CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-B2G-24-008
Search for charged Higgs bosons decaying into a top and a bottom quark in proton-proton collisions at $ \sqrt{s} = $ 13 TeV
Abstract: A search is presented for charged Higgs bosons ($ \text{H}^\pm $) in proton-proton ($ \text{pp} $) collision events via the $ \text{pp}\rightarrow $ (q) $ \text{H}^\pm $ processes with $ \text{H}^\pm\rightarrow\text{tb} $ decays. The analysis is based on the data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 $ \text{fb}^{-1} $. Charged Higgs bosons in the 200 GeV to 1 TeV mass range are targeted in the search. The results are interpreted in the framework of the generalized two-Higgs-doublet model (g2HDM) assuming the real components of the extra Yukawa couplings $ \rho_{\text{tt}} $ and $ \rho_{\text{tc}} $ range up to unity. No significant excess above the standard model prediction is observed. Stringent upper limits at 95% confidence level are derived on the product of the cross section $ \sigma({\text{pp}\rightarrow $ (q) $ \text{H}^\pm}) $ and branching ratio $ \mathcal{B}({\text{H}^\pm\rightarrow\text{tb}}, {\text{t}\rightarrow \text{bl}\nu}) $, where $ \text{l}=$ e, $\mu $, for $ \text{H}^\pm $ boson masses up to $ m_{\text{H}^\pm}= $ 1 TeV for $ \rho_{\text{tc}} \gtrsim $ 0.15-0.5 depending on the $ m_{\text{H}^\pm} $ and $ \rho_{\text{tt}} $ assumption. The results represent the first search for charged Higgs bosons based on the g2HDM at any collider and complement the existing results on additional neutral Higgs bosons.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Representative tree-level Feynman diagrams for the signal processes: $ \mathrm{p}\mathrm{p}\to\mathrm{H}^{+}, \mathrm{H}^+\to\mathrm{t}\overline{\mathrm{b}} $ (left), and $ \mathrm{p}\mathrm{p}\to\overline{\mathrm{q}}\mathrm{H}^{+},\mathrm{H}^+\to\mathrm{t}\overline{\mathrm{b}} $ (middle and right).

png pdf
Figure 1-a:
Representative tree-level Feynman diagrams for the signal processes: $ \mathrm{p}\mathrm{p}\to\mathrm{H}^{+}, \mathrm{H}^+\to\mathrm{t}\overline{\mathrm{b}} $ (left), and $ \mathrm{p}\mathrm{p}\to\overline{\mathrm{q}}\mathrm{H}^{+},\mathrm{H}^+\to\mathrm{t}\overline{\mathrm{b}} $ (middle and right).

png pdf
Figure 1-b:
Representative tree-level Feynman diagrams for the signal processes: $ \mathrm{p}\mathrm{p}\to\mathrm{H}^{+}, \mathrm{H}^+\to\mathrm{t}\overline{\mathrm{b}} $ (left), and $ \mathrm{p}\mathrm{p}\to\overline{\mathrm{q}}\mathrm{H}^{+},\mathrm{H}^+\to\mathrm{t}\overline{\mathrm{b}} $ (middle and right).

png pdf
Figure 1-c:
Representative tree-level Feynman diagrams for the signal processes: $ \mathrm{p}\mathrm{p}\to\mathrm{H}^{+}, \mathrm{H}^+\to\mathrm{t}\overline{\mathrm{b}} $ (left), and $ \mathrm{p}\mathrm{p}\to\overline{\mathrm{q}}\mathrm{H}^{+},\mathrm{H}^+\to\mathrm{t}\overline{\mathrm{b}} $ (middle and right).

png pdf
Figure 2:
The pre-fit reconstructed $ \mathrm{\widetilde{H}^{\pm}} $ mass distributions in each region using full Run 2 data. Predictions for the signal with $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 600 GeV, is also shown. Beneath each plot the ratio of data to predictions is shown. The uncertainty bars in the ratio plots represent systematic uncertainties.

png pdf
Figure 3:
The pre-fit reconstructed $ H_{\mathrm{T}} $ distributions in each region using full Run 2 data. Predictions for the signal with $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 600 GeV, is also shown. Beneath each plot the ratio of data to predictions is shown. The uncertainty bars in the ratio plots represent systematic uncertainties.

