CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-HIG-16-035
A search for beyond Standard Model light bosons decaying into muon pairs
Abstract: A dataset corresponding to 2.8 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} = $ 13 TeV was recorded by the CMS experiment at the CERN LHC. These data are used to search for new light bosons with a mass in the range 0.25-8.5 GeV/$c^2$ decaying into muon pairs. No excess is observed in the data, and a model-independent upper limit on the product of the cross section, branching fraction and acceptance is derived. The results are interpreted in the context of two benchmark models, namely, the next-to-minimal supersymmetric standard model, and dark SUSY models including those predicting a non-negligible light boson lifetime.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Left: Feynman diagram of the NMSSM benchmark process $h_{1,2} \to 2a_1 \to 4\mu $. Right: Feynman diagram of the dark SUSY benchmark process $h \to 2n_1 \to 2n_D + 2\gamma _D \to 2n_D + 4\mu $.

png pdf
Figure 1-a:
Left: Feynman diagram of the NMSSM benchmark process $h_{1,2} \to 2a_1 \to 4\mu $. Right: Feynman diagram of the dark SUSY benchmark process $h \to 2n_1 \to 2n_D + 2\gamma _D \to 2n_D + 4\mu $.

png pdf
Figure 1-b:
Left: Feynman diagram of the NMSSM benchmark process $h_{1,2} \to 2a_1 \to 4\mu $. Right: Feynman diagram of the dark SUSY benchmark process $h \to 2n_1 \to 2n_D + 2\gamma _D \to 2n_D + 4\mu $.

png pdf
Figure 2:
The $S_{17}$ (left) and $S_{mix}$ (right) templates (solid lines) for dimuons obtained with background-enriched data (solid circles) samples.

png pdf
Figure 2-a:
The $S_{17}$ (left) and $S_{mix}$ (right) templates (solid lines) for dimuons obtained with background-enriched data (solid circles) samples.

png pdf
Figure 2-b:
The $S_{17}$ (left) and $S_{mix}$ (right) templates (solid lines) for dimuons obtained with background-enriched data (solid circles) samples.

png pdf
Figure 3:
Distribution of the invariant masses $m_{\mu \mu _1}$ vs. $m_{\mu \mu _2}$ for the isolated dimuon systems including the 4 events in the data (shown as empty circles) surviving all selections except for the requirement that these two masses fall into the diagonal signal region $m_{\mu \mu _1} \simeq m_{\mu \mu _2}$ (outlined with dashed lines). The triangle identifies the single event observed in the signal region. The intensity of the shading indicates the background expectation which is a sum of the $ {\mathrm{ b \bar{b} } } $ and the direct ${\mathrm{J}/\psi } $ pair production contributions.

png pdf
Figure 4:
95% CL upper Limit on $\sigma (\mathrm{ p } \mathrm{ p } \to 2 \gamma _D + \text {X}) \times \mathcal {B}^2(\gamma _D \rightarrow 2\mu )$ as a function of $c\tau _{\gamma _D}$ for two dark photon masses. The limits are compared to the predicted rate (dashed lines) obtained using a simplified scenario with $\sigma (\mathrm{ p } \mathrm{ p } \to 2 \gamma _D) = 0.1 \times \sigma _{SM}(125 GeV)$ and $\mathcal {B}(\gamma _D \rightarrow 2\mu )$ for 0.25 and 2 GeV mass points.

