CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-HIG-24-018
Search for Higgs boson decay to a charm quark-antiquark pair via $ \mathrm{t\overline{t}H} $ production
Abstract: A search for the standard model Higgs boson decaying to a charm quark-antiquark pair, $ \mathrm{H\!\to\!c\overline{c}} $, produced in association with a top quark-antiquark pair ($ \mathrm{t\overline{t}H} $) is presented. The search is performed with proton-proton collisions at $ {\sqrt{s}=13} $ TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138 $ \mathrm{fb}^{-1} $. Advanced machine learning techniques are employed for jet flavor identification and event classification. The Higgs boson decay to a bottom quark-antiquark pair is measured simultaneously and the observed $ \mathrm{t\overline{t}H(H\!\to\!b\overline{b})} $ event rate relative to the standard model expectation is 0.91 $ ^{+0.26}_{-0.22} $. The observed (expected) upper limit on $ \sigma(\mathrm{t\overline{t}H})\mathcal{B}(\mathrm{H\!\to\!c\overline{c}}) $ is 0.11 ( 0.13 $ ^{+0.06}_{-0.04} $) pb at 95% confidence level (CL), corresponding to 7.8 ( 8.7 $ ^{+4.0}_{-2.6} $) times the standard model prediction. When combined with the previous search for $ \mathrm{H\!\to\!c\overline{c}} $ via associated production with a W or Z boson, the observed (expected) 95% CL interval on the Higgs-charm Yukawa coupling modifier, $ \kappa_\mathrm{c} $, is $ {|\kappa_\mathrm{c}| < 3.5} $ ($ {|\kappa_\mathrm{c}| < 2.7} $), the most stringent constraint to date.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Distribution of b, c and light-flavor jets in the two-dimensional ParticleNet discriminant plane. The vertical and horizontal lines correspond to the edges of the tagging categories. The numbers in each bin correspond to the tagging efficiencies for b (red), c (blue) and light-flavor (yellow) jets, evaluated on a sample of simulated $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}}) $ events. The contour lines represent constant density values for each jet flavor in steps of 5%.

png pdf
Figure 2:
Event categorization flowchart.

png pdf
Figure 3:
Distributions of the ParT discriminants in data (points) and predicted signal and backgrounds (colored histograms) after the maximum likelihood fit to data. The vertical bars on the points represent the statistical uncertainties in data. The hatched band represents the total uncertainty in the sum of the signal and background predictions. The lower panel shows the ratio of the data to the sum of the signal and background predictions.

png pdf
Figure 4:
Observed and expected event yields from all SRs and CRs as a function of $ \log_{10}(S/B) $, where $ S $ are the expected $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}}) $ (left) and $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}}) $ (right) yields, and $ B $ are the background yields in the combined fit to data. The signals are shown for the best-fit signal strength (red), and the SM prediction, $ \mu = $ 1 (orange). The lower panel shows the ratio of the data to the post-fit background predictions, compared to the signal-plus-background predictions.

png pdf
Figure 4-a:
Observed and expected event yields from all SRs and CRs as a function of $ \log_{10}(S/B) $, where $ S $ are the expected $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}}) $ (left) and $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}}) $ (right) yields, and $ B $ are the background yields in the combined fit to data. The signals are shown for the best-fit signal strength (red), and the SM prediction, $ \mu = $ 1 (orange). The lower panel shows the ratio of the data to the post-fit background predictions, compared to the signal-plus-background predictions.

png pdf
Figure 4-b:
Observed and expected event yields from all SRs and CRs as a function of $ \log_{10}(S/B) $, where $ S $ are the expected $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}}) $ (left) and $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}}) $ (right) yields, and $ B $ are the background yields in the combined fit to data. The signals are shown for the best-fit signal strength (red), and the SM prediction, $ \mu = $ 1 (orange). The lower panel shows the ratio of the data to the post-fit background predictions, compared to the signal-plus-background predictions.

png pdf
Figure 5:
Fit results of $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $. The left panel shows the observed signal strength, compared to the expected results. The right panel shows the expected and observed significance.

png pdf
Figure 6:
The 95% CL upper limits on $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $. The blue and yellow bands indicate the expected 68% and 95% CL regions, respectively, under the background-only hypothesis. The vertical red line indicates the SM value $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} = $ 1.

png pdf
Figure 7:
Constraints on the Higgs boson coupling modifiers $ \kappa_{\mathrm{c}} $ and $ \kappa_{\mathrm{b}} $. The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best-fit values are shown by the orange (blue) markers.