png pdf
Figure 4:
The post-fit pDNN distributions in the SR 2b2j (upper) and 3b3j (lower) for electron (left) and muon (right) channels assuming $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 600 GeV using full Run 2 data. Predictions for the signal with $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 600 GeV, $ \rho_{tc}= $ 0.4, $ \rho_{tt}= $ 0.6 are shown. Beneath each plot the ratio of data to predictions is shown. The uncertainty bars in the ratio plots represent systematic uncertainties.

png pdf
Figure 4-a:
The post-fit pDNN distributions in the SR 2b2j (upper) and 3b3j (lower) for electron (left) and muon (right) channels assuming $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 600 GeV using full Run 2 data. Predictions for the signal with $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 600 GeV, $ \rho_{tc}= $ 0.4, $ \rho_{tt}= $ 0.6 are shown. Beneath each plot the ratio of data to predictions is shown. The uncertainty bars in the ratio plots represent systematic uncertainties.

png pdf
Figure 4-b:
The post-fit pDNN distributions in the SR 2b2j (upper) and 3b3j (lower) for electron (left) and muon (right) channels assuming $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 600 GeV using full Run 2 data. Predictions for the signal with $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 600 GeV, $ \rho_{tc}= $ 0.4, $ \rho_{tt}= $ 0.6 are shown. Beneath each plot the ratio of data to predictions is shown. The uncertainty bars in the ratio plots represent systematic uncertainties.

png pdf
Figure 4-c:
The post-fit pDNN distributions in the SR 2b2j (upper) and 3b3j (lower) for electron (left) and muon (right) channels assuming $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 600 GeV using full Run 2 data. Predictions for the signal with $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 600 GeV, $ \rho_{tc}= $ 0.4, $ \rho_{tt}= $ 0.6 are shown. Beneath each plot the ratio of data to predictions is shown. The uncertainty bars in the ratio plots represent systematic uncertainties.

png pdf
Figure 4-d:
The post-fit pDNN distributions in the SR 2b2j (upper) and 3b3j (lower) for electron (left) and muon (right) channels assuming $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 600 GeV using full Run 2 data. Predictions for the signal with $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 600 GeV, $ \rho_{tc}= $ 0.4, $ \rho_{tt}= $ 0.6 are shown. Beneath each plot the ratio of data to predictions is shown. The uncertainty bars in the ratio plots represent systematic uncertainties.

png pdf
Figure 5:
The post-fit pDNN distributions in the SR 2b2j (upper) and 3b3j (lower) for electron (left) and muon (right) channels assuming $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 1 TeV using full Run 2 data. Predictions for the signal with $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 1 TeV, $ \rho_{tc}= $ 0.4, $ \rho_{tt}= $ 0.6 are shown. Beneath each plot the ratio of data to predictions is shown. The uncertainty bars in the ratio plots represent systematic uncertainties.

png pdf
Figure 5-a:
The post-fit pDNN distributions in the SR 2b2j (upper) and 3b3j (lower) for electron (left) and muon (right) channels assuming $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 1 TeV using full Run 2 data. Predictions for the signal with $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 1 TeV, $ \rho_{tc}= $ 0.4, $ \rho_{tt}= $ 0.6 are shown. Beneath each plot the ratio of data to predictions is shown. The uncertainty bars in the ratio plots represent systematic uncertainties.

png pdf
Figure 5-b:
The post-fit pDNN distributions in the SR 2b2j (upper) and 3b3j (lower) for electron (left) and muon (right) channels assuming $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 1 TeV using full Run 2 data. Predictions for the signal with $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 1 TeV, $ \rho_{tc}= $ 0.4, $ \rho_{tt}= $ 0.6 are shown. Beneath each plot the ratio of data to predictions is shown. The uncertainty bars in the ratio plots represent systematic uncertainties.

png pdf
Figure 5-c:
The post-fit pDNN distributions in the SR 2b2j (upper) and 3b3j (lower) for electron (left) and muon (right) channels assuming $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 1 TeV using full Run 2 data. Predictions for the signal with $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 1 TeV, $ \rho_{tc}= $ 0.4, $ \rho_{tt}= $ 0.6 are shown. Beneath each plot the ratio of data to predictions is shown. The uncertainty bars in the ratio plots represent systematic uncertainties.