png pdf
Figure 5:
Left: The 95% CL upper limits as functions of $m_{\text {h}_1}$, for the NMSSM case, on $\sigma (\mathrm{ p } \mathrm{ p } \to \text {h}_{1,2} \to 2 \text {a}_1) \times \mathcal {B}^2(\text {a}_1 \to 2 \mu )$ with $m_{\text {a}_1}= $ 0.25 GeV/$c^2$ (dashed curve), $m_{\text {a}_1}= $ 2 GeV/$c^2$ (dash-dotted curve) and $m_{\text {a}_1}= $ 3.55 GeV/$c^2$ (dotted curve). As an illustration, the limits are compared to the predicted rate (solid curve) obtained using a simplified scenario with $\sigma (\mathrm{ p } \mathrm{ p } \to \text {h}_1)=\sigma _\mathrm {SM}(m_{\text {h}_1})$ [69], $\sigma (\mathrm{ p } \mathrm{ p } \to \text {h}_2) \times \mathcal {B}(\text {h}_{2} \rightarrow 2 \text {a}_1) = $ 0, $\mathcal {B}(\text {h}_1 \to 2 \text {a}_1) = $ 0.3%, and $\mathcal {B}(\text {a}_1 \to 2\mu ) = $ 7.7%. The chosen $\mathcal {B}(\text {a}_1 \to 2\mu )$ is taken from [28] for $m_{\text {a}_1} = $ 2 GeV/$c^2$ and NMSSM parameter $\tan\beta = $ 20. Right: The 95% CL upper limits as functions of $m_{\text {a}_1}$, for the NMSSM case, on $\sigma (\mathrm{ p } \mathrm{ p } \to \text {h}_{1,2} \to 2 \text {a}_1) \times \mathcal {B}^2(\text {a}_1 \to 2 \mu )$ with $m_{\text {h}_1}= $ 86 GeV/$c^2$ (dashed curve), $m_{\text {h}_1}= $ 125 GeV/$c^2$ (dash-dotted curve), and $m_{\text {h}_1}= $ 150 GeV/$c^2$ (dotted curve). The limits are compared to the predicted rate (solid curve) obtained using a simplified scenario with $\mathcal {B}(\text {h}_{1} \to 2 \text {a}_1) = $ 0.3%, $\sigma (\mathrm{ p } \mathrm{ p } \to \text {h}_{1})=\sigma _\mathrm {SM}(m_{\text {h}_{1}} = $ 125 GeV/$c^2$) [69], $\sigma (\mathrm{ p } \mathrm{ p } \to \text {h}_2) \times \mathcal {B}(\text {h}_{2} \rightarrow 2 \text {a}_1) = $ 0, and $\mathcal {B}(\text {a}_1 \to 2\mu )$ as a function of $m_{\text {a}_1}$ which is taken from [28] for NMSSM parameter $\tan\beta = $ 20.

png pdf
Figure 5-a:
Left: The 95% CL upper limits as functions of $m_{\text {h}_1}$, for the NMSSM case, on $\sigma (\mathrm{ p } \mathrm{ p } \to \text {h}_{1,2} \to 2 \text {a}_1) \times \mathcal {B}^2(\text {a}_1 \to 2 \mu )$ with $m_{\text {a}_1}= $ 0.25 GeV/$c^2$ (dashed curve), $m_{\text {a}_1}= $ 2 GeV/$c^2$ (dash-dotted curve) and $m_{\text {a}_1}= $ 3.55 GeV/$c^2$ (dotted curve). As an illustration, the limits are compared to the predicted rate (solid curve) obtained using a simplified scenario with $\sigma (\mathrm{ p } \mathrm{ p } \to \text {h}_1)=\sigma _\mathrm {SM}(m_{\text {h}_1})$ [69], $\sigma (\mathrm{ p } \mathrm{ p } \to \text {h}_2) \times \mathcal {B}(\text {h}_{2} \rightarrow 2 \text {a}_1) = $ 0, $\mathcal {B}(\text {h}_1 \to 2 \text {a}_1) = $ 0.3%, and $\mathcal {B}(\text {a}_1 \to 2\mu ) = $ 7.7%. The chosen $\mathcal {B}(\text {a}_1 \to 2\mu )$ is taken from [28] for $m_{\text {a}_1} = $ 2 GeV/$c^2$ and NMSSM parameter $\tan\beta = $ 20. Right: The 95% CL upper limits as functions of $m_{\text {a}_1}$, for the NMSSM case, on $\sigma (\mathrm{ p } \mathrm{ p } \to \text {h}_{1,2} \to 2 \text {a}_1) \times \mathcal {B}^2(\text {a}_1 \to 2 \mu )$ with $m_{\text {h}_1}= $ 86 GeV/$c^2$ (dashed curve), $m_{\text {h}_1}= $ 125 GeV/$c^2$ (dash-dotted curve), and $m_{\text {h}_1}= $ 150 GeV/$c^2$ (dotted curve). The limits are compared to the predicted rate (solid curve) obtained using a simplified scenario with $\mathcal {B}(\text {h}_{1} \to 2 \text {a}_1) = $ 0.3%, $\sigma (\mathrm{ p } \mathrm{ p } \to \text {h}_{1})=\sigma _\mathrm {SM}(m_{\text {h}_{1}} = $ 125 GeV/$c^2$) [69], $\sigma (\mathrm{ p } \mathrm{ p } \to \text {h}_2) \times \mathcal {B}(\text {h}_{2} \rightarrow 2 \text {a}_1) = $ 0, and $\mathcal {B}(\text {a}_1 \to 2\mu )$ as a function of $m_{\text {a}_1}$ which is taken from [28] for NMSSM parameter $\tan\beta = $ 20.