png pdf
Figure 8:
The 95% CL upper limits on $ \mu _{\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}}} $. The blue and yellow bands indicated the expected 68% and 95% CL regions, respectively, under the background-only hypothesis. The vertical red line indicates the SM value $ \mu _{\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}}} = $ 1. The combination between VH and $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H} $ assumes correlated theory uncertainties on the Higgs boson production cross sections and branching fractions.

png pdf
Figure 9:
Likelihood scans of $ \kappa_{\mathrm{c}} $ with fixed $ \kappa_{\mathrm{b}}= $ 1 in the individual $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H} $ (red) and VH (blue) channels and their combination (black). The 68% and 95% CL intervals are indicated by the horizontal dotted lines.

png pdf
Figure C1:
Rejection factors of the subdominant jet flavors in each of the tagging bins. The filled bars represent the rejection factors achieved with the ParticleNet tagger and the corresponding working point definitions. The black bars represent the rejection factors achieved with the DEEPJET tagger with working points mimicking the dominant flavor tagging efficiencies. Each bin is labeled with the relative improvement of the ParticleNet tagger compared to the DEEPJET tagger. All rejection factors and tagging efficiencies are evaluated using simulated $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}}) $ events with 2018 detector conditions.

png pdf
Figure E1:
Confusion matrices of the ParT event classifier in the $ \text{0L} $ (upper), $ \text{1L} $ (lower left), and $ \text{2L} $ (lower right) channels after the baseline selection. For each event, the predicted label is the process with the highest output score. The event yield fractions are normalized per true label such that each row sums up to unity.

png pdf
Figure E1-a:
Confusion matrices of the ParT event classifier in the $ \text{0L} $ (upper), $ \text{1L} $ (lower left), and $ \text{2L} $ (lower right) channels after the baseline selection. For each event, the predicted label is the process with the highest output score. The event yield fractions are normalized per true label such that each row sums up to unity.

png pdf
Figure E1-b:
Confusion matrices of the ParT event classifier in the $ \text{0L} $ (upper), $ \text{1L} $ (lower left), and $ \text{2L} $ (lower right) channels after the baseline selection. For each event, the predicted label is the process with the highest output score. The event yield fractions are normalized per true label such that each row sums up to unity.

png pdf
Figure E1-c:
Confusion matrices of the ParT event classifier in the $ \text{0L} $ (upper), $ \text{1L} $ (lower left), and $ \text{2L} $ (lower right) channels after the baseline selection. For each event, the predicted label is the process with the highest output score. The event yield fractions are normalized per true label such that each row sums up to unity.

png pdf
Figure E2:
Distribution of the ParT \mathcal{D}_$ \mathrm{QCD} $ score used in the $ \text{0L} $ channel to remove the $ \mathrm{QCD} $ background. The gray area indicates the region which is rejected in the analysis. The shaded band indicates the uncertainty on the $ \mathrm{QCD} $ prediction due to limited size of simulated $ \mathrm{QCD} $ multijet samples. All contributions are normalized to unity.

png pdf
Figure E3:
Distribution of the ParT \mathcal{D}_$ {\mathrm{t}\overline{\mathrm{t}}} {+}\text{light} $ score used to reduce the $ {\mathrm{t}\overline{\mathrm{t}}} {+}\text{light} $ background for the case of the $ \text{2L} $ channel. The gray area indicates the region which is rejected in the analysis. All contributions are normalized to unity. The last bin includes the overflow.

png pdf
Figure E4:
Distribution of the ParT \mathcal{D}_$ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{X} $ score used to define the different analysis regions for the case of the $ \text{1L} $ channel. The purple (yellow) area indicates the region which is used for the validation (analysis). The dashed line indicates the separation of signal and control regions in the analysis. All contributions are normalized to unity.

png pdf
Figure G1:
Distributions of the ParT discriminants in data (points) and predicted signal and backgrounds (colored histograms) after the maximum likelihood fit to data in the validation region, defined by 0.4 $ < \mathcal{D}_{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{X}} < $ 0.6. The vertical bars on the points represent the statistical uncertainties in data. The hatched band represents the total uncertainty in the sum of the signal and background predictions. The lower panel shows the ratio of the data to the sum of the signal and background predictions.

png pdf
Figure H1:
Distributions of the ParT discriminants in data (points) and predicted signal and backgrounds (colored histograms) after the maximum likelihood fit to data. The vertical bars on the points represent the statistical uncertainties in data. The hatched band represents the total uncertainty in the sum of the signal and background predictions. The lower panel shows the ratio of the data to the sum of the signal and background predictions. The ratio of pre-fit expectation to the sum of the signal and background predictions after the fit is as a red line in the lower panel, including the pre-fit uncertainties as a shaded band. Uncertainties in the free-floating normalization parameters are not included in the pre-fit uncertainty band.