png pdf
Figure 5-d:
The post-fit pDNN distributions in the SR 2b2j (upper) and 3b3j (lower) for electron (left) and muon (right) channels assuming $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 1 TeV using full Run 2 data. Predictions for the signal with $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 1 TeV, $ \rho_{tc}= $ 0.4, $ \rho_{tt}= $ 0.6 are shown. Beneath each plot the ratio of data to predictions is shown. The uncertainty bars in the ratio plots represent systematic uncertainties.

png pdf
Figure 6:
Observed and expected 95% CL limits on the cross section times branching ratio for different $ \mathrm{\widetilde{H}^{\pm}} $ mass hypotheses with $ \rho_{tc} = $ 0.4 and $ \rho_{tt} = $ 0.6 (left). The inner (green) band and the outer (yellow) band represent the regions containing 68% and 95%, respectively, of the distribution of limits expected under the background-only hypothesis. Theoretical prediction with different $ \rho_{tc} $ and $ \rho_{tt} $ couplings are shown with the grey bands representing the corresponding uncertainties for the QCD factorization and renormalization scales and the PDFs. Observed local significance (right) extracted from the pDNN distribution using the full Run 2 results. Expected significances are obtained with the injection of a $ \sigma=$ 0.09 (0.05) pb of g2HDM signal with $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 600 GeV (1 TeV) $. The injected cross sections are picked as the best fit value for $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 600 GeV, and the theoretical prediction for $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 1 TeV assuming $ \rho_{tc,tt}= $ 0.6.

png pdf
Figure 6-a:
Observed and expected 95% CL limits on the cross section times branching ratio for different $ \mathrm{\widetilde{H}^{\pm}} $ mass hypotheses with $ \rho_{tc} = $ 0.4 and $ \rho_{tt} = $ 0.6 (left). The inner (green) band and the outer (yellow) band represent the regions containing 68% and 95%, respectively, of the distribution of limits expected under the background-only hypothesis. Theoretical prediction with different $ \rho_{tc} $ and $ \rho_{tt} $ couplings are shown with the grey bands representing the corresponding uncertainties for the QCD factorization and renormalization scales and the PDFs. Observed local significance (right) extracted from the pDNN distribution using the full Run 2 results. Expected significances are obtained with the injection of a $ \sigma=$ 0.09 (0.05) pb of g2HDM signal with $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 600 GeV (1 TeV) $. The injected cross sections are picked as the best fit value for $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 600 GeV, and the theoretical prediction for $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 1 TeV assuming $ \rho_{tc,tt}= $ 0.6.

png pdf
Figure 6-b:
Observed and expected 95% CL limits on the cross section times branching ratio for different $ \mathrm{\widetilde{H}^{\pm}} $ mass hypotheses with $ \rho_{tc} = $ 0.4 and $ \rho_{tt} = $ 0.6 (left). The inner (green) band and the outer (yellow) band represent the regions containing 68% and 95%, respectively, of the distribution of limits expected under the background-only hypothesis. Theoretical prediction with different $ \rho_{tc} $ and $ \rho_{tt} $ couplings are shown with the grey bands representing the corresponding uncertainties for the QCD factorization and renormalization scales and the PDFs. Observed local significance (right) extracted from the pDNN distribution using the full Run 2 results. Expected significances are obtained with the injection of a $ \sigma=$ 0.09 (0.05) pb of g2HDM signal with $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 600 GeV (1 TeV) $. The injected cross sections are picked as the best fit value for $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 600 GeV, and the theoretical prediction for $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 1 TeV assuming $ \rho_{tc,tt}= $ 0.6.

png pdf
Figure 7:
Observed (expected) excluded phase-space regions as a function of $ m_{\mathrm{\widetilde{H}^{\pm}}} $ and $ \rho_{\mathrm{t}\mathrm{c}} $ for various assumed $ \rho_{\mathrm{t}\mathrm{t}} $ values represented with different colors. The limits are extracted from the pDNN distributions based on g2HDM assuming all the extra Yukawa couplings except $ \rho_{\mathrm{t}\mathrm{t}} $ and $ \rho_{\mathrm{t}\mathrm{c}} $ are zero. The results are obtained from the 95% CL limits on the cross section times branching ratio in Fig 6.

