CMS-PAS-TOP-16-018 | ||
Measurement of the differential $\mathrm{t\bar{t}}$ cross section with high-$p_{\mathrm{T}}$ top-quark jets in the all-hadronic channel at $\sqrt{s}= $ 8 TeV | ||
CMS Collaboration | ||
August 2017 | ||
Abstract: A measurement of the differential $\mathrm{t\bar{t}}$ production cross section using 19.7 fb$^{-1}$ of all-jet events with high-$p_\mathrm{T}$ top-quark jets collected by the CMS detector at $\sqrt{s} = $ 8 TeV is presented. This measurement focuses on events where both top quarks decay hadronically, giving rise to a dijet topology. Techniques based on jet substructure are used to suppress standard model backgrounds dominated by QCD multijet production. The remaining background is estimated from data. The $\mathrm{t\bar{t}}$ event yield is extracted in bins of the measured leading top-quark $p_\mathrm{T}$ using a likelihood fit of the invariant mass distribution of top-quark jet candidates. After correcting to parton level, the measured cross section as a function of the leading top-quark $p_\mathrm{T}$ is found to be in agreement with the NLO calculations. | ||
Links: CDS record (PDF) ; inSPIRE record ; CADI line (restricted) ; |
Figures | |
png pdf |
Figure 1:
Prefit results of leading jet mass for $ p_{\mathrm{T}} > $ 500 GeV for (left) 0 subjet b tags, (right) 1 subjet b tag, and (center) 2 or more subjet b tags. |
png |
Figure 1-a:
Prefit results of leading jet mass for $ p_{\mathrm{T}} > $ 500 GeV for 0 subjet b tags. |
png |
Figure 1-b:
Prefit results of leading jet mass for $ p_{\mathrm{T}} > $ 500 GeV for 1 subjet b tag. |
png |
Figure 1-c:
Prefit results of leading jet mass for $ p_{\mathrm{T}} > $ 500 GeV for 2 or more subjet b tags. |
png pdf |
Figure 2:
Postfit results of leading jet mass for (left) 500 $ < p_{\mathrm{T}} < $ 600 and (right) 600 $ < p_{\mathrm{T}} < $ 700 GeV for (from top to bottom) 0 subjet b tags, 1 subjet b tag, 2 or more subjet b tags. |
png |
Figure 2-a:
Postfit results of leading jet mass for 500 $ < p_{\mathrm{T}} < $ 600 GeV for 0 subjet b tags. |
png |
Figure 2-b:
Postfit results of leading jet mass for 600 $ < p_{\mathrm{T}} < $ 700 GeV for 0 subjet b tags. |
png |
Figure 2-c:
Postfit results of leading jet mass for 500 $ < p_{\mathrm{T}} < $ 600 GeV for 1 subjet b tag. |
png |
Figure 2-d:
Postfit results of leading jet mass for 600 $ < p_{\mathrm{T}} < $ 700 GeV for 1 subjet b tag. |
png |
Figure 2-e:
Postfit results of leading jet mass for 500 $ < p_{\mathrm{T}} < $ 600 GeV for 2 or more subjet b tags. |
png |
Figure 2-f:
Postfit results of leading jet mass for 600 $ < p_{\mathrm{T}} < $ 700 GeV for 2 or more subjet b tags. |
png pdf |
Figure 3:
Postfit results of leading jet mass for (left) 700 $ < p_{\mathrm{T}} < $ 800 and (right) 800 $ < p_{\mathrm{T}} < $ 1200 GeV for (from top to bottom) 0 subjet b tags, 1 subjet b tag, 2 or more subjet b tags. |
png |
Figure 3-a:
Postfit results of leading jet mass for 700 $ < p_{\mathrm{T}} < $ 800 GeV for 0 subjet b tags. |
png |
Figure 3-b:
Postfit results of leading jet mass for 800 $ < p_{\mathrm{T}} < $ 1200 GeV for 0 subjet b tags. |
png |
Figure 3-c:
Postfit results of leading jet mass for 700 $ < p_{\mathrm{T}} < $ 800 GeV for 1 subjet b tag. |
png |
Figure 3-d:
Postfit results of leading jet mass for 800 $ < p_{\mathrm{T}} < $ 1200 GeV for 1 subjet b tag. |
png |
Figure 3-e:
Postfit results of leading jet mass for 700 $ < p_{\mathrm{T}} < $ 800 GeV for 2 or more subjet b tags. |
png |
Figure 3-f:
Postfit results of leading jet mass for 800 $ < p_{\mathrm{T}} < $ 1200 GeV for 2 or more subjet b tags. |
png pdf |
Figure 4:
Uncertainty due to systematic effects on the unfolded result. |
png pdf |
Figure 5:
Parton-level differential ${\mathrm{ t } {}\mathrm{ \bar{t} } } $ cross section. |
Tables | |
png pdf |
Table 1:
