CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-BPH-16-002 ; CERN-EP-2017-287
Search for the X(5568) state decaying into $\mathrm{B}^{0}_{\mathrm{s}}\pi^{\pm}$ in proton-proton collisions at $\sqrt{s} = $ 8 TeV
Phys. Rev. Lett. 120 (2018) 202005
Abstract: A search for resonance-like structures in the $\mathrm{B}^{0}_{\mathrm{s}}\pi^{\pm}$ invariant mass spectrum is performed using proton-proton collision data collected by the CMS experiment at the LHC at $\sqrt{s} = $ 8 TeV, corresponding to an integrated luminosity of 19.7 fb$^{-1}$. The $\mathrm{B}^{0}_{\mathrm{s}}$ mesons are reconstructed in the decay chain $\mathrm{B}^{0}_{\mathrm{s}} \rightarrow \mathrm{J}/\psi\,\phi$, with $\mathrm{J}/\psi \rightarrow \mu^+\mu^-$ and $\phi\rightarrow\mathrm{K^{+}}\mathrm{K^{-}}$. The $\mathrm{B}^{0}_{\mathrm{s}}\pi^{\pm}$ invariant mass distribution shows no statistically significant peaks for different selection requirements on the reconstructed $\mathrm{B}^{0}_{\mathrm{s}}$ and $\pi^{\pm}$ candidates. Upper limits are set on the relative production rates of the X(5568) and $\mathrm{B}^{0}_{\mathrm{s}}$ states times the branching fraction of the decay $\mathrm{X}(5568)^{\pm} \rightarrow \mathrm{B}^{0}_{\mathrm{s}} \pi^{\pm} $. In addition, upper limits are obtained as a function of the mass and the natural width of possible exotic states decaying into $\mathrm{B}^{0}_{\mathrm{s}}\pi^{\pm}$.
Figures Summary References CMS Publications
Figures

png pdf
Figure 1:
Invariant mass distribution of the $ {\mathrm {B}^0_\mathrm {s}} $ candidates with the fit result superimposed. The outermost pairs of dark vertical arrows define the lower and upper $ {\mathrm {B}^0_\mathrm {s}} $ sidebands, while the innermost light vertical arrows delimit the signal region.

png pdf
Figure 2:
(a) The $M^{\Delta}({\mathrm {B}^0_\mathrm {s}} {\pi ^\mathrm {{\pm}}})$ distribution for events in the $ {\mathrm {B}^0_\mathrm {s}} $ signal (points) and sideband regions (bands). The latter is normalized to the former. The vertical band indicates the region $m_{{\mathrm {X}}}\pm \Gamma _{{\mathrm {X}}}$. (b) The $M^{\Delta}({\mathrm {B}^0_\mathrm {s}} {\pi ^\mathrm {{\pm}}})$ distribution for events in the $ {\mathrm {B}^0_\mathrm {s}} $ signal (points) and lower and higher sideband regions (bands), when the requirement on $ M({\mathrm {K^+}} {\mathrm {K^-}}) $ is removed (see text for additional requirements). The three distributions are normalized from the mass threshold up to 5.74 GeV. The excess observed for events in the $ {\mathrm {B}^0_\mathrm {s}} $ signal and higher sideband regions is due to $ {{\mathrm {B}}}^{(*)}_{1,2}{}^+\to {\mathrm {B}^{*0}} {\pi ^+}$ decays.

png pdf
Figure 2-a:
The $M^{\Delta}({\mathrm {B}^0_\mathrm {s}} {\pi ^\mathrm {{\pm}}})$ distribution for events in the $ {\mathrm {B}^0_\mathrm {s}} $ signal (points) and sideband regions (bands). The latter is normalized to the former. The vertical band indicates the region $m_{{\mathrm {X}}}\pm \Gamma _{{\mathrm {X}}}$.

png pdf
Figure 2-b:
The $M^{\Delta}({\mathrm {B}^0_\mathrm {s}} {\pi ^\mathrm {{\pm}}})$ distribution for events in the $ {\mathrm {B}^0_\mathrm {s}} $ signal (points) and lower and higher sideband regions (bands), when the requirement on $ M({\mathrm {K^+}} {\mathrm {K^-}}) $ is removed (see text for additional requirements). The three distributions are normalized from the mass threshold up to 5.74 GeV. The excess observed for events in the $ {\mathrm {B}^0_\mathrm {s}} $ signal and higher sideband regions is due to $ {{\mathrm {B}}}^{(*)}_{1,2}{}^+\to {\mathrm {B}^{*0}} {\pi ^+}$ decays.

