CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-SMP-22-012
Search for the rare decays of the Z and Higgs bosons to a $ \mathrm{J}/\psi $ or $ \psi^{\prime} $ meson and a photon in proton-proton collisions at $ \sqrt{s}= $ 13 TeV
Abstract: A search is performed for the rare decays of the Z and Higgs bosons to a photon and a charmed meson $ \mathrm{J}/\psi $ or $ \psi^{\prime} $, which subsequentially decays to a pair of muons. The data set corresponds to an integrated luminosity of 123 fb$ ^{-1} $ of proton-proton collisions at $ \sqrt{s}= $ 13 TeV collected with the CMS detector at the LHC. The presence of two resonances in the signal is used to discriminate and estimate the non-resonant backgrounds. No evidence for branching fractions to these rare decay channels larger than predicted in the standard model is observed. Upper limits at 95% confidence level are set on $ \mathcal{B}(\mathrm{H}\to\mathrm{J}/\psi\gamma) < 2.6 \times 10^{-4} $, $ \mathcal{B}(\mathrm{H}\to\psi^{\prime}\gamma) < 9.9 \times 10^{-4} $, $ \mathcal{B}(\mathrm{Z}\to\mathrm{J}/\psi\gamma) < 0.6 \times 10^{-6} $ and $ \mathcal{B}(\mathrm{Z}\to\psi^{\prime}\gamma) < 1.3 \times 10^{-6} $. The ratio of the Higgs boson coupling modifiers $ \kappa_{c}/\kappa_{\gamma} $ is constrained to be in the interval $ (-157,+199) $ at 95% confidence level. When assuming $ \kappa_{\gamma}= $ 1, the observed interval becomes $ (-166,+208) $.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Leading-order Feynman diagrams of Z and Higgs boson rare decays to $ \psi $ (1S) or $ \psi $ (2S), and a photon, through the direct process (top left) and the indirect processes (top right, bottom left, and bottom right).

png pdf
Figure 1-a:
Leading-order Feynman diagrams of Z and Higgs boson rare decays to $ \psi $ (1S) or $ \psi $ (2S), and a photon, through the direct process (top left) and the indirect processes (top right, bottom left, and bottom right).

png pdf
Figure 1-b:
Leading-order Feynman diagrams of Z and Higgs boson rare decays to $ \psi $ (1S) or $ \psi $ (2S), and a photon, through the direct process (top left) and the indirect processes (top right, bottom left, and bottom right).

png pdf
Figure 1-c:
Leading-order Feynman diagrams of Z and Higgs boson rare decays to $ \psi $ (1S) or $ \psi $ (2S), and a photon, through the direct process (top left) and the indirect processes (top right, bottom left, and bottom right).

png pdf
Figure 1-d:
Leading-order Feynman diagrams of Z and Higgs boson rare decays to $ \psi $ (1S) or $ \psi $ (2S), and a photon, through the direct process (top left) and the indirect processes (top right, bottom left, and bottom right).

png pdf
Figure 2:
Background-only fit using the power-law, exponential, and Bernstein polynomial functions with the optimal number of parameters determined with the F-test, and ranked according to the fit $ \chi^2 $. The resonant background contributions are added with normalization fixed to the SM expectation. Top left: $ \mathrm{H}\to\psi $ (1S) $ \gamma $ ggF HP category. Top right: $ \mathrm{H}\to\psi $ (1S) $ \gamma $ ggF LP category. Bottom left: $ \mathrm{H}\to\psi $ (1S) $ \gamma $ VBF category. Bottom right: $ \mathrm{H}\to\psi $ (1S) $ \gamma $ HF category.

png pdf
Figure 2-a:
Background-only fit using the power-law, exponential, and Bernstein polynomial functions with the optimal number of parameters determined with the F-test, and ranked according to the fit $ \chi^2 $. The resonant background contributions are added with normalization fixed to the SM expectation. Top left: $ \mathrm{H}\to\psi $ (1S) $ \gamma $ ggF HP category. Top right: $ \mathrm{H}\to\psi $ (1S) $ \gamma $ ggF LP category. Bottom left: $ \mathrm{H}\to\psi $ (1S) $ \gamma $ VBF category. Bottom right: $ \mathrm{H}\to\psi $ (1S) $ \gamma $ HF category.

