CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-BPH-15-002
Measurement of the $\Lambda_{b}$ polarization and the angular parameters of the decay $\Lambda_{b}\to J/\psi(\mu^{+}\mu^{-}) \Lambda^{0}(p\pi^{-})$
Abstract: We present a measurement of the $\Lambda_{b}$ polarization based on an angular analysis of the decay $\Lambda_{b}\to J/\psi(\mu^{+}\mu^{-}) \Lambda^{0}(p\pi^{-})$, using data from pp collisions at $\sqrt{s} =$ 7 TeV and 8 TeV collected with the CMS detector. A transverse $\Lambda_{b}$ polarization of 0.00 $\pm$ 0.06 (stat) $\pm$ 0.02 (syst) is measured.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Definition of the angles used to describe the $\Lambda _{b} \rightarrow J/\psi (\rightarrow \mu ^{+}\mu ^{-})\Lambda ^{0}(\rightarrow p\pi ^{-})$ decay.

png pdf
Figure 2:
Distribution of the $p$ vs $\pi $ momentum obtained from the simulation of $\Lambda _{b}\to J/\psi \Lambda (p \pi ^{-})$ (and complex conjugate) decays. Events lie always above the green line, ie., the $p^{+}$ ($p^{-}$) momentum is always greater than $\pi ^{-}$ ($\pi ^{+}$) momentum.

png pdf
Figure 3-a:
Invariant mass distribution of $\Lambda_b$ (a and c) and $\overline{\Lambda}_b$ (b and d) candidates in (a-b) 2011 and (c-d) 2012 samples. The solid blue line represents the fit result. The signal (background) projection is shown with a dashed (dot-dashed) red (blue) line.

png pdf
Figure 3-b:
Invariant mass distribution of $\Lambda_b$ (a and c) and $\overline{\Lambda}_b$ (b and d) candidates in (a-b) 2011 and (c-d) 2012 samples. The solid blue line represents the fit result. The signal (background) projection is shown with a dashed (dot-dashed) red (blue) line.

png pdf
Figure 3-c:
Invariant mass distribution of $\Lambda_b$ (a and c) and $\overline{\Lambda}_b$ (b and d) candidates in (a-b) 2011 and (c-d) 2012 samples. The solid blue line represents the fit result. The signal (background) projection is shown with a dashed (dot-dashed) red (blue) line.

png pdf
Figure 3-d:
Invariant mass distribution of $\Lambda_b$ (a and c) and $\overline{\Lambda}_b$ (b and d) candidates in (a-b) 2011 and (c-d) 2012 samples. The solid blue line represents the fit result. The signal (background) projection is shown with a dashed (dot-dashed) red (blue) line.

png pdf
Figure 4-a:
Angular efficiencies for $\cos\theta _{\Lambda }$, $\cos\theta _{p}$, $\cos\theta _{\mu }$ (from a to c) obtained from simulated $\Lambda _b \rightarrow J/\psi \Lambda ^0$. The angular efficiencies are parametrized with Chebychev polynomials and are fitted simultaneously to the three angular distributions.

png pdf
Figure 4-b:
Angular efficiencies for $\cos\theta _{\Lambda }$, $\cos\theta _{p}$, $\cos\theta _{\mu }$ (from a to c) obtained from simulated $\Lambda _b \rightarrow J/\psi \Lambda ^0$. The angular efficiencies are parametrized with Chebychev polynomials and are fitted simultaneously to the three angular distributions.

png pdf
Figure 4-c:
Angular efficiencies for $\cos\theta _{\Lambda }$, $\cos\theta _{p}$, $\cos\theta _{\mu }$ (from a to c) obtained from simulated $\Lambda _b \rightarrow J/\psi \Lambda ^0$. The angular efficiencies are parametrized with Chebychev polynomials and are fitted simultaneously to the three angular distributions.

png pdf
Figure 5-a:
Angular background distributions obtained from the mass sidebands are shown from left to right for $\cos\theta _{\Lambda }$, $\cos\theta _{p}$ and $\cos\theta _{\mu }$. The solid blue lines are the results of the fits.

png pdf
Figure 5-b:
Angular background distributions obtained from the mass sidebands are shown from left to right for $\cos\theta _{\Lambda }$, $\cos\theta _{p}$ and $\cos\theta _{\mu }$. The solid blue lines are the results of the fits.

png pdf
Figure 5-c:
Angular background distributions obtained from the mass sidebands are shown from left to right for $\cos\theta _{\Lambda }$, $\cos\theta _{p}$ and $\cos\theta _{\mu }$. The solid blue lines are the results of the fits.

png pdf
Figure 6-a:
Distributions of $m(J/\psi \Lambda )$, $\cos\theta _{p}$, $\cos\theta _{\Lambda }$, $\cos\theta _{\mu }$ (from a to d) for $\Lambda _b$ candidates in 2011 and 2012 datasets in $m(J/\psi \Lambda )\in [5.56, 5.68]$, with fit results superimposed. The signal (background) component is shown in red (gray).