png pdf
Figure 5-b:
Left: The 95% CL upper limits as functions of $m_{\text {h}_1}$, for the NMSSM case, on $\sigma (\mathrm{ p } \mathrm{ p } \to \text {h}_{1,2} \to 2 \text {a}_1) \times \mathcal {B}^2(\text {a}_1 \to 2 \mu )$ with $m_{\text {a}_1}= $ 0.25 GeV/$c^2$ (dashed curve), $m_{\text {a}_1}= $ 2 GeV/$c^2$ (dash-dotted curve) and $m_{\text {a}_1}= $ 3.55 GeV/$c^2$ (dotted curve). As an illustration, the limits are compared to the predicted rate (solid curve) obtained using a simplified scenario with $\sigma (\mathrm{ p } \mathrm{ p } \to \text {h}_1)=\sigma _\mathrm {SM}(m_{\text {h}_1})$ [69], $\sigma (\mathrm{ p } \mathrm{ p } \to \text {h}_2) \times \mathcal {B}(\text {h}_{2} \rightarrow 2 \text {a}_1) = $ 0, $\mathcal {B}(\text {h}_1 \to 2 \text {a}_1) = $ 0.3%, and $\mathcal {B}(\text {a}_1 \to 2\mu ) = $ 7.7%. The chosen $\mathcal {B}(\text {a}_1 \to 2\mu )$ is taken from [28] for $m_{\text {a}_1} = $ 2 GeV/$c^2$ and NMSSM parameter $\tan\beta = $ 20. Right: The 95% CL upper limits as functions of $m_{\text {a}_1}$, for the NMSSM case, on $\sigma (\mathrm{ p } \mathrm{ p } \to \text {h}_{1,2} \to 2 \text {a}_1) \times \mathcal {B}^2(\text {a}_1 \to 2 \mu )$ with $m_{\text {h}_1}= $ 86 GeV/$c^2$ (dashed curve), $m_{\text {h}_1}= $ 125 GeV/$c^2$ (dash-dotted curve), and $m_{\text {h}_1}= $ 150 GeV/$c^2$ (dotted curve). The limits are compared to the predicted rate (solid curve) obtained using a simplified scenario with $\mathcal {B}(\text {h}_{1} \to 2 \text {a}_1) = $ 0.3%, $\sigma (\mathrm{ p } \mathrm{ p } \to \text {h}_{1})=\sigma _\mathrm {SM}(m_{\text {h}_{1}} = $ 125 GeV/$c^2$) [69], $\sigma (\mathrm{ p } \mathrm{ p } \to \text {h}_2) \times \mathcal {B}(\text {h}_{2} \rightarrow 2 \text {a}_1) = $ 0, and $\mathcal {B}(\text {a}_1 \to 2\mu )$ as a function of $m_{\text {a}_1}$ which is taken from [28] for NMSSM parameter $\tan\beta = $ 20.

png pdf
Figure 6:
95% CL upper limits (black solid curves) from this search on $\sigma (\mathrm{ p } \mathrm{ p } \to \mathrm{H} \to 2\gamma _{\mathrm {D}} + X) \mathcal {B}(\mathrm{H} \to 2\gamma _{\mathrm {D}} + X)$ (with $m_{\mathrm {n}_1}=10$ GeV , $m_{\mathrm {n}_{\mathrm {D}}}=1$ GeV ) in the plane of two of the parameters ($\varepsilon $ and $m_{\gamma _{\mathrm {D}}}$) for the dark SUSY scenarios, along with constraints from other experiments. The colored contours represent different values of $\mathcal {B}(\mathrm{H} \to 2\gamma _{\mathrm {D}} + X)$ in the range 1-40%.
Tables

png pdf
Table 1:
Event selection efficiencies $\epsilon ^{MC}_{\text {full}}(m_{\text {h}_1}, m_{\text {a}_1})$, as obtained from the full detector simulation and the geometric and kinematic acceptances $\alpha _{\text {gen}}(m_{\text {h}_1}, m_{\text {a}_1})$ calculated using generator level information only with statistical uncertainties for the NMSSM benchmark model. The experimental data-to-simulation scale factors are not applied.