png pdf
Figure 2-b:
Background-only fit using the power-law, exponential, and Bernstein polynomial functions with the optimal number of parameters determined with the F-test, and ranked according to the fit $ \chi^2 $. The resonant background contributions are added with normalization fixed to the SM expectation. Top left: $ \mathrm{H}\to\psi $ (1S) $ \gamma $ ggF HP category. Top right: $ \mathrm{H}\to\psi $ (1S) $ \gamma $ ggF LP category. Bottom left: $ \mathrm{H}\to\psi $ (1S) $ \gamma $ VBF category. Bottom right: $ \mathrm{H}\to\psi $ (1S) $ \gamma $ HF category.

png pdf
Figure 2-c:
Background-only fit using the power-law, exponential, and Bernstein polynomial functions with the optimal number of parameters determined with the F-test, and ranked according to the fit $ \chi^2 $. The resonant background contributions are added with normalization fixed to the SM expectation. Top left: $ \mathrm{H}\to\psi $ (1S) $ \gamma $ ggF HP category. Top right: $ \mathrm{H}\to\psi $ (1S) $ \gamma $ ggF LP category. Bottom left: $ \mathrm{H}\to\psi $ (1S) $ \gamma $ VBF category. Bottom right: $ \mathrm{H}\to\psi $ (1S) $ \gamma $ HF category.

png pdf
Figure 2-d:
Background-only fit using the power-law, exponential, and Bernstein polynomial functions with the optimal number of parameters determined with the F-test, and ranked according to the fit $ \chi^2 $. The resonant background contributions are added with normalization fixed to the SM expectation. Top left: $ \mathrm{H}\to\psi $ (1S) $ \gamma $ ggF HP category. Top right: $ \mathrm{H}\to\psi $ (1S) $ \gamma $ ggF LP category. Bottom left: $ \mathrm{H}\to\psi $ (1S) $ \gamma $ VBF category. Bottom right: $ \mathrm{H}\to\psi $ (1S) $ \gamma $ HF category.

png pdf
Figure 3:
Background-only fit using the power-law, exponential, and Bernstein polynomial functions with the optimal number of parameters determined with the F-test, and ranked according to the fit $ \chi^2 $. The resonant background contributions are added with normalization fixed to the SM expectation. Top left: $ \mathrm{Z}\to\psi $ (1S) $ \gamma $ HP category. Top right: $ \mathrm{Z}\to\psi $ (1S) $ \gamma $ LP category. Bottom left: $ \mathrm{H}\to\psi $ (2S) $ \gamma $ category. Bottom right: $ \mathrm{Z}\to\psi $ (2S) $ \gamma $ category.

png pdf
Figure 3-a:
Background-only fit using the power-law, exponential, and Bernstein polynomial functions with the optimal number of parameters determined with the F-test, and ranked according to the fit $ \chi^2 $. The resonant background contributions are added with normalization fixed to the SM expectation. Top left: $ \mathrm{Z}\to\psi $ (1S) $ \gamma $ HP category. Top right: $ \mathrm{Z}\to\psi $ (1S) $ \gamma $ LP category. Bottom left: $ \mathrm{H}\to\psi $ (2S) $ \gamma $ category. Bottom right: $ \mathrm{Z}\to\psi $ (2S) $ \gamma $ category.

png pdf
Figure 3-b:
Background-only fit using the power-law, exponential, and Bernstein polynomial functions with the optimal number of parameters determined with the F-test, and ranked according to the fit $ \chi^2 $. The resonant background contributions are added with normalization fixed to the SM expectation. Top left: $ \mathrm{Z}\to\psi $ (1S) $ \gamma $ HP category. Top right: $ \mathrm{Z}\to\psi $ (1S) $ \gamma $ LP category. Bottom left: $ \mathrm{H}\to\psi $ (2S) $ \gamma $ category. Bottom right: $ \mathrm{Z}\to\psi $ (2S) $ \gamma $ category.