png pdf
Figure 6-b:
Distributions of $m(J/\psi \Lambda )$, $\cos\theta _{p}$, $\cos\theta _{\Lambda }$, $\cos\theta _{\mu }$ (from a to d) for $\Lambda _b$ candidates in 2011 and 2012 datasets in $m(J/\psi \Lambda )\in [5.56, 5.68]$, with fit results superimposed. The signal (background) component is shown in red (gray).

png pdf
Figure 6-c:
Distributions of $m(J/\psi \Lambda )$, $\cos\theta _{p}$, $\cos\theta _{\Lambda }$, $\cos\theta _{\mu }$ (from a to d) for $\Lambda _b$ candidates in 2011 and 2012 datasets in $m(J/\psi \Lambda )\in [5.56, 5.68]$, with fit results superimposed. The signal (background) component is shown in red (gray).

png pdf
Figure 6-d:
Distributions of $m(J/\psi \Lambda )$, $\cos\theta _{p}$, $\cos\theta _{\Lambda }$, $\cos\theta _{\mu }$ (from a to d) for $\Lambda _b$ candidates in 2011 and 2012 datasets in $m(J/\psi \Lambda )\in [5.56, 5.68]$, with fit results superimposed. The signal (background) component is shown in red (gray).

png pdf
Figure 7-a:
Distributions of $m(J/\psi \overline{\Lambda })$, $\cos\theta _{p}$, $\cos\theta _{\Lambda }$, $\cos\theta _{\mu }$ (from a to d) for $\overline{\Lambda }_b$ candidates in 2011 and 2012 datasets in $m(J/\psi \overline{\Lambda })\in [5.56, 5.68]$, with fit results superimposed. The signal (background) component is shown in red (gray).

png pdf
Figure 7-b:
Distributions of $m(J/\psi \overline{\Lambda })$, $\cos\theta _{p}$, $\cos\theta _{\Lambda }$, $\cos\theta _{\mu }$ (from a to d) for $\overline{\Lambda }_b$ candidates in 2011 and 2012 datasets in $m(J/\psi \overline{\Lambda })\in [5.56, 5.68]$, with fit results superimposed. The signal (background) component is shown in red (gray).

png pdf
Figure 7-c:
Distributions of $m(J/\psi \overline{\Lambda })$, $\cos\theta _{p}$, $\cos\theta _{\Lambda }$, $\cos\theta _{\mu }$ (from a to d) for $\overline{\Lambda }_b$ candidates in 2011 and 2012 datasets in $m(J/\psi \overline{\Lambda })\in [5.56, 5.68]$, with fit results superimposed. The signal (background) component is shown in red (gray).

png pdf
Figure 7-d:
Distributions of $m(J/\psi \overline{\Lambda })$, $\cos\theta _{p}$, $\cos\theta _{\Lambda }$, $\cos\theta _{\mu }$ (from a to d) for $\overline{\Lambda }_b$ candidates in 2011 and 2012 datasets in $m(J/\psi \overline{\Lambda })\in [5.56, 5.68]$, with fit results superimposed. The signal (background) component is shown in red (gray).
Tables

png pdf
Table 1:
Functions describing the angular distribution of the decay $\Lambda _{b} \rightarrow J/\psi \Lambda ^{0}$, $J/\psi \rightarrow \mu ^+ \mu ^-$, $\Lambda ^{0} \rightarrow p \pi ^-$.

png pdf
Table 2:
Correlation Matrix of the fitted parameters.

png pdf
Table 3:
Summary of systematic uncertainties.
Summary
Based on an angular analysis of about 6000 $\Lambda_b \rightarrow J/\psi(\rightarrow\mu^{+}\mu^{-})\Lambda(\rightarrow p\pi^{-})$ decays collected by the CMS experiment in 2011 and 2012, we perform a measurement of the $\Lambda_b$ polarization ($P$), the weak asymmetry parameter of the $\Lambda_b$ decay ($\alpha_1$), the $\Lambda^0$ longitudinal polarization ($\alpha_2$), and a measure of the longitudinal/transverse composition of the $J/\psi$ meson ($\gamma_0$). The measured values are

$P= 0.00 \pm 0.06 \text{(stat)} \pm 0.02 \text{(syst)}$,
$\alpha_1 = 0.12 \pm 0.13 \text{(stat)} \pm 0.06 \text{(syst)}$,
$\alpha_2 = -0.93 \pm 0.04 \text{(stat)} \pm 0.04 \text{(syst)}$,
$\gamma_0 = -0.46 \pm 0.07 \text{(stat)} \pm 0.04 \text{(syst)}$


corresponding to the helicity amplitudes

$ |T_{-0}|^2 = 0.51 \pm 0.03\text{(stat)} \pm 0.02\text{(syst)}$,
$|T_{+0}|^2= -0.02 \pm 0.03\text{(stat)} \pm 0.02\text{(syst)}$,
$|T_{--}|^2= 0.46 \pm 0.02\text{(stat)} \pm 0.02\text{(syst)}$,
$|T_{++}|^2= 0.05 \pm 0.04\text{(stat)} \pm 0.02\text{(syst)}$


