CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-TOP-16-018
Measurement of the differential $\mathrm{t\bar{t}}$ cross section with high-$p_{\mathrm{T}}$ top-quark jets in the all-hadronic channel at $\sqrt{s}= $ 8 TeV
Abstract: A measurement of the differential $\mathrm{t\bar{t}}$ production cross section using 19.7 fb$^{-1}$ of all-jet events with high-$p_\mathrm{T}$ top-quark jets collected by the CMS detector at $\sqrt{s} = $ 8 TeV is presented. This measurement focuses on events where both top quarks decay hadronically, giving rise to a dijet topology. Techniques based on jet substructure are used to suppress standard model backgrounds dominated by QCD multijet production. The remaining background is estimated from data. The $\mathrm{t\bar{t}}$ event yield is extracted in bins of the measured leading top-quark $p_\mathrm{T}$ using a likelihood fit of the invariant mass distribution of top-quark jet candidates. After correcting to parton level, the measured cross section as a function of the leading top-quark $p_\mathrm{T}$ is found to be in agreement with the NLO calculations.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Prefit results of leading jet mass for $ p_{\mathrm{T}} > $ 500 GeV for (left) 0 subjet b tags, (right) 1 subjet b tag, and (center) 2 or more subjet b tags.

png
Figure 1-a:
Prefit results of leading jet mass for $ p_{\mathrm{T}} > $ 500 GeV for 0 subjet b tags.

png
Figure 1-b:
Prefit results of leading jet mass for $ p_{\mathrm{T}} > $ 500 GeV for 1 subjet b tag.

png
Figure 1-c:
Prefit results of leading jet mass for $ p_{\mathrm{T}} > $ 500 GeV for 2 or more subjet b tags.

png pdf
Figure 2:
Postfit results of leading jet mass for (left) 500 $ < p_{\mathrm{T}} < $ 600 and (right) 600 $ < p_{\mathrm{T}} < $ 700 GeV for (from top to bottom) 0 subjet b tags, 1 subjet b tag, 2 or more subjet b tags.

png
Figure 2-a:
Postfit results of leading jet mass for 500 $ < p_{\mathrm{T}} < $ 600 GeV for 0 subjet b tags.

png
Figure 2-b:
Postfit results of leading jet mass for 600 $ < p_{\mathrm{T}} < $ 700 GeV for 0 subjet b tags.

png
Figure 2-c:
Postfit results of leading jet mass for 500 $ < p_{\mathrm{T}} < $ 600 GeV for 1 subjet b tag.

png
Figure 2-d:
Postfit results of leading jet mass for 600 $ < p_{\mathrm{T}} < $ 700 GeV for 1 subjet b tag.

png
Figure 2-e:
Postfit results of leading jet mass for 500 $ < p_{\mathrm{T}} < $ 600 GeV for 2 or more subjet b tags.

png
Figure 2-f:
Postfit results of leading jet mass for 600 $ < p_{\mathrm{T}} < $ 700 GeV for 2 or more subjet b tags.

png pdf
Figure 3:
Postfit results of leading jet mass for (left) 700 $ < p_{\mathrm{T}} < $ 800 and (right) 800 $ < p_{\mathrm{T}} < $ 1200 GeV for (from top to bottom) 0 subjet b tags, 1 subjet b tag, 2 or more subjet b tags.

png
Figure 3-a:
Postfit results of leading jet mass for 700 $ < p_{\mathrm{T}} < $ 800 GeV for 0 subjet b tags.

png
Figure 3-b:
Postfit results of leading jet mass for 800 $ < p_{\mathrm{T}} < $ 1200 GeV for 0 subjet b tags.

png
Figure 3-c:
Postfit results of leading jet mass for 700 $ < p_{\mathrm{T}} < $ 800 GeV for 1 subjet b tag.

png
Figure 3-d:
Postfit results of leading jet mass for 800 $ < p_{\mathrm{T}} < $ 1200 GeV for 1 subjet b tag.

png
Figure 3-e:
Postfit results of leading jet mass for 700 $ < p_{\mathrm{T}} < $ 800 GeV for 2 or more subjet b tags.

png
Figure 3-f:
Postfit results of leading jet mass for 800 $ < p_{\mathrm{T}} < $ 1200 GeV for 2 or more subjet b tags.