png pdf
Figure 3-c:
Background-only fit using the power-law, exponential, and Bernstein polynomial functions with the optimal number of parameters determined with the F-test, and ranked according to the fit $ \chi^2 $. The resonant background contributions are added with normalization fixed to the SM expectation. Top left: $ \mathrm{Z}\to\psi $ (1S) $ \gamma $ HP category. Top right: $ \mathrm{Z}\to\psi $ (1S) $ \gamma $ LP category. Bottom left: $ \mathrm{H}\to\psi $ (2S) $ \gamma $ category. Bottom right: $ \mathrm{Z}\to\psi $ (2S) $ \gamma $ category.

png pdf
Figure 3-d:
Background-only fit using the power-law, exponential, and Bernstein polynomial functions with the optimal number of parameters determined with the F-test, and ranked according to the fit $ \chi^2 $. The resonant background contributions are added with normalization fixed to the SM expectation. Top left: $ \mathrm{Z}\to\psi $ (1S) $ \gamma $ HP category. Top right: $ \mathrm{Z}\to\psi $ (1S) $ \gamma $ LP category. Bottom left: $ \mathrm{H}\to\psi $ (2S) $ \gamma $ category. Bottom right: $ \mathrm{Z}\to\psi $ (2S) $ \gamma $ category.

png pdf
Figure 4:
Results of the main background fit in the CR, using the power-law, exponential, and Bernstein polynomial functions with the optimal number of parameters determined with the F-test.

png pdf
Figure 5:
Observed and expected (with $ {\pm}1,\,{\pm} $ 2 standard deviation bands) exclusion limits on the branching fraction of the $ (\mathrm{H},\mathrm{Z}) \to \psi $ (nS) $ \gamma $ processes.
Tables

png pdf
Table 1:
SM predictions of the branching fractions of the Higgs and Z bosons to $ \psi $ (nS) $ \gamma $, and measured branching fractions for the $ \psi $ (nS) $ \to\mu\mu $ decays [12].

png pdf
Table 2:
Sources of systematic uncertainties described in Section 6 and their impact on the signal strength.