png pdf
Figure H2:
On the left, observed and expected event yields from all SRs and CRs as a function of $ \log_{10}(S/B) $, where $ S $ are the observed $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}}) $ yields, and $ B $ are the total background yields in the combined fit to data. The signals are shown for the best-fit signal strength (red), and the SM prediction, $ \mu = $ 1 (orange). The lower panel shows the ratio of the data to the post-fit background prediction, compared to the signal-plus-background predictions. On the right, fit results of $ \mu _{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}})} $ in the combination of channels (first row) and the channels individually (lower rows). The left panel shows the observed signal strength, compared to the expected results. The right panel shows the expected and observed significance.

png pdf
Figure H2-a:
On the left, observed and expected event yields from all SRs and CRs as a function of $ \log_{10}(S/B) $, where $ S $ are the observed $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}}) $ yields, and $ B $ are the total background yields in the combined fit to data. The signals are shown for the best-fit signal strength (red), and the SM prediction, $ \mu = $ 1 (orange). The lower panel shows the ratio of the data to the post-fit background prediction, compared to the signal-plus-background predictions. On the right, fit results of $ \mu _{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}})} $ in the combination of channels (first row) and the channels individually (lower rows). The left panel shows the observed signal strength, compared to the expected results. The right panel shows the expected and observed significance.

png pdf
Figure H2-b:
On the left, observed and expected event yields from all SRs and CRs as a function of $ \log_{10}(S/B) $, where $ S $ are the observed $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}}) $ yields, and $ B $ are the total background yields in the combined fit to data. The signals are shown for the best-fit signal strength (red), and the SM prediction, $ \mu = $ 1 (orange). The lower panel shows the ratio of the data to the post-fit background prediction, compared to the signal-plus-background predictions. On the right, fit results of $ \mu _{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}})} $ in the combination of channels (first row) and the channels individually (lower rows). The left panel shows the observed signal strength, compared to the expected results. The right panel shows the expected and observed significance.

png pdf
Figure H3:
On the left, observed and expected event yields from all SRs and CRs as a function of $ \log_{10}(S/B) $, where $ S $ are the observed $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}}) $ yields, and $ B $ are the total background yields in the combined fit to data. The signals are shown for the best-fit signal strength (red), and the SM prediction, $ \mu = $ 1 (orange). The lower panel shows the ratio of the data to the post-fit background prediction, compared to the signal-plus-background predictions. On the right, fit results of $ \mu _{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}})} $ in the combination of channels (first row) and the channels individually (lower rows). The left panel shows the observed signal strength, compared to the expected results. The right panel shows the expected and observed significance.

png pdf
Figure H3-a:
On the left, observed and expected event yields from all SRs and CRs as a function of $ \log_{10}(S/B) $, where $ S $ are the observed $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}}) $ yields, and $ B $ are the total background yields in the combined fit to data. The signals are shown for the best-fit signal strength (red), and the SM prediction, $ \mu = $ 1 (orange). The lower panel shows the ratio of the data to the post-fit background prediction, compared to the signal-plus-background predictions. On the right, fit results of $ \mu _{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}})} $ in the combination of channels (first row) and the channels individually (lower rows). The left panel shows the observed signal strength, compared to the expected results. The right panel shows the expected and observed significance.

png pdf
Figure H3-b:
On the left, observed and expected event yields from all SRs and CRs as a function of $ \log_{10}(S/B) $, where $ S $ are the observed $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}}) $ yields, and $ B $ are the total background yields in the combined fit to data. The signals are shown for the best-fit signal strength (red), and the SM prediction, $ \mu = $ 1 (orange). The lower panel shows the ratio of the data to the post-fit background prediction, compared to the signal-plus-background predictions. On the right, fit results of $ \mu _{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}})} $ in the combination of channels (first row) and the channels individually (lower rows). The left panel shows the observed signal strength, compared to the expected results. The right panel shows the expected and observed significance.

png pdf
Figure H4:
Likelihood scans of $ \kappa_{\mathrm{c}} $ with fixed $ \kappa_{\mathrm{b}}= $ 1 (red) and floating $ \kappa_{\mathrm{b}} $ (blue). The 68% and 95% CL intervals are indicated by the horizontal dotted lines.

png pdf
Figure H5:
Likelihood scans for the simultaneous fit of $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (upper), $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu _{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}})} $ (lower left), and $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and $ \mu _{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (lower right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best-fit values are shown by the orange (blue) markers.