png pdf
Figure 4:
Uncertainty due to systematic effects on the unfolded result.

png pdf
Figure 5:
Parton-level differential ${\mathrm{ t } {}\mathrm{ \bar{t} } } $ cross section.
Tables

png pdf
Table 1:
Differential ${\mathrm{ t } {}\mathrm{ \bar{t} } } $ cross section as a function of $ {p_{\mathrm {T}}}$ ($\mathrm{d}\sigma / \mathrm{d} {p_{\mathrm {T}}} $) [fb GeV$ ^{-1}$] unfolded to parton-level with uncertainty. The Data column is the result of this analysis. The uncertainty is divided into Statistical, Experimental, Theoretical, and Total as described in Section \ref {sec:Systematics}.

png pdf
Table 2:
Differential ${\mathrm{ t } {}\mathrm{ \bar{t} } } $ cross section as a function of $ {p_{\mathrm {T}}} (\frac {d\sigma }{d {p_{\mathrm {T}}} }) [\rm fb GeV ^{-1}]$ unfolded to parton-level with uncertainty. This is compared against three generator and parton-shower combinations: POWHEG & PYTHIA 6, mc@nlo & HERWIG++ , and MadGraph & PYTHIA 6 as well as the Semileptonic result from CMS and the NNLO result for CT14 [35].
Summary
A measurement of the differential $\mathrm{ t \bar{t} }$ cross section in the highly boosted all-hadronic channel at $\sqrt{s} = $ 8 TeV at the LHC has been presented. The non-top-quark multijet background is estimated from data, using a procedure which takes into account the fact that the two of the primary discriminants of signal from background, $\tau_{32}$, and jet mass, are correlated. The Alphabet method is used to create a data-driven background in the presence of a correlation with $\tau_{32}$. Data-to-simulation correction factors for N-subjettiness and subjet b-tagging of 0.841 $\pm$ 0.051 and 1.048 $\pm$ 0.070, respectively, are measured.