png pdf
Table 3:
Observed (expected) upper limits at 95% CL on the product of the cross section and the branching fraction of the $ (\mathrm{H},\mathrm{Z}) \to \psi $ (nS) $ \gamma $ processes. The normalized values with respect to the SM expectation are included as well and denoted as the signal strength parameter $ \mu $. The results are compared with previous ones [13,15].
Summary
A search for the rare decays of the Z and H bosons to a photon and a $ \psi $ (nS) meson decaying to a pair of muons is presented. No statistically-significant excess has been observed over the standard model expectations. The data were collected by the CMS experiment at $ \sqrt{s}= $ 13 TeV during 2016--2018 and correspond to an integrated luminosity of 123 fb$ ^{-1} $. The upper limits on the branching fraction are set to 0.6 and 1.3 $ \times 10^{-6} $ for the $ \mathrm{Z}\to\psi $ (1S) $ \gamma $ and $ \mathrm{Z}\to\psi $ (2S) $ \gamma $ decays, and 2.6 and 9.9 $ \times 10^{-4} $ for the $ \mathrm{H}\to\psi $ (1S) $ \gamma $ and $ \mathrm{H}\to\psi $ (2S) $ \gamma $ decays, respectively. The limit for $ \mathrm{H}\to\psi $ (1S) $ \gamma $ translates to an interval constraint on the $ \kappa_{c}/\kappa_{\gamma} $ ratio of the Higgs boson coupling modifiers of $ (-157, +199) $; if the SM value of $ \kappa_{\gamma}= $ 1 is assumed, the observed interval is $ (-166,+208) $.
References
1 ATLAS Collaboration Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} $ = 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 F. Englert and R. Brout Broken symmetry and the mass of gauge vector mesons PRL 13 (1964)
5 P. W. Higgs Broken symmetries and the masses of gauge bosons PRL 13 (1964)
6 CMS Collaboration A portrait of the Higgs boson by the CMS experiment ten years after the discovery. Nature 607 (2022) CMS-HIG-22-001
2207.00043
7 ATLAS Collaboration A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery Nature 607 (2022) 2207.00092
8 LHC Higgs Cross Section Working Group Collaboration Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector link 1610.07922
9 G. T. Bodwin, H. S. Chung, J.-H. Ee, and J. Lee $ Z $-boson decays to a vector quarkonium plus a photon PRD 97 (2018) 1709.09320
10 G. T. Bodwin, H. S. Chung, J.-H. Ee, and J. Lee Addendum: New approach to the resummation of logarithms in Higgs-boson decays to a vector quarkonium plus a photon [Phys. Rev. D 95, 054018 (2017)] PRD 96 (2017) 1710.09872
11 N. Brambilla et al. Order $ v^4 $ corrections to Higgs boson decay into $ J/\psi + \gamma $ PRD 100 (2019) 1907.06473
12 Particle Data Group Collaboration Review of Particle Physics PTEP 2022 (2022)
13 CMS Collaboration Search for rare decays of Z and Higgs bosons to J$ /\psi $ and a photon in proton-proton collisions at $ \sqrt{s} = $ 13 TeV EPJC 79 (2019) 94 CMS-SMP-17-012
1810.10056
14 ATLAS Collaboration Searches for exclusive Higgs and Z boson decays into $ J/\psi\gamma $, $ \psi(2S)\gamma $, and $ \Upsilon(nS)\gamma $ at $ \sqrt{s}= $ 13 TeV with the ATLAS detector PLB 786 (2018) 134 1807.00802
15 ATLAS Collaboration Searches for exclusive Higgs and Z boson decays into a vector quarkonium state and a photon using 139 fb$ ^{-1} $ of ATLAS $ \sqrt{s}= $ 13 TeV proton-proton collision data EPJC 83 (2023) 781 2208.03122
16 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
17 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
18 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
19 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
20 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
21 M. König and M. Neubert Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings JHEP 08 (2015) 012 1505.03870
22 Y. Li and F. Petriello Combining QCD and electroweak corrections to dilepton production in FEWZ PRD 86 (2012) 094034 1208.5967
23 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
24 R. D. Ball et al. Parton distributions with QED corrections NPB 877 (2013) 290 1308.0598
25 R. D. Ball et al. Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO NPB 855 (2012) 153 1107.2652
26 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
27 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
28 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
29 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
30 M. Cacciari, G. P. Salam, and G. Soyez The catchment area of jets JHEP 04 (2008) 005 0802.1188
31 CMS Collaboration Pileup mitigation at CMS in 13 TeV data JINST 15 (2020) P09018 CMS-JME-18-001
2003.00503
32 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
33 CMS Collaboration Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at sqrt(s) = 8 TeV JINST 10 (2015) P08010 CMS-EGM-14-001
1502.02702
34 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) P05014 CMS-EGM-17-001
2012.06888
35 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
36 M. J. Oreglia A study of the reactions $ \psi^\prime \to \gamma \gamma \psi $ PhD thesis, Stanford University, SLAC Report SLAC-R-236, 1980
link
37 M. H. Kutner, C. J. Nachtsheim, J. Neter, and W. Li Applied Linear Statistical Models Irwin, . Fifth edition. ISBN~9780256117363, 1996
38 P. D. Dauncey, M. Kenzie, N. Wardle, and G. J. Davies Handling uncertainties in background shapes: the discrete profiling method JINST 10 (2015) P04015 1408.6865
39 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
40 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2018
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
41 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2019
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
42 NNPDF Collaboration Parton distributions for the LHC Run II JHEP 04 (2015) 040 1410.8849
43 J. Butterworth et al. PDF4LHC recommendations for LHC Run II JPG 43 (2016) 23001 1510.03865
44 CMS and ATLAS Collaborations Procedure for the LHC Higgs boson search combination in Summer 2011 CMS Note CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011
45 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435 hep-ex/9902006
46 A. L. Read Presentation of search results: the CL$ _{\mathrm{s}} $ technique JPG 28 (2002) 2693
47 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
48 LHC Higgs Cross Section Working Group Handbook of LHC Higgs Cross Sections: 3. Higgs Properties CERN-2013-004, 2013
link
1307.1347
49 CMS Collaboration Measurements of Higgs boson production cross sections and couplings in the diphoton decay channel at $ \sqrt{\mathrm{s}} $ = 13 TeV JHEP 07 (2021) 027 CMS-HIG-19-015
2103.06956
50 G. Perez, Y. Soreq, E. Stamou, and K. Tobioka Constraining the charm Yukawa and Higgs-quark coupling universality PRD 92 (2015) 033016 1503.00290
Compact Muon Solenoid
LHC, CERN