png pdf
Table 2:
Event selection efficiencies $\epsilon ^{MC}_{\text {full}}(m_{\text {h}}, m_{\gamma _D})$, as obtained from the full detector simulation and the geometric and kinematic acceptances $\alpha _{\text {gen}}(m_{\text {h}}, m_{\gamma _D})$ calculated using generator level information only with statistical uncertainties for a dark SUSY benchmark model with a dark photon lifetime of 2 mm as obtained from simulation. The experimental data-to-simulation scale factors are not applied.

png pdf
Table 3:
Summary of the magnitude of systematic uncertainties.
Summary
A search for beyond the standard model Higgs boson decays to pairs of new light bosons, which subsequently decay to pairs of oppositely charged muons ($\text{h} \to 2\text{a} + \text{X} \to 4 \mu + \text{X}$) has been presented. The search is based on a data sample corresponding to an integrated luminosity of 2.8 fb$^{-1}$ collected by the CMS experiment in proton-proton collisions at $\sqrt{s} = $ 13 TeV in 2015. One event with two dimuons of consistent single mass in the signal region was observed. The analysis has been designed as a model-independent search allowing interpretation of its results in the context of a broad range of new physics scenarios predicting the same type of final state signature. The results are interpreted in the context of the NMSSM and the dark SUSY benchmark models for $m_{\text{h}} < $ 150 GeV$c^2$.
References
1 ATLAS Collaboration Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 F. Englert and R. Brout Broken symmetry and the mass of gauge vector mesons PRL 13 (1964) 321
4 P. W. Higgs Broken symmetries and the masses of gauge bosons PRL 13 (1964) 508
5 G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble Global conservation laws and massless particles PRL 13 (1964) 585
6 P. Fayet Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino Nucl. Phys. B 90 (1975) 104
7 R. K. Kaul and P. Majumdar Cancellation of quadratically divergent mass corrections in globally supersymmetric spontaneously broken gauge theories Nucl. Phys. B 199 (1982) 36
8 R. Barbieri, S. Ferrara, and C. A. Savoy Gauge models with spontaneously broken local supersymmetry PLB 119 (1982) 343
9 H. P. Nilles, M. Srednicki, and D. Wyler Weak interaction breakdown induced by supergravity PL120 (1983) 346
10 J.-M. Frere, D. R. T. Jones, and S. Raby Fermion masses and induction of the weak scale by supergravity Nucl. Phys. B 222 (1983) 11
11 J.-P. Derendinger and C. A. Savoy Quantum effects and SU(2)$ \times $U(1) breaking in supergravity gauge theories Nucl. Phys. B 237 (1984) 307
12 M. Drees Supersymmetric models with extended Higgs sector Int. J. Mod. Phys. A 4 (1989) 3635
13 M. Maniatis The next-to-minimal supersymmetric extension of the standard model reviewed Int. J. Mod. Phys. A 25 (2010) 3505 0906.0777
14 U. Ellwanger, C. Hugonie, and A. M. Teixeira The next-to-minimal supersymmetric standard model PR 496 (2010) 1 0910.1785
15 H. P. Nilles Supersymmetry, supergravity and particle physics PR 110 (1984) 1
16 S. P. Martin A Supersymmetry primer Adv.Ser.Direct.High Energy Phys. 21 (2010) 1--153 hep-ph/9709356
17 D. J. H. Chung et al. The soft supersymmetry breaking Lagrangian: theory and applications PR 407 (2005) 1 hep-ph/0312378
18 J. E. Kim and H. P. Nilles The $ \mu $-problem and the strong CP-problem PLB 138 (1984) 150
19 J. A. Casas, J. R. Espinosa, and I. Hidalgo The MSSM fine tuning problem: a way out JHEP 01 (2004) 008 hep-ph/0310137