png pdf
Figure H5-a:
Likelihood scans for the simultaneous fit of $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (upper), $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu _{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}})} $ (lower left), and $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and $ \mu _{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (lower right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best-fit values are shown by the orange (blue) markers.

png pdf
Figure H5-b:
Likelihood scans for the simultaneous fit of $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (upper), $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu _{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}})} $ (lower left), and $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and $ \mu _{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (lower right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best-fit values are shown by the orange (blue) markers.

png pdf
Figure H5-c:
Likelihood scans for the simultaneous fit of $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (upper), $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ \mu _{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}})} $ (lower left), and $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and $ \mu _{{\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}})} $ (lower right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best-fit values are shown by the orange (blue) markers.

png pdf
Figure H6:
Likelihood scans for the simultaneous fit of $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{b} $ scale factor (upper left), $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{b} $ scale factor (upper right), $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{c} $ scale factor (lower left), and $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{c} $ scale factor (lower right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best-fit values are shown by the orange (blue) markers.

png pdf
Figure H6-a:
Likelihood scans for the simultaneous fit of $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{b} $ scale factor (upper left), $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{b} $ scale factor (upper right), $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{c} $ scale factor (lower left), and $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{c} $ scale factor (lower right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best-fit values are shown by the orange (blue) markers.

png pdf
Figure H6-b:
Likelihood scans for the simultaneous fit of $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{b} $ scale factor (upper left), $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{b} $ scale factor (upper right), $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{c} $ scale factor (lower left), and $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{c} $ scale factor (lower right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best-fit values are shown by the orange (blue) markers.

png pdf
Figure H6-c:
Likelihood scans for the simultaneous fit of $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{b} $ scale factor (upper left), $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{b} $ scale factor (upper right), $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{c} $ scale factor (lower left), and $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{c} $ scale factor (lower right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best-fit values are shown by the orange (blue) markers.

png pdf
Figure H6-d:
Likelihood scans for the simultaneous fit of $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{b} $ scale factor (upper left), $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{b} $ scale factor (upper right), $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{c} $ scale factor (lower left), and $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{c} $ scale factor (lower right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best-fit values are shown by the orange (blue) markers.

png pdf
Figure H7:
Likelihood scans for the simultaneous fit of $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{b} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{b} $ scale factors (left), and $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{c} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{c} $ scale factors (right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best-fit values are shown by the orange (blue) markers.

png pdf
Figure H7-a:
Likelihood scans for the simultaneous fit of $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{b} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{b} $ scale factors (left), and $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{c} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{c} $ scale factors (right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best-fit values are shown by the orange (blue) markers.

png pdf
Figure H7-b:
Likelihood scans for the simultaneous fit of $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{b} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{b} $ scale factors (left), and $ {\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{c} $ and $ {\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{c} $ scale factors (right). The 68% (95%) CL intervals are indicated by the dotted (solid) lines. The observed (expected) best-fit values are shown by the orange (blue) markers.
Tables

png pdf
Table 1:
Best-fit values of the $ {\mathrm{t}\overline{\mathrm{t}}} +$jets background normalization factors.

png pdf
Table 2:
The absolute (relative) contributions to the total uncertainties, $ \Delta\mu $ ($ \Delta\mu/\Delta\mu_\text{tot} $), in the signal strength modifiers $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} $ and $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} $. The quoted values are obtained by repeating the fit while fixing the nuisance parameters associated with each category to their best-fit values, and then subtracting in quadrature the resulting uncertainty from the total uncertainty. The total uncertainty differs from the sum in quadrature of the individual components because of correlations between nuisance parameters in the fit.

png pdf
Table A1:
Generator settings for signal and major background samples simulated with POWHEG [46-48,53,88], POWHEG -BOX-RES [50,51], or MadGraph-5_aMC@NLO [61]. The ``Groups'' column refers to the grouping of processes in the maximum likelihood fits.

png pdf
Table A2:
Generator settings for minor background samples simulated with POWHEG [46-48,58,60] or MadGraph-5_aMC@NLO [61]. The ``Group'' column refers to the grouping of processes in the maximum likelihood fits.

png pdf
Table A3:
Summary of generator settings used for modeling of the $ {\mathrm{t}\overline{\mathrm{t}}} +$jets phase space.

png pdf
Table D1:
Baseline selection criteria in the $ \text{0L} $, $ \text{1L} $, and $ \text{2L} $ channels. Where the selection criteria differ per year, they are quoted as 2016/2017/2018.