png pdf
Figure 3:
The $M^{\Delta}({\mathrm {B}^0_\mathrm {s}} {\pi ^\mathrm {{\pm}}})$ distribution for events in the $ {\mathrm {B}^0_\mathrm {s}} $ signal region with the result of the fit superimposed for the baseline selection with $ {p_{\mathrm {T}}} ({\mathrm {B}^0_\mathrm {s}}) > $ 10 GeV (a) and $ {p_{\mathrm {T}}} ({\mathrm {B}^0_\mathrm {s}}) > $ 15 GeV (b). The vertical band indicates the region $m_{{\mathrm {X}}}\pm \Gamma _{{\mathrm {X}}}$. The lower panels display the pull (difference between the data and the fit result, divided by the statistical uncertainty in the data).

png pdf
Figure 3-a:
The $M^{\Delta}({\mathrm {B}^0_\mathrm {s}} {\pi ^\mathrm {{\pm}}})$ distribution for events in the $ {\mathrm {B}^0_\mathrm {s}} $ signal region with the result of the fit superimposed for the baseline selection with $ {p_{\mathrm {T}}} ({\mathrm {B}^0_\mathrm {s}}) > $ 10 GeV. The vertical band indicates the region $m_{{\mathrm {X}}}\pm \Gamma _{{\mathrm {X}}}$. The lower panels display the pull (difference between the data and the fit result, divided by the statistical uncertainty in the data).

png pdf
Figure 3-b:
The $M^{\Delta}({\mathrm {B}^0_\mathrm {s}} {\pi ^\mathrm {{\pm}}})$ distribution for events in the $ {\mathrm {B}^0_\mathrm {s}} $ signal region with the result of the fit superimposed for the baseline selection with $ {p_{\mathrm {T}}} ({\mathrm {B}^0_\mathrm {s}}) > $ 15 GeV. The vertical band indicates the region $m_{{\mathrm {X}}}\pm \Gamma _{{\mathrm {X}}}$. The lower panels display the pull (difference between the data and the fit result, divided by the statistical uncertainty in the data).

png pdf
Figure 4:
The 95% CL upper limit (UL) on $\rho _{{\mathrm {X}}}$, Eq.(1), as a function of the mass of a possible exotic state decaying into $ {\mathrm {B}^0_\mathrm {s}} {\pi ^\mathrm {{\pm}}}$ for five different values of the natural width of the state.

png pdf
Figure 5:
The $M^{\Delta}({\mathrm {B}^0_\mathrm {s}} {\pi ^\mathrm {{\pm}}})$ distributions for events in the $ {\mathrm {B}^0_\mathrm {s}} $ (a) signal and (b) sideband regions for different $\Delta R$ requirements. The uncertainties are not shown for the sake of clarity. The vertical band indicates the region $m_{{\mathrm {X}}}\pm \Gamma _{{\mathrm {X}}}$.

png pdf
Figure 5-a:
The $M^{\Delta}({\mathrm {B}^0_\mathrm {s}} {\pi ^\mathrm {{\pm}}})$ distributions for events in the $ {\mathrm {B}^0_\mathrm {s}} $ signal region for different $\Delta R$ requirements. The uncertainties are not shown for the sake of clarity. The vertical band indicates the region $m_{{\mathrm {X}}}\pm \Gamma _{{\mathrm {X}}}$.

png pdf
Figure 5-b:
The $M^{\Delta}({\mathrm {B}^0_\mathrm {s}} {\pi ^\mathrm {{\pm}}})$ distributions for events in the $ {\mathrm {B}^0_\mathrm {s}} $ sideband region for different $\Delta R$ requirements. The uncertainties are not shown for the sake of clarity. The vertical band indicates the region $m_{{\mathrm {X}}}\pm \Gamma _{{\mathrm {X}}}$.
Summary
In summary, a search for the X(5568) state is performed by the CMS Collaboration using pp collision data collected at $\sqrt{s} = $ 8 TeV and corresponding to an integrated luminosity of 19.7 fb$^{-1}$. With about 50 000 $\mathrm{B}^{0}_{\mathrm{s}}$ signal candidates, no significant structure in the $\mathrm{B}^{0}_{\mathrm{s}}\pi^{\pm}$ invariant mass spectrum is found around the mass reported by the D0 Collaboration (nor for masses up to 5.9 GeV). The absence of a peak is supported by direct comparison with the events in the $\mathrm{B}^{0}_{\mathrm{s}}$ sidebands, and by fits to the $\mathrm{B}^{0}_{\mathrm{s}}\pi^{\pm}$ invariant mass distribution with a resonant component included, using different kinematic selection requirements, as well as variants of the background modeling, fit regions, and quality criteria.

