}^{0}\pi^{-} $ (center), and right sideband (right).

png pdf
Figure 5-c:
Results of the 2D fit to the $ m(\mathrm{D}\pi^{\pm}) \times m(\mathrm{K^0_S}\mathrm{K^0_S}) $ for the signal channel, $ \mathrm{D}^{*-} $ candidates. Upper and middle rows show 1D projections of the 2D fit on $ m(\overline{\mathrm{D}}^{0}\pi^{-}) $ in ranges of $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $: left sideband (upper left), region of $ \mathrm{D}_{s}^{\pm}\to\mathrm{K^0_S}\mathrm{K^0_S}\pi^{\pm} $ contamination (upper right), signal region of $ \mathrm{K^0_S}\mathrm{K^0_S} $ (middle left), and right sideband (middle right). Lower row shows 1D projections of the 2D fit on $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $ in ranges of $ m(\overline{\mathrm{D}}^{0}\pi^{-}) $: left sideband (left), signal region of $ \overline{\mathrm{D}}^{0}\pi^{-} $ (center), and right sideband (right).

png pdf
Figure 5-d:
Results of the 2D fit to the $ m(\mathrm{D}\pi^{\pm}) \times m(\mathrm{K^0_S}\mathrm{K^0_S}) $ for the signal channel, $ \mathrm{D}^{*-} $ candidates. Upper and middle rows show 1D projections of the 2D fit on $ m(\overline{\mathrm{D}}^{0}\pi^{-}) $ in ranges of $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $: left sideband (upper left), region of $ \mathrm{D}_{s}^{\pm}\to\mathrm{K^0_S}\mathrm{K^0_S}\pi^{\pm} $ contamination (upper right), signal region of $ \mathrm{K^0_S}\mathrm{K^0_S} $ (middle left), and right sideband (middle right). Lower row shows 1D projections of the 2D fit on $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $ in ranges of $ m(\overline{\mathrm{D}}^{0}\pi^{-}) $: left sideband (left), signal region of $ \overline{\mathrm{D}}^{0}\pi^{-} $ (center), and right sideband (right).

png pdf
Figure 5-e:
Results of the 2D fit to the $ m(\mathrm{D}\pi^{\pm}) \times m(\mathrm{K^0_S}\mathrm{K^0_S}) $ for the signal channel, $ \mathrm{D}^{*-} $ candidates. Upper and middle rows show 1D projections of the 2D fit on $ m(\overline{\mathrm{D}}^{0}\pi^{-}) $ in ranges of $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $: left sideband (upper left), region of $ \mathrm{D}_{s}^{\pm}\to\mathrm{K^0_S}\mathrm{K^0_S}\pi^{\pm} $ contamination (upper right), signal region of $ \mathrm{K^0_S}\mathrm{K^0_S} $ (middle left), and right sideband (middle right). Lower row shows 1D projections of the 2D fit on $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $ in ranges of $ m(\overline{\mathrm{D}}^{0}\pi^{-}) $: left sideband (left), signal region of $ \overline{\mathrm{D}}^{0}\pi^{-} $ (center), and right sideband (right).

png pdf
Figure 5-f:
Results of the 2D fit to the $ m(\mathrm{D}\pi^{\pm}) \times m(\mathrm{K^0_S}\mathrm{K^0_S}) $ for the signal channel, $ \mathrm{D}^{*-} $ candidates. Upper and middle rows show 1D projections of the 2D fit on $ m(\overline{\mathrm{D}}^{0}\pi^{-}) $ in ranges of $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $: left sideband (upper left), region of $ \mathrm{D}_{s}^{\pm}\to\mathrm{K^0_S}\mathrm{K^0_S}\pi^{\pm} $ contamination (upper right), signal region of $ \mathrm{K^0_S}\mathrm{K^0_S} $ (middle left), and right sideband (middle right). Lower row shows 1D projections of the 2D fit on $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $ in ranges of $ m(\overline{\mathrm{D}}^{0}\pi^{-}) $: left sideband (left), signal region of $ \overline{\mathrm{D}}^{0}\pi^{-} $ (center), and right sideband (right).