png pdf
Table E1:
Definition of the ParT event classifier discriminant for each category in the maximum likelihood fit. $ \mathcal{D}_{{\mathrm{t}\overline{\mathrm{t}}} {+}\text{jets}} $ is defined as $ \mathcal{D}_{{\mathrm{t}\overline{\mathrm{t}}} {+}\text{light}}+\mathcal{D}_{{\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{c}}+\mathcal{D}_{{\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{c}}+\mathcal{D}_{{\mathrm{t}\overline{\mathrm{t}}} {+}\mathrm{b}}+\mathcal{D}_{{\mathrm{t}\overline{\mathrm{t}}} {+}{\geq}2\mathrm{b}} $.

png pdf
Table E2:
Event yields after the fit to data in the $ \text{2L} $ channel. Values in brackets correspond to the pre-fit expectations.

png pdf
Table E3:
Event yields after the fit to data in the $ \text{1L} $ channel. Values in brackets correspond to the pre-fit expectations.

png pdf
Table E4:
Event yields after the fit to data in the $ \text{0L} $ channel. Values in brackets correspond to the pre-fit expectations.

png pdf
Table E5:
Event yields in the full analysis after the fit to data, separated in the SRs and CRs. Values in brackets correspond to the pre-fit expectations.

png pdf
Table E6:
Event yields in the full analysis after the fit to data, separated per lepton channel. Values in brackets correspond to the pre-fit expectations.

png pdf
Table F1:
Summary of the systematic uncertainty sources in the measurement. The first column lists the source of the uncertainty. The second (third) column indicates the treatment of correlations of the uncertainties between different data-taking periods (processes), where $ \checkmark $ means fully correlated, $ \sim $ means partially correlated (i.e., contains sub-sources that are either fully correlated or uncorrelated), and $ \times $ means uncorrelated. The last column indicates whether the uncertainties are applied to all processes or only a subset.

png pdf
Table H1:
Observed signal strengths as obtained by the fits using alternative background models. In brackets, the observed upper limit on the $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}}) $ signal strengths and $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}}) $, $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{c}\overline{\mathrm{c}}) $, and $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{Z}(\mathrm{Z}{\to}\mathrm{b}\overline{\mathrm{b}}) $ significance.