20 R. Dermisek and J. F. Gunion Escaping the large fine tuning and little hierarchy problems in the next to minimal supersymmetric model and $ h \rightarrow aa $ decays PRL 95 (2005) 041801 hep-ph/0502105
21 S. Chang, R. Dermisek, J. F. Gunion, and N. Weiner Nonstandard Higgs boson decays Ann. Rev. Nucl. Part. Sci. 58 (2008) 75 0801.4554
22 J. Ellis et al. Higgs bosons in a nonminimal supersymmetric model PRD 39 (1989) 844
23 U. Ellwanger, M. Rausch de Traubenberg, and C. A. Savoy Particle spectrum in supersymmetric models with a gauge singlet PLB 315 (1993) 331 hep-ph/9307322
24 U. Ellwanger, M. Rausch de Traubenberg, and C. A. Savoy Higgs phenomenology of the supersymmetric model with a gauge singlet Z. Phys. C 67 (1995) 665 hep-ph/9502206
25 B. A. Dobrescu, G. L. Landsberg, and K. T. Matchev Higgs boson decays to CP-odd scalars at the Tevatron and beyond PRD 63 (2001) 075003 hep-ph/0005308
26 D. J. Miller, R. Nevzorov, and P. M. Zerwas The Higgs sector of the next-to-minimal supersymmetric standard model Nucl. Phys. B 681 (2004) 3 hep-ph/0304049
27 A. Belyaev et al. LHC discovery potential of the lightest NMSSM Higgs in the $ h_1 \to a_1 a_1 \to 4 \mu $ channel PRD 81 (2010) 075021 1002.1956
28 R. Dermisek and J. F. Gunion New constraints on a light CP-odd Higgs boson and related NMSSM ideal Higgs scenarios PRD 81 (2010) 075003 1002.1971
29 N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner A theory of dark matter PRD 79 (2009) 015014 0810.0713
30 M. Baumgart et al. Non-Abelian dark sectors and their collider signatures JHEP 04 (2009) 014 0901.0283
31 A. Falkowski, J. T. Ruderman, T. Volansky, and J. Zupan Hidden Higgs decaying to lepton jets JHEP 05 (2010) 077 1002.2952
32 J. Hisano, S. Matsumoto, and M. M. Nojiri Explosive dark matter annihilation PRL 92 (2004) 031303 hep-ph/0307216
33 M. Cirelli, M. Kadastik, M. Raidal, and A. Strumia Model-independent implications of the $ e^{\pm} $, $ \bar{p} $ cosmic ray spectra on properties of dark matter Nucl. Phys. B 813 (2009) 1 0809.2409
34 B. Holdom Two U(1)'s and $ \epsilon $ charge shifts PLB 166 (1986) 196
35 K. R. Dienes, C. F. Kolda, and J. March-Russell Kinetic mixing and the supersymmetric gauge hierarchy Nucl. Phys. B 492 (1997) 104 hep-ph/9610479
36 C. Cheung, J. T. Ruderman, L.-T. Wang, and I. Yavin Kinetic mixing as the origin of light dark scales PRD 80 (2009) 035008 0902.3246
37 D0 Collaboration Search for NMSSM Higgs bosons in the $ h \to aa \to \mu \mu \mu \mu, \mu \mu \tau \tau $ channels using $ p\bar{p} $ collisions at $ \sqrt{s} = 1.96 $~TeV PRL 103 (2009) 061801 0905.3381
38 J. Pivarski, A. Safonov, and A. Tatarinov Search for collimated groups of muons CMS Note 2010/462 (2010)
39 CMS Collaboration Search for light resonances decaying into pairs of muons as a signal of new physics JHEP 07 (2011) 098 CMS-EXO-11-013
1106.2375
40 ATLAS Collaboration Search for displaced muonic lepton jets from light Higgs boson decay in proton-proton collisions at $ \sqrt{s}=7 $ TeV with the ATLAS detector , Submitted to PLB 1210.0435
41 Y. Pakhotin, A. Safonov, and A. Tatarinov Search for New Light Bosons from the Higgs Boson Decays Using Multi-Muon Events at the LHC CMS Note 2011/238 (2011)
42 CMS Collaboration Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states CMS-EXO-12-012
1210.7619
43 ATLAS Collaboration Collaboration Search for long-lived neutral particles decaying into lepton jets in proton--proton collisions at $ \sqrt{s} $ = 8 TeV with the ATLAS detector 1409.0746
44 CMS Collaboration A search for pair production of new light bosons decaying into muons PLB752 (2016) 146--168 CMS-HIG-13-010
1506.00424