A fit of data and expected signal and background contributions is performed in bins of subjet b tags and jet $p_{\mathrm{T}}$ including systematics. The results of the fits are unfolded using the singular value decomposition method. The results are found to be in agreement with NLO+PS simulation calculations within the large experimental uncertainties. The inclusive integrated $\mathrm{ t \bar{t} }$ cross section for jets with $p_{\mathrm{T}} > $ 500 GeV is also measured, and the result of $\sigma_{\mathrm{ t \bar{t} }} = $ 404 $\pm$ 23 (stat) $\pm$ 25 (exp) $\pm$ 140 (theory) fb agrees more closely with the MC prediction than the POWHEG expectation, but agrees with either within uncertainties.
References
1 CDF Collaboration and D0 Collaboration Combination of measurements of the top-quark pair production cross section from the tevatron collider PRD 89 (Apr, 2014) 072001
2 CMS Collaboration Search for the production of dark matter in association with top-quark pairs in the single-lepton final state in proton-proton collisions at sqrt(s) = 8 TeV JHEP 06 (2015) 121 CMS-B2G-14-004
1504.03198
3 CMS Collaboration Measurement of the integrated and differential $ t\overline{t} $ production cross sections for high-$ {p}_{\mathrm{t}} $ top quarks in $ pp $ collisions at $ \sqrt{s}=8\text{ }\text{ }\mathrm{TeV} $ PRD 94 (Oct, 2016) 072002
4 ATLAS Collaboration Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in $ \sqrt{s}=8\text{ }\text{ }\mathrm{TeV} $ proton-proton collisions using the atlas detector PRD 93 (Feb, 2016) 032009
5 ATLAS Collaboration Measurements of $ t\bar{t} $ differential cross-sections in the all-hadronic channel with the ATLAS detector using highly boosted top quarks in $ pp $ collisions at $ \sqrt{s}= $ 13 TeV ATLAS Conference Note ATLAS-CONF-2016-100
6 ATLAS Collaboration Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at $ \sqrt{s}= $ 13 TeV using the ATLAS detector ATLAS Conference Note ATLAS-CONF-2016-040
7 CMS Collaboration Measurement of the ${\rm t \rm \bar t$ production cross section at 13 TeV in the all-jets final state'', CMS-PAS-TOP-16-013 CMS-PAS-TOP-16-013
8 Y. L. Dokshitzer, G. D. Leder, S. Moretti, and B. R. Webber Better Jet Clustering Algorithms JHEP 08 (1997) 001 hep-ph/9707323
9 S. D. Ellis, C. K. Vermilion, and J. R. Walsh Techniques for improved heavy particle searches with jet substructure PRD80 (2009) 051501 0903.5081
10 CMS Collaboration Identification of b-quark jets with the CMS experiment JINST 8 (2013) P04013 CMS-BTV-12-001
1211.4462
11 J. Thaler and K. Van Tilburg Identifying Boosted Objects with N-subjettiness JHEP 03 (2011) 015 1011.2268
12 A. Hocker and V. Kartvelishvili Svd approach to data unfolding Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 372 (1996), no. 3, 469 -- 481
13 CMS Collaboration CMS luminosity based on pixel cluster counting - Summer 2013 update CMS-PAS-LUM-13-001 CMS-PAS-LUM-13-001
14 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
15 S. Frixione, P. Nason, and G. Ridolfi A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction JHEP 09 (2007) 126 0707.3088
16 T. Sjostrand, S. Mrenna, and P. Skands PYTHIA 6.4 physics and manual JHEP 05 (2006) 026 hep-ph/0603175
17 S. Agostinelli et al. Geant4---a simulation toolkit NIMA 506 (2003) 250
18 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with Parton Shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
19 S. Frixione, P. Nason, and B. R. Webber Matching NLO QCD and parton showers in heavy flavor production JHEP 08 (2003) 007 hep-ph/0305252
20 S. Frixione, F. Stoeckli, P. Torrielli, and B. R. Webber NLO QCD corrections in Herwig++ with MC@NLO JHEP 01 (2011) 053 1010.0568
21 M. Bahr et al. Herwig++ Physics and Manual EPJC58 (2008) 639--707 0803.0883
22 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector Submitted to JINST CMS-PRF-14-001
1706.04965
23 CMS Collaboration Energy calibration and resolution of the CMS electromagnetic calorimeter in pp collisions at $ \sqrt{s}= $ 7 TeV JINST 8 (2013) P09009 CMS-EGM-11-001
1306.2016
24 M. Cacciari, G. P. Salam, and G. Soyez The Catchment Area of Jets JHEP 04 (2008) 005 0802.1188
25 M. Cacciari, G. P. Salam, and G. Soyez The anti-k$ _{\mathrm T} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
26 M. Wobisch and T. Wengler Hadronization corrections to jet cross sections in deep-inelastic scattering hep-ph/9907280
27 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual Eur.Phys.J. C72 (2012) 1896 1111.6097
28 CMS Collaboration Performance of b tagging at $ \sqrt{s} = $ 8 TeV in multijet, $ \mathrm{ t \bar{t} } $ and boosted topology events CMS-PAS-BTV-13-001 CMS-PAS-BTV-13-001
29 C. Brust et al. Identifying boosted new physics with non-isolated leptons Journal of High Energy Physics 2015 (2015), no. 4, 79
30 CMS Collaboration Search for heavy resonances decaying to a pair of Higgs bosons in four b quark final state in proton-proton collisions at $ \sqrt{s} = $ 13 TeV CMS-PAS-B2G-16-008 CMS-PAS-B2G-16-008
31 M. Botje et al. The PDF4LHC Working Group Interim Recommendations 1101.0538
32 J. Gao et al. CT10 next-to-next-to-leading order global analysis of QCD PRD89 (2014), no. 3, 033009 1302.6246
33 CMS Collaboration Determination of Jet Energy Calibration and Transverse Momentum Resolution in CMS JINST 6 (2011) P11002 CMS-JME-10-011
1107.4277
34 J. Conway et al. Search for BSM $ t\bar{t} $ production in the boosted all-hadronic final state CMS Note 2011/194
35 M. Czakon, D. Heymes, and A. Mitov High-precision differential predictions for top-quark pairs at the LHC PRL 116 (2016), no. 8, 082003 1511.00549
36 M. Alyari et al. Measurement of the differential $ t\bar{t} $ production cross section for high-$ p_{\mathrm{T}} $ top quarks in e/$ \mu $+jets final states at 8~TeV CMS Note 2013/343
Compact Muon Solenoid
LHC, CERN