png pdf
Figure 5-g:
Results of the 2D fit to the $ m(\mathrm{D}\pi^{\pm}) \times m(\mathrm{K^0_S}\mathrm{K^0_S}) $ for the signal channel, $ \mathrm{D}^{*-} $ candidates. Upper and middle rows show 1D projections of the 2D fit on $ m(\overline{\mathrm{D}}^{0}\pi^{-}) $ in ranges of $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $: left sideband (upper left), region of $ \mathrm{D}_{s}^{\pm}\to\mathrm{K^0_S}\mathrm{K^0_S}\pi^{\pm} $ contamination (upper right), signal region of $ \mathrm{K^0_S}\mathrm{K^0_S} $ (middle left), and right sideband (middle right). Lower row shows 1D projections of the 2D fit on $ m(\mathrm{K^0_S}\mathrm{K^0_S}) $ in ranges of $ m(\overline{\mathrm{D}}^{0}\pi^{-}) $: left sideband (left), signal region of $ \overline{\mathrm{D}}^{0}\pi^{-} $ (center), and right sideband (right).
Tables

png pdf
Table 1:
Optimized selection criteria in the signal channel $ \mathrm{K^0_S}\mathrm{K^0_S} $. The requirements on the $ \mathrm{K^0_S} $ candidates in the third and fourth lines are given first for the $ \mathrm{K^0_S} $ with larger $ p_{\mathrm{T}} $, then for the $ \mathrm{K^0_S} $ with lower $ p_{\mathrm{T}} $.

png pdf
Table 2:
Results of the fit to the selected $ \mathrm{D}^{*+}\to\mathrm{D^0}\pi^{+} $ and $ \mathrm{D}^{*-}\to\overline{\mathrm{D}}^{0}\pi^{-} $ candidates, where $ \mathrm{D^0}\,(\overline{\mathrm{D}}^{0}) \to\mathrm{K^0_S}\pi^{+}\pi^{-} $. The $ {\mathrm{D}^{\ast}(2010)^{\pm}} $ signal yields $ N $ given in the second column are used in the evaluation of $ A_{CP}^{\text{raw}} $. The uncertainties are statistical only.

png pdf
Table 3:
Results of the 2D fit to the selected $ \mathrm{D}^{*+}\to\mathrm{D^0}\pi^{+} $ and $ \mathrm{D}^{*-}\to\overline{\mathrm{D}}^{0}\pi^{-} $ candidates, where $ \mathrm{D^0}\,(\overline{\mathrm{D}}^{0}) \to\mathrm{K^0_S}\mathrm{K^0_S} $. The $ {\mathrm{D}^{\ast}(2010)^{\pm}} $ signal yields $ N $ given in the second column are used in the evaluation of $ A_{CP}^{\text{raw}} $. The $ \chi^2 $ corresponds to the fit projection with 100 bins in the $ x = m(\mathrm{D}\pi^{\pm}) $ axis and 90 bins in the $ y = m(\mathrm{K^0_S}\mathrm{K^0_S}) $ axis, as shown in Fig 3. The uncertainties are statistical only.