png pdf
Figure 8:
Two times the difference of the negative log-likelihood (NLL) as a function of $ \sigma(\mathrm{p}\mathrm{p}\to(\mathrm{q}^\text{light})\mathrm{H}^\pm)\mathcal{B}(\mathrm{H}^\pm\to\mathrm{t}\mathrm{b}, {\mathrm{t}\to\mathrm{b} \text{l}\nu}) $ and $ \sigma(\mathrm{p}\mathrm{p}\to\mathrm{b}\mathrm{H}^\pm)\mathcal{B}(\mathrm{H}^\pm\to\mathrm{t}\mathrm{b}, {\mathrm{t}\to\mathrm{b} \text{l}\nu}) $ with the best fit point extracted from the pDNN distribution for the signal mass $ m_{\mathrm{\widetilde{H}^{\pm}}} = $ 600 GeV (left), and $ m_{\mathrm{\widetilde{H}^{\pm}}} = $ 1000 GeV (right) using all data-taking periods. The SM and the g2HDM predictions are also shown. The points along the g2HDM prediction line represent different $ \rho_{\mathrm{t}\mathrm{t}} $, $ \rho_{\mathrm{t}\mathrm{c}} $ coupling sets, with all other extra Yukawa couplings assumed to be zero.

png pdf
Figure 8-a:
Two times the difference of the negative log-likelihood (NLL) as a function of $ \sigma(\mathrm{p}\mathrm{p}\to(\mathrm{q}^\text{light})\mathrm{H}^\pm)\mathcal{B}(\mathrm{H}^\pm\to\mathrm{t}\mathrm{b}, {\mathrm{t}\to\mathrm{b} \text{l}\nu}) $ and $ \sigma(\mathrm{p}\mathrm{p}\to\mathrm{b}\mathrm{H}^\pm)\mathcal{B}(\mathrm{H}^\pm\to\mathrm{t}\mathrm{b}, {\mathrm{t}\to\mathrm{b} \text{l}\nu}) $ with the best fit point extracted from the pDNN distribution for the signal mass $ m_{\mathrm{\widetilde{H}^{\pm}}} = $ 600 GeV (left), and $ m_{\mathrm{\widetilde{H}^{\pm}}} = $ 1000 GeV (right) using all data-taking periods. The SM and the g2HDM predictions are also shown. The points along the g2HDM prediction line represent different $ \rho_{\mathrm{t}\mathrm{t}} $, $ \rho_{\mathrm{t}\mathrm{c}} $ coupling sets, with all other extra Yukawa couplings assumed to be zero.

png pdf
Figure 8-b:
Two times the difference of the negative log-likelihood (NLL) as a function of $ \sigma(\mathrm{p}\mathrm{p}\to(\mathrm{q}^\text{light})\mathrm{H}^\pm)\mathcal{B}(\mathrm{H}^\pm\to\mathrm{t}\mathrm{b}, {\mathrm{t}\to\mathrm{b} \text{l}\nu}) $ and $ \sigma(\mathrm{p}\mathrm{p}\to\mathrm{b}\mathrm{H}^\pm)\mathcal{B}(\mathrm{H}^\pm\to\mathrm{t}\mathrm{b}, {\mathrm{t}\to\mathrm{b} \text{l}\nu}) $ with the best fit point extracted from the pDNN distribution for the signal mass $ m_{\mathrm{\widetilde{H}^{\pm}}} = $ 600 GeV (left), and $ m_{\mathrm{\widetilde{H}^{\pm}}} = $ 1000 GeV (right) using all data-taking periods. The SM and the g2HDM predictions are also shown. The points along the g2HDM prediction line represent different $ \rho_{\mathrm{t}\mathrm{t}} $, $ \rho_{\mathrm{t}\mathrm{c}} $ coupling sets, with all other extra Yukawa couplings assumed to be zero.
Tables