45 CLEO Collaboration Search for very light CP-odd Higgs boson in radiative decays of $ \Upsilon(1S) $ PRL 101 (2008) 151802 0807.1427
46 BABAR Collaboration Search for dimuon decays of a light scalar boson in radiative transitions $ \Upsilon \to \gamma A_0 $ PRL 103 (2009) 081803 0905.4539
47 BESIII Collaboration Collaboration Search for a light exotic particle in $ J/ {\psi} $ radiative decays PRD 85 (May, 2012) 092012
48 BESIII Collaboration Collaboration Search for a light $ CP $-odd Higgs boson in radiative decays of $ J/ {\psi} $ PRD 93 (Mar, 2016) 052005
49 CDF Collaboration Search for a very light CP-odd Higgs boson in top quark decays from $ p \bar{p} $ Collisions at 1.96 TeV PRL 107 (2011) 031801 1104.5701
50 CMS Collaboration Search for a light pseudoscalar Higgs boson in the dimuon decay channel in pp collisions at $ \sqrt{s} = 7 $~TeV PRL 109 (2012) 121801 CMS-HIG-12-004
1206.6326
51 N. Jarosik et al. Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: sky maps,systematic errors, and basic results Astrophys. J. Suppl. 192 (2011) 14 1001.4744
52 OPAL Collaboration Decay mode independent searches for new scalar bosons with the OPAL detector at LEP EPJC 27 (2003) 311 hep-ex/0206022
53 OPAL Collaboration Search for a low mass CP-odd Higgs boson in $ e^+ e^- $ collisions with the OPAL detector at LEP-2 EPJC 27 (2003) 483 hep-ex/0209068
54 ALEPH, DELPHI, L3, OPAL, LEP Working Group for Higgs Boson Searches Collaboration Search for neutral MSSM Higgs bosons at LEP EPJC 47 (2006) 547 hep-ex/0602042
55 D0 Collaboration Search for dark photons from supersymmetric hidden valleys PRL 103 (2009) 081802 0905.1478
56 D0 Collaboration Search for events with leptonic jets and missing transverse energy in $ \text{p}\bar{\text{p}} $ collisions at $ \sqrt{s}=1.96 $~TeV PRL 105 (2010) 211802 1008.3356
57 CDF Collaboration Search for anomalous production of multiple leptons in association with $ W $ and $ Z $ bosons at CDF PRD 85 (2012) 092001 1202.1260
58 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
59 CMS Collaboration Performance of CMS muon reconstruction in $ \text{p} \text{p} $ collision events at $ \sqrt{s} = 7 $~TeV JINST 7 (2012) P10002 CMS-MUO-10-004
1206.4071
60 T. Sj$\ddot\texto$strand, S. Mrenna, and P. Z. Skands PYTHIA 6.4 physics and manual JHEP 05 (2006) 026 hep-ph/0603175
61 J. Alwall et al. MadGraph/MadEvent v4: the new web generation JHEP 09 (2007) 028 0706.2334
62 P. Meade and M. Reece BRIDGE: Branching ratio inquiry / decay generated events hep-ph/0703031
63 J. Allison et al. Geant4 developments and applications IEEE Trans. Nucl. Sci. 53 (2006) 270
64 S. Bernstein Demonstration du theoreme de Weierstrass fondee sur le calcul des probabilities Comm. Soc. Math. Kharkov 13 (1912) 1
65 M. J. Oreglia PhD thesis, Stanford University, 1980 SLAC Report SLAC-R-236, Appendix D
66 CMS Collaboration Studies of Higgs boson production in the four-lepton final state at $ \sqrt{s} $ = 13 TeV CMS-PAS-HIG-15-004 (Mar, 2016)
67 J. Butterworth et al. PDF4LHC recommendations for LHC Run II Journal of Physics G: Nuclear and Particle Physics 43 (2016), no. 2, 023001
68 J. M. Campbell and R. Ellis Loops and Legs in Quantum Field Theory MCFM for the Tevatron and the LHC Nuclear Physics B - Proceedings Supplements 205 (2010) 10 -- 15
69 LHC Higgs Cross Section Working Group Collaboration Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables 1101.0593
70 B. Batell, M. Pospelov, and A. Ritz Probing a Secluded U(1) at B-factories Phys.Rev. D79 (2009) 115008 0903.0363
Compact Muon Solenoid
LHC, CERN