Upper limits on the relative production rates of the X(5568) and $\mathrm{B}^{0}_{\mathrm{s}}$ states, multiplied by the unknown branching fraction of the $\mathrm{X}(5568)^{\pm}\to\mathrm{B}^{0}_{\mathrm{s}}\pi^{\pm}$ decay, are computed to be:

$\rho_{\mathrm{X}} < $ 1.1% at 95% CL for $p_{\mathrm{T}}(\mathrm{B}^{0}_{\mathrm{s}})> $ 10 GeV and
$\rho_{\mathrm{X}} < $ 1.0% at 95% CL for $ p_{\mathrm{T}}(\mathrm{B}^{0}_{\mathrm{s}})> $ 15 GeV.


The upper limits on $\rho_{\mathrm{X}}$ presented in this Letter are a factor of two more stringent than the previous best limits, and do not confirm the existence of the X(5568) state. Additionally, upper limits are set for different values of mass and natural width of a hypothetical exotic resonance decaying into $\mathrm{B}^{0}_{\mathrm{s}}\pi^{\pm}$.
References
1 D0 Collaboration Evidence for a $ \mathrm{B}^0_{\mathrm{s}} \pi^{\pm} $ state PRL 117 (2016) 022003 1602.07588
2 T. J. Burns and E. S. Swanson Interpreting the X(5568) PLB 760 (2016) 627 1603.04366
3 F.-K. Guo, U.-G. Meissner, and B.-S. Zou How the X(5568) challenges our understanding of QCD Commun. Theor. Phys. 65 (2016) 593 1603.06316
4 LHCb Collaboration Search for structure in the $ \mathrm{B}^0_{\mathrm{s}}\pi^{\pm} $ invariant mass spectrum PRL 117 (2016) 152003 1608.00435
5 Particle Data Group, C. Patrignani et al. Review of particle physics CPC 40 (2016) 100001
6 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
7 CMS Collaboration Performance of CMS muon reconstruction in pp collision events at $ \sqrt{s} = $ 7 TeV JINST 7 (2012) P10002 CMS-MUO-10-004
1206.4071
8 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
9 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
10 CMS Collaboration Measurement of the CP-violating weak phase $ \phi_s $ and the decay width difference $ \Delta \Gamma_s $ using the $ \mathrm{B}^0_{\mathrm{s}} \to \mathrm{J}/\psi \phi(1020) $ decay channel in pp collisions at $ \sqrt{s} = $ 8 TeV PLB 757 (2016) 97 CMS-BPH-13-012
1507.07527
11 T. Sjostrand, S. Mrenna, and P. Skands PYTHIA 6.4 physics and manual JHEP 05 (2006) 026 hep-ph/0603175
12 D. J. Lange The EvtGen particle decay simulation package NIMA 462 (2001) 152
13 E. Barberio, B. van Eijk, and Z. Was PHOTOS---a universal Monte Carlo for QED radiative corrections in decays CPC 66 (1991) 115
14 E. Barberio and Z. Was PHOTOS---a universal Monte Carlo for QED radiative corrections: version 2.0 CPC 79 (1994) 291
15 GEANT4 Collaboration GEANT4---a simulation toolkit NIMA 506 (2003) 250
16 A. L. Read Presentation of search results: the $ \mathrm{CL}_{S} $ technique JPG 28 (2002) 2693
17 T. Junk Confidence level computation for combining searches with small statistics NIMA 434 (1999) 435 hep-ex/9902006
18 ATLAS and CMS Collaborations Procedure for the LHC Higgs boson search combination in Summer 2011 ATL-PHYS-PUB-2011-11, CMS NOTE-2011/005
19 A. Esposito, A. Pilloni, and A. D. Polosa Hybridized tetraquarks PLB 758 (2016) 292 1603.07667
20 A. Ali, L. Maiani, A. D. Polosa, and V. Riquer $ \mathrm{B}_{\mathrm{c}}^{\pm} $ decays into tetraquarks PRD 94 (2016) 034036 1604.01731
Compact Muon Solenoid
LHC, CERN