png pdf
Table 1:
Input variables of the pDNN$_{3b} $ and pDNN$_{2b} $. Indices run up to including 3 for pDNN$_{3b} $ and 2 for pDNN$_{2b} $.
Summary
A search for charged Higgs bosons ($ \mathrm{\widetilde{H}^{\pm}} $) in proton-proton (pp) collisions at a center-of-mass energy of 13 TeV has been presented. The processes considered are $ \mathrm{p}\mathrm{p}\to(\mathrm{q})\mathrm{H}^{+} $ with $ \mathrm{H}^{+}\to\mathrm{t}\mathrm{b} $. The mass of the $ \mathrm{\widetilde{H}^{\pm}} $ ($ m_{\mathrm{\widetilde{H}^{\pm}}} $) is scanned over a range from 200 GeV to 1 TeV. No evidence for signal is observed, but a small excess is observed for $ m_{\mathrm{\widetilde{H}^{\pm}}} = $ 600 GeV with local significance of 2.4 standard deviations, corresponding to a global significance of 0.1 standard deviations. The results of the search are also interpreted in the generalized two-Higgs-doublet model (g2HDM) with the real part of extra top quark Yukawa couplings $ \rho_{\mathrm{t}\mathrm{t}} $, $ \rho_{\mathrm{t}\mathrm{c}} < $ 1. Stringent upper limits at 95% confidence level are derived on the product of the cross section $ \sigma({\mathrm{p}\mathrm{p}\to(\mathrm{q})\mathrm{H}^\pm}) $ and branching ratio $ \mathcal{B}({\mathrm{H}^\pm\to\mathrm{t}\mathrm{b}}, {\mathrm{t}\to\mathrm{b} \text{l}\nu}) $, where $ \text{l}=e, \mu $, for $ \mathrm{\widetilde{H}^{\pm}} $ boson masses up to $ m_{\mathrm{\widetilde{H}^{\pm}}}= $ 1 TeV for $ \rho_{\mathrm{t}\mathrm{c}} \gtrsim$ 0.15-0.5 depending on the $ m_{\mathrm{\widetilde{H}^{\pm}}} $ and $ \rho_{\mathrm{t}\mathrm{t}} $ assumption. The results represent the first search for the charged Higgs bosons based on the g2HDM.
References
1 ATLAS Collaboration Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 ATLAS and CMS Collaborations Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $ \sqrt{s}= $ 7 and 8 TeV JHEP 08 (2016) 045 1606.02266
4 CMS Collaboration A portrait of the Higgs boson by the CMS experiment ten years after the discovery [Erratum: Nature 623], 2022
Nature 607 (2022) 60
CMS-HIG-22-001
2207.00043
5 CMS Collaboration Observation of $ \mathrm{t\overline{t}} $H production PRL 120 (2018) 231801 CMS-HIG-17-035
1804.02610
6 CMS Collaboration Measurement of the top quark Yukawa coupling from $ \mathrm{t\bar{t}} $ kinematic distributions in the dilepton final state in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PRD 102 (2020) 092013 CMS-TOP-19-008
2009.07123
7 CMS Collaboration Observation of Higgs boson decay to bottom quarks PRL 121 (2018) 121801 CMS-HIG-18-016
1808.08242
8 CMS Collaboration Observation of the Higgs boson decay to a pair of $ \tau $ leptons with the CMS detector PLB 779 (2018) 283 CMS-HIG-16-043
1708.00373
9 CMS Collaboration Evidence for Higgs boson decay to a pair of muons JHEP 01 (2021) 148 CMS-HIG-19-006
2009.04363
10 CMS Collaboration Search for Higgs boson decay to a charm quark-antiquark pair via ttH production CDS
11 G. C. Branco et al. Theory and phenomenology of two-Higgs-doublet models Phys. Rept. 516 (2012) 1 1106.0034
12 S. Davidson and H. E. Haber Basis-independent methods for the two-Higgs-doublet model [Erratum: Phys.Rev.D 72, 099902], 2005
PRD 72 (2005) 035004
hep-ph/0504050
13 D. K. Ghosh, W.-S. Hou, and T. Modak Sub-TeV $ H^+ $ Boson Production as Probe of Extra Top Yukawa Couplings PRL 125 (2020) 221801 1912.10613
14 M. Kohda, T. Modak, and W.-S. Hou Searching for new scalar bosons via triple-top signature in $ cg \to tS^0 \to tt\bar t $ PLB 776 (2018) 379 1710.07260
15 W.-S. Hou Tree level t$ \to $ch or h$ \to $t anti-c decays PLB 296 (1992) 179
16 W.-S. Hou and M. Kikuchi Approximate Alignment in Two Higgs Doublet Model with Extra Yukawa Couplings EPL 123 (2018) 11001 1706.07694
17 K. Fuyuto, W.-S. Hou, and E. Senaha Electroweak baryogenesis driven by extra top Yukawa couplings PLB 776 (2018) 402 1705.05034
18 K. Fuyuto, W.-S. Hou, and E. Senaha Cancellation mechanism for the electron electric dipole moment connected with the baryon asymmetry of the Universe PRD 101 (2020) 011901 1910.12404