png pdf
Table H2:
Observed normalization scale factors for the background components as obtained by the fits using alternative background models. The background normalization scale factors are given for the $ \text{2L} $ & $ \text{1L} $ ($ \text{0L} $) channels.
Summary
In summary, a search for the SM Higgs boson decaying to a pair of charm quarks via $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H} $ production in the CMS experiment is presented, along with a simultaneous measurement of the background from Higgs boson decay to a bottom quark-antiquark pair. Novel jet flavor identification tools and event classification techniques using advanced machine learning algorithms are developed for this analysis. The observed $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H} $ signals relative to the SM prediction are $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}})} = - $ 1.6 $ \pm $ 4.5 and $ \mu _{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}})} = $ 0.91 $^{+0.26}_{-0.22} $, respectively. The latter corresponds to an observed (expected) significance of 4.4 (4.5) standard deviations for the $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H}(\mathrm{H}{\to}\mathrm{b}\overline{\mathrm{b}}) $ process. The observed (expected) upper limit on $ \sigma_{\mathrm{t}\overline{\mathrm{t}}\mathrm{H}}\mathcal{B}_{\mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}}} $ is 0.11 (0.13 $^{+0.06}_{-0.04} $)\unitpb, corresponding to 7.8 (8.7 $ ^{+4.0}_{-2.6} $) times the theoretical prediction for an SM Higgs boson mass of 125.38 GeV. When combined with the previous search for $ \mathrm{H}{\to}\mathrm{c}\overline{\mathrm{c}} $ via associated production with a W or Z boson, the observed (expected) 95% CL interval on the Higgs-charm Yukawa coupling modifier, $ \kappa_{\mathrm{c}} $, is $ {|\kappa_{\mathrm{c}}| < 3.5} $ ($ {|\kappa_{\mathrm{c}}| < 2.7} $). This represents the most stringent constraint on $ \kappa_{\mathrm{c}} $ to date.
References
1 ATLAS Collaboration Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 CMS Collaboration A measurement of the Higgs boson mass in the diphoton decay channel PLB 805 (2020) 135425 CMS-HIG-19-004
2002.06398
5 ATLAS Collaboration Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector PRD 90 (2014) 112015 1408.7084
6 CMS Collaboration Observation of the diphoton decay of the Higgs boson and measurement of its properties EPJC 74 (2014) 3076 CMS-HIG-13-001
1407.0558
7 ATLAS Collaboration Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector PRD 91 (2015) 012006 1408.5191
8 CMS Collaboration Measurement of the properties of a Higgs boson in the four-lepton final state PRD 89 (2014) 092007 CMS-HIG-13-002
1312.5353
9 ATLAS Collaboration Observation and measurement of Higgs boson decays to WW$ ^* $ with the ATLAS detector PRD 92 (2015) 012006 1412.2641
10 ATLAS Collaboration Study of (W/Z)H production and Higgs boson couplings using H $ \rightarrow $ WW$ ^{\ast} $ decays with the ATLAS detector JHEP 08 (2015) 137 1506.06641
11 CMS Collaboration Measurement of Higgs boson production and properties in the $ {\mathrm{W}\mathrm{W}} $ decay channel with leptonic final states JHEP 01 (2014) 096 CMS-HIG-13-023
1312.1129
12 ATLAS Collaboration Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector JHEP 04 (2015) 117 1501.04943
13 CMS Collaboration Evidence for the 125 GeV Higgs boson decaying to a pair of $ \tau $ leptons JHEP 05 (2014) 104 CMS-HIG-13-004
1401.5041
14 CMS Collaboration Observation of the Higgs boson decay to a pair of $ \tau $ leptons PLB 779 (2018) 283 CMS-HIG-16-043
1708.00373
15 CMS Collaboration Measurements of properties of the Higgs boson decaying to a W boson pair in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 13 TeV PLB 791 (2019) 96 CMS-HIG-16-042
1806.05246
16 ATLAS Collaboration Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at $ \sqrt{s}= $ 7 and 8 TeV in the ATLAS experiment EPJC 76 (2016) 6 1507.04548
17 CMS Collaboration Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV EPJC 75 (2015) 212 CMS-HIG-14-009
1412.8662
18 CMS Collaboration Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs PRL 110 (2013) 081803 CMS-HIG-12-041
1212.6639
19 ATLAS Collaboration Evidence for the spin-0 nature of the Higgs boson using ATLAS data PLB 726 (2013) 120 1307.1432
20 ATLAS and CMS Collaborations Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC $ {\mathrm{p}\mathrm{p}} $ collision data at $ \sqrt{s}= $ 7 and 8 TeV JHEP 08 (2016) 045 CMS-HIG-15-002
1606.02266
21 ATLAS and CMS Collaborations Combined measurement of the Higgs boson mass in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 7 and 8 TeV with the ATLAS and CMS experiments PRL 114 (2015) 191803 CMS-HIG-14-042
1503.07589
22 CMS Collaboration Measurements of properties of the Higgs boson decaying into the four-lepton final state in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 13 TeV JHEP 11 (2017) 047 CMS-HIG-16-041
1706.09936
23 ATLAS Collaboration Combined measurement of differential and total cross sections in the $ \mathrm{H}\rightarrow \gamma\gamma $ and the $ \mathrm{H}\rightarrow \mathrm{Z}\mathrm{Z}^* \rightarrow 4\ell $ decay channels at $ \sqrt{s} = $ 13 TeV with the ATLAS detector PLB 786 (2018) 114 1805.10197