Differential ${\mathrm{ t } {}\mathrm{ \bar{t} } } $ cross section as a function of $ {p_{\mathrm {T}}}$ ($\mathrm{d}\sigma / \mathrm{d} {p_{\mathrm {T}}} $) [fb GeV$ ^{-1}$] unfolded to parton-level with uncertainty. The Data column is the result of this analysis. The uncertainty is divided into Statistical, Experimental, Theoretical, and Total as described in Section \ref {sec:Systematics}. |
png pdf |
Table 2:
Differential ${\mathrm{ t } {}\mathrm{ \bar{t} } } $ cross section as a function of $ {p_{\mathrm {T}}} (\frac {d\sigma }{d {p_{\mathrm {T}}} }) [\rm fb GeV ^{-1}]$ unfolded to parton-level with uncertainty. This is compared against three generator and parton-shower combinations: POWHEG & PYTHIA 6, mc@nlo & HERWIG++ , and MadGraph & PYTHIA 6 as well as the Semileptonic result from CMS and the NNLO result for CT14 [35]. |
Summary |
A measurement of the differential $\mathrm{ t \bar{t} }$ cross section in the highly boosted all-hadronic channel at $\sqrt{s} = $ 8 TeV at the LHC has been presented. The non-top-quark multijet background is estimated from data, using a procedure which takes into account the fact that the two of the primary discriminants of signal from background, $\tau_{32}$, and jet mass, are correlated. The Alphabet method is used to create a data-driven background in the presence of a correlation with $\tau_{32}$. Data-to-simulation correction factors for N-subjettiness and subjet b-tagging of 0.841 $\pm$ 0.051 and 1.048 $\pm$ 0.070, respectively, are measured. A fit of data and expected signal and background contributions is performed in bins of subjet b tags and jet $p_{\mathrm{T}}$ including systematics. The results of the fits are unfolded using the singular value decomposition method. The results are found to be in agreement with NLO+PS simulation calculations within the large experimental uncertainties. The inclusive integrated $\mathrm{ t \bar{t} }$ cross section for jets with $p_{\mathrm{T}} > $ 500 GeV is also measured, and the result of $\sigma_{\mathrm{ t \bar{t} }} = $ 404 $\pm$ 23 (stat) $\pm$ 25 (exp) $\pm$ 140 (theory) fb agrees more closely with the MC prediction than the POWHEG expectation, but agrees with either within uncertainties. |
References | ||||
1 | CDF Collaboration and D0 Collaboration | Combination of measurements of the top-quark pair production cross section from the tevatron collider | PRD 89 (Apr, 2014) 072001 | |
2 | CMS Collaboration | Search for the production of dark matter in association with top-quark pairs in the single-lepton final state in proton-proton collisions at sqrt(s) = 8 TeV | JHEP 06 (2015) 121 | CMS-B2G-14-004 1504.03198 |
3 | CMS Collaboration | Measurement of the integrated and differential $ t\overline{t} $ production cross sections for high-$ {p}_{\mathrm{t}} $ top quarks in $ pp $ collisions at $ \sqrt{s}=8\text{ }\text{ }\mathrm{TeV} $ | PRD 94 (Oct, 2016) 072002 | |
4 | ATLAS Collaboration | Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in $ \sqrt{s}=8\text{ }\text{ }\mathrm{TeV} $ proton-proton collisions using the atlas detector | PRD 93 (Feb, 2016) 032009 | |
5 | ATLAS Collaboration | Measurements of $ t\bar{t} $ differential cross-sections in the all-hadronic channel with the ATLAS detector using highly boosted top quarks in $ pp $ collisions at $ \sqrt{s}= $ 13 TeV | ATLAS Conference Note ATLAS-CONF-2016-100 | |
6 | ATLAS Collaboration | Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at $ \sqrt{s}= $ 13 TeV using the ATLAS detector | ATLAS Conference Note ATLAS-CONF-2016-040 | |
7 | CMS Collaboration | Measurement of the ${\rm t \rm \bar t$ production cross section at 13 TeV in the all-jets final state'', | CMS-PAS-TOP-16-013 | CMS-PAS-TOP-16-013 |
8 | Y. L. Dokshitzer, G. D. Leder, S. Moretti, and B. R. Webber | Better Jet Clustering Algorithms | JHEP 08 (1997) 001 | hep-ph/9707323 |
9 | S. D. Ellis, C. K. Vermilion, and J. R. Walsh | Techniques for improved heavy particle searches with jet substructure | PRD80 (2009) 051501 | 0903.5081 |