19 ATLAS Collaboration Search for heavy Higgs bosons with flavour-violating couplings in multi-lepton plus b-jets final states in pp collisions at 13 TeV with the ATLAS detector JHEP 12 (2023) 081 2307.14759
20 CMS Collaboration Search for new Higgs bosons via same-sign top quark pair production in association with a jet in proton-proton collisions at s=13TeV PLB 850 (2024) 138478 CMS-TOP-22-010
2311.03261
21 CMS Collaboration Performance of the CMS level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
22 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
23 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) P05014 CMS-EGM-17-001
2012.06888
24 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
25 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
26 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
27 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
28 CMS Collaboration Technical proposal for the phase-II upgrade of the Compact Muon Solenoid CMS Technical proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015
CDS
29 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_t $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
30 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
31 CMS Collaboration Pileup mitigation at CMS in 13 TeV data JINST 15 (2020) P09018 CMS-JME-18-001
2003.00503
32 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
33 CMS Collaboration Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s} = $ 13 TeV using the CMS detector JINST 14 (2019) P07004 CMS-JME-17-001
1903.06078
34 CMS Collaboration Performance of reconstruction and identification of $ \tau $ leptons decaying to hadrons and $ \nu_\tau $ in pp collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P10005 CMS-TAU-16-003
1809.02816
35 CMS Collaboration Identification of hadronic tau lepton decays using a deep neural network JINST 17 (2022) P07023 CMS-TAU-20-001
2201.08458
36 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
37 J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions EPJC 53 (2008) 473 0706.2569
38 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
39 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
40 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
41 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG box JHEP 06 (2010) 043 1002.2581
42 S. Frixione, P. Nason, and G. Ridolfi A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction JHEP 09 (2007) 126 0707.3088
43 T. Melia, P. Nason, R. Rontsch, and G. Zanderighi W$ ^+ $W$ ^- $, WZ and ZZ production in the POWHEG box JHEP 11 (2011) 078 1107.5051
44 E. Re Single-top Wt-channel production matched with parton showers using the POWHEG method EPJC 71 (2011) 1547 1009.2450
45 S. Alioli, P. Nason, C. Oleari, and E. Re NLO single-top production matched with shower in POWHEG: \it s- and \it t-channel contributions JHEP 09 (2009) 111 0907.4076
46 H. B. Hartanto, B. Jager, L. Reina, and D. Wackeroth Higgs boson production in association with top quarks in the POWHEG BOX PRD 91 (2015) 094003 1501.04498
47 T. Sjöstrand et al. An introduction to PYTHIA8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
48 M. Czakon and A. Mitov Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders Comput. Phys. Commun. 185 (2014) 2930 1112.5675
49 M. Botje et al. The PDF4LHC Working Group Interim Recommendations 1101.0538
50 A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt Uncertainties on alpha(S) in global PDF analyses and implications for predicted hadronic cross sections EPJC 64 (2009) 653 0905.3531
51 J. Gao et al. CT10 next-to-next-to-leading order global analysis of QCD PRD 89 (2014) 033009 1302.6246
52 R. D. Ball et al. Parton distributions with LHC data NPB 867 (2013) 244 1207.1303
53 Y. Li and F. Petriello Combining QCD and electroweak corrections to dilepton production in FEWZ PRD 86 (2012) 094034 1208.5967