24 ATLAS Collaboration Measurement of the Higgs boson mass in the $ \mathrm{H}\rightarrow \mathrm{Z}\mathrm{Z}^* \rightarrow 4\ell $ and $ \mathrm{H} \rightarrow \gamma\gamma $ channels with $ \sqrt{s}= $ 13 TeV pp collisions using the ATLAS detector PLB 784 (2018) 345 1806.00242
25 CMS Collaboration Search for the Higgs boson decaying to two muons in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PRL 122 (2019) 021801 CMS-HIG-17-019
1807.06325
26 ATLAS Collaboration Measurements of $ WH $ and $ ZH $ production with Higgs boson decays into bottom quarks and direct constraints on the charm Yukawa coupling in 13 TeV$ pp $ collisions with the ATLAS detector Submitted to JHEP, 2024 2410.19611
27 CMS Collaboration Search for Higgs boson decay to a charm quark-antiquark pair in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PRL 131 (2023) 061801 CMS-HIG-21-008
2205.05550
28 CMS Collaboration Search for boosted Higgs boson decay to a charm quark-antiquark pair in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PRL 131 (2023) 041801 CMS-HIG-21-012
2211.14181
29 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s}= $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
30 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} $ = 13 TeV CMS Physics Analysis Summary, 2018
link
CMS-PAS-LUM-17-004
31 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} $ = 13 TeV CMS Physics Analysis Summary, 2019
link
CMS-PAS-LUM-18-002
32 H. Qu and L. Gouskos Jet tagging via particle clouds PRD 101 (2020) 056019 1902.08570
33 H. Qu, C. Li, and S. Qian Particle Transformer for jet tagging in Proceedings of the 39th International Conference on Machine Learning (ICML). Baltimore, USA, . . [PMLR 162:18281-18292], 2022
Proceedings of the 3 (2022) 9
2202.03772
34 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
35 CMS Collaboration Development of the CMS detector for the CERN LHC \mboxRun 3 JINST 19 (2024) P05064 CMS-PRF-21-001
2309.05466
36 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
37 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
38 CMS Collaboration Performance of the CMS high-level trigger during LHC run 2 JINST 19 (2024) P11021 CMS-TRG-19-001
2410.17038
39 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) P05014 CMS-EGM-17-001
2012.06888
40 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
41 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
42 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
43 CMS Collaboration Performance of reconstruction and identification of $ \tau $ leptons decaying to hadrons and $ \nu_{\!\tau} $ in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P10005 CMS-TAU-16-003
1809.02816
44 CMS Collaboration Jet energy scale and resolution in the CMS experiment in $ {\mathrm{p}\mathrm{p}} $ collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
45 CMS Collaboration Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s}= $ 13 TeV using the CMS detector JINST 14 (2019) P07004 CMS-JME-17-001
1903.06078
46 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
47 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
48 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
49 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in $ {\mathrm{p}\mathrm{p}} $ collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
50 T. Ježo and P. Nason On the treatment of resonances in next-to-leading order calculations matched to a parton shower JHEP 12 (2015) 065 1509.09071
51 T. Ježo, J. M. Lindert, N. Moretti, and S. Pozzorini New NLOPS predictions for $ \mathrm{t}\overline{\mathrm{t}} $ + b-jet production at the LHC EPJC 78 (2018) 502 1802.00426
52 F. Buccioni et al. OpenLoops 2 EPJC 79 (2019) 866 1907.13071
53 S. Frixione, P. Nason, and G. Ridolfi A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction JHEP 09 (2007) 126 0707.3088
54 CMS Collaboration Inclusive and differential cross section measurements of $ {\mathrm{t}\overline{\mathrm{t}}} \mathrm{b}\overline{\mathrm{b}} $ production in the lepton+jets channel at $ \sqrt{s}= $ 13 TeV JHEP 05 (2024) 042 CMS-TOP-22-009
2309.14442
55 ATLAS Collaboration Measurement of $ t\overline{t} $ production in association with additional b-jets in the e\ensuremath\mu final state in proton-proton collisions at $ \sqrt{s} $ = 13 TeV with the ATLAS detector JHEP 01 (2025) 068 2407.13473
56 CMS Collaboration First measurement of the cross section for top quark pair production with additional charm jets using dileptonic final states in $ {\mathrm{p}\mathrm{p}} $ collisions at $ \sqrt{s}= $ 13 TeV PLB 820 (2021) 136565 CMS-TOP-20-003
2012.09225
57 ATLAS Collaboration Measurement of top-quark pair production in association with charm quarks in proton-proton collisions at s=13 TeV with the ATLAS detector PLB 860 (2025) 139177 2409.11305
58 E. Re Single-top Wt-channel production matched with parton showers using the POWHEG method EPJC 71 (2011) 1547 1009.2450
59 R. Frederix, E. Re, and P. Torrielli Single-top $ t $-channel hadroproduction in the four-flavour scheme with POWHEG and aMC@NLO JHEP 09 (2012) 130 1207.5391
60 S. Alioli, P. Nason, C. Oleari, and E. Re NLO single-top production matched with shower in POWHEG: $ s $- and $ t $-channel contributions JHEP 09 (2009) 111 0907.4076