png pdf
Table 4:
Absolute systematic uncertainties in the measurement of $ \Delta A_{CP} $.
Summary
A measurement of CP violation in $ \mathrm{D^0} $ decays is reported, using proton-proton collision data collected at $ \sqrt{s} = $ 13 TeV with a novel high-rate data stream (B parking). These data correspond to an integrated luminosity of 41.6 fb$ ^{-1} $ and include about 10 billion events containing beauty hadron decays. The difference in the CP asymmetries between $ \mathrm{D^0}\to\mathrm{K^0_S}\mathrm{K^0_S} $ and $ \mathrm{D^0}\to\mathrm{K^0_S}\pi^{+}\pi^{-} $ is measured to be: $ \Delta A_{CP} \equiv A_{CP}(\mathrm{K^0_S}\mathrm{K^0_S})-A_{CP}(\mathrm{K^0_S}\pi^{+}\pi^{-}) = $ (6.3 $\pm$ 3.0 (stat) $\pm$ 0.2 (syst) )%. Using the world-average value of $ A_{CP}(\mathrm{K^0_S}\pi^{+}\pi^{-}) = (- $ 0.1 $ \pm $ 0.8 $)% $ [18,35,4], we report the measurement, $ A_{CP}(\mathrm{K^0_S}\mathrm{K^0_S}) = $(6.2 $\pm$ 3.0 $\pm$ 0.2 $\pm$ 0.8)%, where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the CP asymmetry in the $ \mathrm{D^0}\to\mathrm{K^0_S}\pi^{+}\pi^{-} $ decay. The measured value is consistent with no CP violation within 2.0 standard deviations. Likewise, it is consistent with the LHCb [16] and the Belle measurements [17] at the level of 2.7 and 1.8 standard deviations, respectively. Tabulated results are provided in the HEPData record for this analysis [36]. This is the first CMS search for CP violation in the charm sector, paving the way for future measurements with more data, using new techniques, and in other channels.
References
1 A. D. Sakharov Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32
2 N. Cabibbo et al. Unitary symmetry and leptonic decays PRL 10 (1963) 531
3 M. Kobayashi and T. Maskawa CP-violation in the renormalizable theory of weak interaction Prog. Theor. Phys. 49 (1973) 652
4 Particle Data Group Review of particle physics PTEP 2022 (2022) 083C01
5 A. G. Cohen, D. B. Kaplan, and A. E. Nelson Progress in electroweak baryogenesis Ann. Rev. Nucl. Part. Sci. 43 (1993) 27 hep-ph/9302210
6 A. Riotto and M. Trodden Recent progress in baryogenesis Ann. Rev. Nucl. Part. Sci. 49 (1999) 35 hep-ph/9901362
7 W.-S. Hou Source of CP violation for the baryon asymmetry of the Universe Chin. J. Phys. 47 (2009) 134 0803.1234
8 S. L. Glashow, J. Iliopoulos, and L. Maiani Weak interactions with lepton-hadron symmetry PRD 2 (1970) 1285
9 LHCb Collaboration Observation of CP violation in charm decays PRL 122 (2019) 211803 1903.08726
10 A. Lenz and G. Wilkinson Mixing and CP violation in the charm system Ann. Rev. Nucl. Part. Sci. 71 (2021) 59 2011.04443
11 U. Nierste and S. Schacht $ CP $ violation in $ {D}^{0}\to{K}_{S}{K}_{S} $ PRD 92 (2015) 054036 1508.00074
12 H.-n. Li, C.-D. Lu, and F.-S. Yu Branching ratios and direct $ CP $ asymmetries in $ D\to \pi^{+}\pi^{-} $ decays PRD 86 (2012) 036012 1203.3120
13 H.-Y. Cheng and C.-W. Chiang Revisiting $ CP $ violation in $ D\to \pi^{+}\pi^{-} $ and $ VP $ decays PRD 100 (2019) 093002 1909.03063
14 F. Buccella, A. Paul, and P. Santorelli $ SU(3{)}_{F} $ breaking through final state interactions and $ CP $ asymmetries in $ D\to \pi^{+}\pi^{-} $ decays PRD 99 (2019) 113001 1902.05564
15 J. Brod, A. L. Kagan, and J. Zupan Size of direct $ CP $ violation in singly Cabibbo-suppressed $ D $ decays PRD 86 (2012) 014023 1111.5000
16 LHCb Collaboration Measurement of $ CP $ asymmetry in $ D^0 \to K^0_S K^0_S $ decays PRD 104 (2021) L031102 2105.01565
17 Belle Collaboration Search for $ CP $ violation and measurement of the branching fraction in the decay $ D^{0} \to K^0_S K^0_S $ PRL 119 (2017) 171801 1705.05966
18 CDF Collaboration Measurement of CP-violation asymmetries in $ D^{0} \to K^{0}_{S} \pi^+ \pi^- $ PRD 86 (2012) 032007 1207.0825
19 CMS Collaboration Test of lepton flavor universality in $ {\mathrm{B}^{\pm}}\to\mathrm{K^{\pm}}\mu^{+}\mu^{-} $ and $ {\mathrm{B}^{\pm}}\to\mathrm{K^{\pm}}\mathrm{e}^+\mathrm{e}^- $ decays in proton-proton collisions at $ \sqrt{s} $ = 13 TeV Submitted to Phys. Rep., 2024 CMS-BPH-22-005
2401.07090
20 CMS Collaboration Enriching the physics program of the CMS experiment via data scouting and data parking Submitted to Phys. Rep., 2024 CMS-EXO-23-007
2403.16134
21 CMS Tracker Group Collaboration The CMS Phase-1 pixel detector upgrade JINST 16 (2021) P02027 2012.14304
22 CMS Collaboration Track impact parameter resolution for the full pseudo rapidity coverage in the 2017 dataset with the CMS Phase-1 pixel detector CMS Detector Performance Note CMS-DP-2020-049, 2020
CDS
23 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
24 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
25 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
26 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
27 D. J. Lange The EvtGen particle decay simulation package NIM A 462 (2001) 152
28 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
29 E. Barberio and Z. Was PHOTOS --- a universal Monte Carlo for QED radiative corrections: version 2.0 Comput. Phys. Commun. 79 (1994) 291
30 GEANT4 Collaboration GEANT 4 --- a simulation toolkit NIM A 506 (2003) 250
31 CMS Collaboration CMS tracking performance results from early LHC operation EPJC 70 (2010) 1165 CMS-TRK-10-001
1007.1988
32 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
33 N. L. Johnson Systems of frequency curves generated by methods of translation Biometrika 36 (1949) 149
34 M. J. Oreglia A study of the reactions $ \psi^\prime \to \gamma \gamma \psi $ PhD thesis, Stanford University, SLAC Report SLAC-R-236, 1980
link
35 CLEO Collaboration Search for CP violation in $ \mathrm{D^0}\to\mathrm{K^0_S}\pi^{+}\pi^{-} $ PRD 70 (2004) 091101 hep-ex/0311033
36 CMS Collaboration HEPData record for this analysis link
Compact Muon Solenoid
LHC, CERN