10 | CMS Collaboration | Identification of b-quark jets with the CMS experiment | JINST 8 (2013) P04013 | CMS-BTV-12-001 1211.4462 |
11 | J. Thaler and K. Van Tilburg | Identifying Boosted Objects with N-subjettiness | JHEP 03 (2011) 015 | 1011.2268 |
12 | A. Hocker and V. Kartvelishvili | Svd approach to data unfolding | Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 372 (1996), no. 3, 469 -- 481 | |
13 | CMS Collaboration | CMS luminosity based on pixel cluster counting - Summer 2013 update | CMS-PAS-LUM-13-001 | CMS-PAS-LUM-13-001 |
14 | S. Alioli, P. Nason, C. Oleari, and E. Re | A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX | JHEP 06 (2010) 043 | 1002.2581 |
15 | S. Frixione, P. Nason, and G. Ridolfi | A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction | JHEP 09 (2007) 126 | 0707.3088 |
16 | T. Sjostrand, S. Mrenna, and P. Skands | PYTHIA 6.4 physics and manual | JHEP 05 (2006) 026 | hep-ph/0603175 |
17 | S. Agostinelli et al. | Geant4---a simulation toolkit | NIMA 506 (2003) 250 | |
18 | S. Frixione, P. Nason, and C. Oleari | Matching NLO QCD computations with Parton Shower simulations: the POWHEG method | JHEP 11 (2007) 070 | 0709.2092 |
19 | S. Frixione, P. Nason, and B. R. Webber | Matching NLO QCD and parton showers in heavy flavor production | JHEP 08 (2003) 007 | hep-ph/0305252 |
20 | S. Frixione, F. Stoeckli, P. Torrielli, and B. R. Webber | NLO QCD corrections in Herwig++ with MC@NLO | JHEP 01 (2011) 053 | 1010.0568 |
21 | M. Bahr et al. | Herwig++ Physics and Manual | EPJC58 (2008) 639--707 | 0803.0883 |
22 | CMS Collaboration | Particle-flow reconstruction and global event description with the CMS detector | Submitted to JINST | CMS-PRF-14-001 1706.04965 |
23 | CMS Collaboration | Energy calibration and resolution of the CMS electromagnetic calorimeter in pp collisions at $ \sqrt{s}= $ 7 TeV | JINST 8 (2013) P09009 | CMS-EGM-11-001 1306.2016 |
24 | M. Cacciari, G. P. Salam, and G. Soyez | The Catchment Area of Jets | JHEP 04 (2008) 005 | 0802.1188 |
25 | M. Cacciari, G. P. Salam, and G. Soyez | The anti-k$ _{\mathrm T} $ jet clustering algorithm | JHEP 04 (2008) 063 | 0802.1189 |
26 | M. Wobisch and T. Wengler | Hadronization corrections to jet cross sections in deep-inelastic scattering | hep-ph/9907280 | |
27 | M. Cacciari, G. P. Salam, and G. Soyez | FastJet user manual | Eur.Phys.J. C72 (2012) 1896 | 1111.6097 |
28 | CMS Collaboration | Performance of b tagging at $ \sqrt{s} = $ 8 TeV in multijet, $ \mathrm{ t \bar{t} } $ and boosted topology events | CMS-PAS-BTV-13-001 | CMS-PAS-BTV-13-001 |
29 | C. Brust et al. | Identifying boosted new physics with non-isolated leptons | Journal of High Energy Physics 2015 (2015), no. 4, 79 | |
30 | CMS Collaboration | Search for heavy resonances decaying to a pair of Higgs bosons in four b quark final state in proton-proton collisions at $ \sqrt{s} = $ 13 TeV | CMS-PAS-B2G-16-008 | CMS-PAS-B2G-16-008 |
31 | M. Botje et al. | The PDF4LHC Working Group Interim Recommendations | 1101.0538 | |
32 | J. Gao et al. | CT10 next-to-next-to-leading order global analysis of QCD | PRD89 (2014), no. 3, 033009 | 1302.6246 |
33 | CMS Collaboration | Determination of Jet Energy Calibration and Transverse Momentum Resolution in CMS | JINST 6 (2011) P11002 | CMS-JME-10-011 1107.4277 |
34 | J. Conway et al. | Search for BSM $ t\bar{t} $ production in the boosted all-hadronic final state | CMS Note 2011/194 | |
35 | M. Czakon, D. Heymes, and A. Mitov | High-precision differential predictions for top-quark pairs at the LHC | PRL 116 (2016), no. 8, 082003 | 1511.00549 |
36 | M. Alyari et al. | Measurement of the differential $ t\bar{t} $ production cross section for high-$ p_{\mathrm{T}} $ top quarks in e/$ \mu $+jets final states at 8~TeV | CMS Note 2013/343 |
Compact Muon Solenoid LHC, CERN |