54 J. Campbell, T. Neumann, and Z. Sullivan Single-top-quark production in the $ t $-channel at NNLO JHEP 02 (2021) 040 2012.01574
55 N. Kidonakis and N. Yamanaka Higher-order corrections for $ tW $ production at high-energy hadron colliders JHEP 05 (2021) 278 2102.11300
56 P. Kant et al. HatHor for single top-quark production: Updated predictions and uncertainty estimates for single top-quark production in hadronic collisions Comput. Phys. Commun. 191 (2015) 74 1406.4403
57 M. Aliev et al. HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR Comput. Phys. Commun. 182 (2011) 1034 1007.1327
58 A. Kulesza et al. Associated production of a top quark pair with a heavy electroweak gauge boson at NLO$ + $NNLL accuracy EPJC 79 (2019) 249 1812.08622
59 R. Frederix and I. Tsinikos On improving NLO merging for $ \mathrm{t}\overline{\mathrm{t}}\mathrm{W} $ production JHEP 11 (2021) 029 2108.07826
60 LHC Higgs Cross Section Working Group Collaboration Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector 1610.07922
61 R. Frederix et al. Higgs pair production at the LHC with NLO and parton-shower effects PLB 732 (2014) 142 1401.7340
62 F. Maltoni, D. Pagani, and I. Tsinikos Associated production of a top-quark pair with vector bosons at NLO in QCD: impact on $ \mathrm{t}\overline{\mathrm{t}}\mathrm{H} $ searches at the LHC JHEP 02 (2016) 113 1507.05640
63 CMS Collaboration Measurement of the associated production of a single top quark and a Z boson in pp collisions at $ \sqrt{s} = $ 13 TeV PLB 779 (2018) 358 CMS-TOP-16-020
1712.02825
64 M. van Beekveld, A. Kulesza, and L. M. Valero Threshold Resummation for the Production of Four Top Quarks at the LHC PRL 131 (2023) 211901 2212.03259
65 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
66 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
67 \GEANTfour Collaboration GEANT 4 --- a simulation toolkit NIM A 506 (2003) 250
68 CMS Collaboration Measurement of differential $ t \bar t $ production cross sections in the full kinematic range using lepton+jets events from proton-proton collisions at $ \sqrt {s} = $ 13 TeV PRD 104 (2021) 092013 CMS-TOP-20-001
2108.02803
69 K. Rehermann and B. Tweedie Efficient Identification of Boosted Semileptonic Top Quarks at the LHC JHEP 03 (2011) 059 1007.2221
70 CMS Collaboration Observation of four top quark production in proton-proton collisions at s=13TeV PLB 847 (2023) 138290 CMS-TOP-22-013
2305.13439
71 CMS Collaboration Muon identification using multivariate techniques in the CMS experiment in proton-proton collisions at sqrt(s) = 13 TeV JINST 19 (2024) P02031 CMS-MUO-22-001
2310.03844
72 CMS Collaboration Measurement of the Higgs boson production rate in association with top quarks in final states with electrons, muons, and hadronically decaying tau leptons at $ \sqrt{s} = $ 13 TeV EPJC 81 (2021) 378 CMS-HIG-19-008
2011.03652
73 CMS Collaboration Evidence for associated production of a Higgs boson with a top quark pair in final states with electrons, muons, and hadronically decaying $ \tau $ leptons at $ \sqrt{s} = $ 13 TeV JHEP 08 (2018) 066 CMS-HIG-17-018
1803.05485
74 CMS Collaboration Observation of Single Top Quark Production in Association with a $ Z $ Boson in Proton-Proton Collisions at $ \sqrt {s} = $ 13 TeV PRL 122 (2019) 132003 CMS-TOP-18-008
1812.05900
75 CMS Collaboration Measurements of the electroweak diboson production cross sections in proton-proton collisions at $ \sqrt{s} = $ 5.02 TeV using leptonic decays PRL 127 (2021) 191801 CMS-SMP-20-012
2107.01137
76 CMS Collaboration Inclusive and differential cross section measurements of single top quark production in association with a Z boson in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 02 (2022) 107 CMS-TOP-20-010
2111.02860
77 CMS Collaboration Search for electroweak production of charginos and neutralinos in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 04 (2022) 147 CMS-SUS-19-012
2106.14246
78 CMS Collaboration Measurement of the inclusive W and Z production cross sections in pp collisions at $ \sqrt{s}= $ 7 TeV JHEP 10 (2011) 132 CMS-EWK-10-005