61 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
62 M. Czakon and A. Mitov Top++: A program for the calculation of the top-pair cross-section at hadron colliders Comput. Phys. Commun. 185 (2014) 2930 1112.5675
63 N. Kidonakis Top quark production 1311.0283
64 M. Czakon et al. Top-pair production at the LHC through NNLO QCD and NLO EW JHEP 10 (2017) 186 1705.04105
65 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
66 J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions EPJC 53 (2008) 473 0706.2569
67 NNPDF Collaboration Parton distributions for the LHC Run II JHEP 04 (2015) 040 1410.8849
68 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
69 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
70 GEANT4 Collaboration GEANT 4 --- A simulation toolkit NIM A 506 (2003) 250
71 Y. Wang et al. Dynamic Graph CNN for learning on point clouds ACM Trans. Graph. 38 (2019) 146 1801.07829
72 E. Bols et al. Jet flavour classification using DeepJet JINST 15 (2020) P12012 2008.10519
73 CMS Collaboration The CMS statistical analysis and combination tool: Combine Comput. Softw. Big Sci. 8 (2024) 19 CMS-CAT-23-001
2404.06614
74 W. Verkerke and D. P. Kirkby The RooFit toolkit for data modeling in Computing in High Energy and Nuclear Physics, CHEP03 physics/0306116
75 L. Moneta et al. The RooStats project in Proc. 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT ), 2010
link
1009.1003
76 CMS Collaboration Measurement of top quark pair production in association with a Z boson in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 03 (2020) 056 CMS-TOP-18-009
1907.11270
77 CMS Collaboration Inclusive and differential measurement of top quark cross sections in association with a Z boson CMS Physics Analysis Summary, 2024
CMS-PAS-TOP-23-004
CMS-PAS-TOP-23-004
78 ATLAS Collaboration Inclusive and differential cross-section measurements of $ t\overline{t}Z $ production in pp collisions at $ \sqrt{s} $ = 13 TeV with the ATLAS detector, including EFT and spin-correlation interpretations JHEP 07 (2024) 163 2312.04450
79 ATLAS and CMS Collaborations, and LHC Higgs Combination Group Procedure for the LHC Higgs boson search combination in Summer 2011 Technical Report CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011
80 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
81 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435 hep-ex/9902006
82 A. L. Read Presentation of search results: The $ \text{CL}_\text{s} $ technique JPG 28 (2002) 2693
83 CMS Collaboration Measurement of the $ {{\mathrm{t}\overline{\mathrm{t}}} \mathrm{H}} $ and $ {\mathrm{t}\mathrm{H}} $ production rates in the $ {\mathrm{H}\to\mathrm{b}\overline{\mathrm{b}}} $ decay channel using proton-proton collision data at $ \sqrt{s}= $ 13 TeV Submitted to JHEP, 2024 CMS-HIG-19-011
2407.10896
84 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 3. Higgs properties CERN Yellow Report CERN-2013-004, 2013
link
1307.1347
85 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 4. deciphering the nature of the Higgs sector CERN, 2016
link
1610.07922
86 P. Artoisenet, R. Frederix, O. Mattelaer, and R. Rietkerk Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations JHEP 03 (2013) 015 1212.3460
87 ATLAS Collaboration Study of the hard double-parton scattering contribution to inclusive four-lepton production in $ pp $ collisions at $ \sqrt s= $ 8 TeV with the ATLAS detector PLB 790 (2019) 595 1811.11094
88 H. B. Hartanto, B. Jager, L. Reina, and D. Wackeroth Higgs boson production in association with top quarks in the POWHEG BOX PRD 91 (2015) 094003 1501.04498
89 CMS Collaboration Object definitions for top quark analyses at the particle level CMS-NOTE-2017-004, 2017
CDS
90 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s}= $ 13 TeV CMS Physics Analysis Summary, 2018
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
91 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s}= $ 13 TeV CMS Physics Analysis Summary, 2019
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
92 CMS Collaboration Pileup mitigation at CMS in 13 TeV data JINST 15 (2020) P09018 CMS-JME-18-001
2003.00503
93 A. Kulesza et al. Associated top quark pair production with a heavy boson: differential cross sections at NLO+NNLL accuracy EPJC 80 (2020) 428 2001.03031
94 S. Mrenna and P. Skands Automated Parton-Shower Variations in Pythia 8 PRD 94 (2016) 074005 1605.08352
95 CMS Collaboration Reweighting simulated events using machine-learning techniques in the CMS experiment 11, 2024 CMS-MLG-24-001
2411.03023
96 CMS Collaboration Evidence for $ {\mathrm{t}\mathrm{W}\mathrm{Z}} $ production in proton-proton collisions at $ \sqrt{s}= $ 13 TeV in multilepton final states PLB 855 (2024) 138815 CMS-TOP-22-008
2312.11668
97 L. Buonocore et al. Precise Predictions for the Associated Production of a W Boson with a Top-Antitop Quark Pair at the LHC PRL 131 (2023) 231901 2306.16311
98 ATLAS Collaboration Measurement of the associated production of a top-antitop-quark pair and a Higgs boson decaying into a $ \mathrm{b} \overline{\mathrm{b}} $\ pair in pp\ collisions at $ \sqrt{s}= $ 13 TeV using the ATLAS detector at the LHC EPJC 85 (2025) 210 2407.10904
Compact Muon Solenoid
LHC, CERN