Our result of the $\Lambda_b$ polarization is compatible with predictions from perturbative QCD calculations [21] for a polarization of ${\sim}$10% at 1.5$\sigma$, but it disfavors the 20% expectation reported in Ref. [22]. Also, as expected [11], our data analysis indicates a maximum longitudinal $\Lambda^0$ polarization $\alpha_2$, or, equivalently, strongly suppressed transitions into the $\lambda_\Lambda =$ 1/2 helicity states of the $\Lambda$ baryon ($T_{+0}$ and $T_{++}$).
References
1 T. Mannel and G. A. Schuler Semileptonic decays of bottom baryons at LEP PLB279 (1992) 194--200
2 A. F. Falk and M. E. Peskin Production, decay, and polarization of excited heavy hadrons PRD49 (1994) 3320--3332 hep-ph/9308241
3 ALEPH Collaboration Measurement of Lambda(b) polarization in Z decays PLB365 (1996) 437--447
4 OPAL Collaboration Measurement of the average polarization of b baryons in hadronic Z0 decays PLB444 (1998) 539--554 hep-ex/9808006
5 DELPHI Collaboration Lambda(b) polarization in Z0 decays at LEP PLB474 (2000) 205--222
6 B. Mele and G. Altarelli Lepton spectra as a measure of b quark polarization at LEP PLB299 (1993) 345--350
7 LHCb Collaboration Measurements of the $ \Lambda_b^0 \to J/\psi \Lambda $ decay amplitudes and the $ \Lambda_b^0 $ polarisation in $ pp $ collisions at $ \sqrt{s} = 7 $ TeV PLB724 (2013) 27--35 1302.5578
8 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
9 P. Bialas, J. G. Korner, M. Kramer, and K. Zalewski Joint angular decay distributions in exclusive weak decays of heavy mesons and baryons Z. Phys. C57 (1993) 115--134
10 M. Kramer and H. Simma Angular correlations in $ \Lambda_{b}\to\Lambda+V $: Polarization measurements, HQET and CP violation NPPS 50 (1996) 125--129, .[125(1996)]
11 T. Gutsche et al. Polarization effects in the cascade decay $ { {\Lambda}}_{b} {\rightarrow} {\Lambda}\mathbf{(} {\rightarrow}p{ {\pi}}^{\mathbf{-}}\mathbf{)}\mathbf{+}J/ {\psi}\mathbf{(} {\rightarrow}{ {\ell}}^{\mathbf{+}}{ {\ell}}^{\mathbf{-}}\mathbf{)} $ in the covariant confined quark model PRD 88 (Dec, 2013) 114018
12 Particle Data Group Collaboration Review of Particle Physics CPC38 (2014) 090001
13 T. Sjostrand, S. Mrenna, and P. Z. Skands PYTHIA 6.4 Physics and Manual JHEP 05 (2006) 026 hep-ph/0603175
14 D. J. Lange The EvtGen particle decay simulation package NIMA462 (2001) 152--155
15 M. Brun, R. Hagelberg, and J. Lassalle GEANT1 CERN-DD-78-2-REV
16 E. Gerchtein and M. Paulini CDF detector simulation framework and performance 2003
17 M. I. Rikova Measurement of the $\Lambda_b$ Polarization with pp Collisions at 7 TeV CERN-THESIS-2013-218
18 CMS Collaboration Measurement of differential cross sections versus $p_{\mathrm{T}}$ and $|y|$ of $K_0^S$, $\Lambda^0$ and $\Xi^-$ from 7 TeV pp collisions at CMS CMS-AN-10-084
19 W. Verkerke The RooFit toolkit for data modelling eConf C0303241, CHEP03 2003
20 ATLAS Collaboration Measurement of the parity-violating asymmetry parameter $ { {\alpha}}_{b} $ and the helicity amplitudes for the decay $ { {\Lambda}}_{b}^{0} {\rightarrow}J/ {\psi}{ {\Lambda}}^{0} $ with the ATLAS detector PRD 89 (May, 2014) 092009
21 G. Hiller, M. Knecht, F. Legger, and T. Schietinger Photon polarization from helicity suppression in radiative decays of polarized Lambda(b) to spin-3/2 baryons PLB649 (2007) 152--158 hep-ph/0702191
22 Z. J. Ajaltouni, E. Conte, and O. Leitner $ \Lambda_{b}^{0} $ decays into $ \Lambda -vector $ PLB614 (2005) 165--173 hep-ph/0412116
Compact Muon Solenoid
LHC, CERN