1107.4789
79 E. Bols et al. Jet flavour classification using DeepJet JINST 15 (2020) P12012 2008.10519
80 CMS Collaboration Performance summary of AK4 jet b tagging with data from proton-proton collisions at 13 TeV with the CMS detector CMS Detector Performance Note CMS-DP-2023-005, 2023
CDS
81 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
82 CMS Collaboration Measurement of the top quark mass using events with a single reconstructed top quark in pp collisions at $ \sqrt{s} = $ 13 TeV JHEP 12 (2021) 161 CMS-TOP-19-009
2108.10407
83 CMS Collaboration Search for Flavor-Changing Neutral Current Interactions of the Top Quark and Higgs Boson in Final States with Two Photons in Proton-Proton Collisions at $ \sqrt{s}=13\text{ }\text{ }\mathrm{TeV} $ PRL 129 (2022) 032001 CMS-TOP-20-007
2111.02219
84 Particle Data Group Collaboration Review of particle physics PRD 110 (2024) 030001
85 Particle Data Group Collaboration Review of Particle Physics ( and update) 083C01, 2022
PTEP 202 (2022) 2
86 M. B. Kursa, A. Jankowski, and W. R. Rudnicki Boruta - a system for feature selection Fundam. Informaticae 101 (2010) 271
87 D. P. Kingma and J. Ba Adam: A method for stochastic optimization https://arxiv.org/abs/1412.6980
88 T. Dozat Incorporating Nesterov Momentum into Adam in Proceedings of the 4th International Conference on Learning Representations
link
89 CMS Collaboration Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at the LHC JHEP 06 (2011) 077 CMS-SUS-10-004
1104.3168
90 CMS Collaboration Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy PRL 109 (2012) 071803 CMS-SUS-11-010
1205.6615
91 CMS Collaboration Search for New Physics in Events with Same-Sign Dileptons and $ b $ Jets in $ pp $ Collisions at $ \sqrt{s}= $ 8 TeV [Erratum: JHEP 07, 041], 2013
JHEP 03 (2013) 037
CMS-SUS-12-017
1212.6194
92 CMS Collaboration Search for new physics in events with same-sign dileptons and $ b $-tagged jets in $ pp $ collisions at $ \sqrt{s}= $ 7 TeV JHEP 08 (2012) 110 CMS-SUS-11-020
1205.3933
93 CMS Collaboration Search for new physics in same-sign dilepton events in proton-proton collisions at $ \sqrt{s} = 13 \text {TeV} $ EPJC 76 (2016) 439 CMS-SUS-15-008
1605.03171
94 ATLAS and CMS Collaborations and the LHC Higgs Combination Group Procedure for the LHC Higgs boson search combination in summer 2011 CMS Physics Analysis Summary CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011
95 R. J. Barlow and C. Beeston Fitting using finite Monte Carlo samples Comput. Phys. Commun. 77 (1993) 219
96 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
97 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s}= $ 13 TeV CMS Physics Analysis Summary, 2018
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
98 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s}= $ 13 TeV CMS Physics Analysis Summary, 2019
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
99 CMS Collaboration Performance of the CMS muon trigger system in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 16 (2021) P07001 CMS-MUO-19-001
2102.04790
100 J. Butterworth et al. PDF4LHC recommendations for LHC Run II JPG 43 (2016) 023001 1510.03865
101 hepstats hepstats package: statistics tools and utilities https://github.com/scikit-hep/hepstats
102 J. D. Scargle, J. P. Norris, B. Jackson, and J. Chiang Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations Astrophysical Journal 764 (2013) 167 1207.5578
103 CMS Collaboration The CMS Statistical Analysis and Combination Tool: Combine Comput. Softw. Big Sci. 8 (2024) 19 CMS-CAT-23-001
2404.06614
104 S. Heinemeyer et al. Handbook of LHC Higgs cross sections: 3. Higgs properties CERN Report CERN-2013-004, 2013
link
1307.1347
105 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435 hep-ex/9902006
106 A. L. Read Presentation of search results: the CL$ _s $ technique JPG 28 (2002) 2693
107 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
Compact Muon Solenoid
LHC, CERN