CMS-HIG-15-007 ; CERN-EP-2017-307 | ||
Measurement of the $\mathrm{Z}/\gamma^{*} \to \tau\tau$ cross section in pp collisions at $\sqrt{s} = $ 13 TeV and validation of $\tau$ lepton analysis techniques | ||
CMS Collaboration | ||
10 January 2018 | ||
Eur. Phys. J. C 78 (2018) 708 | ||
Abstract: A measurement is presented of the $\mathrm{Z}/\gamma^{*} \to \tau\tau$ cross section in pp collisions at $\sqrt{s} = $ 13 TeV, using data recorded by the CMS experiment at the LHC, corresponding to an integrated luminosity of 2.3 fb$^{-1}$. The product of the inclusive cross section and branching fraction is measured to be $\sigma(\mathrm{pp} \to \mathrm{Z}/\gamma^{*}\text{+X}) \, \mathcal{B}(\mathrm{Z}/\gamma^{*} \to \tau\tau) = $ 1848 $\pm$ 12 (stat) $\pm$ 67 (syst+lumi) pb, in agreement with the standard model expectation, computed at next-to-next-to-leading order accuracy in perturbative quantum chromodynamics. The measurement is used to validate new analysis techniques relevant for future measurements of $\tau$ lepton production. The measurement also provides the reconstruction efficiency and energy scale for $\tau$ decays to hadrons+$\nu_{\tau}$ final states, determined with respective relative uncertainties of 2.2% and 0.9%. | ||
Links: e-print arXiv:1801.03535 [hep-ex] (PDF) ; CDS record ; inSPIRE record ; CADI line (restricted) ; |
Figures | |
png pdf |
Figure 1:
(Left) Construction of the projections $ {P_{\zeta}^{ \textrm {miss}}} $ and $ {P_{\zeta}^{ \textrm {vis}}} $, and (right) the distribution in the observable $ {P_{\zeta}^{ \textrm {miss}}} - 0.85 {P_{\zeta}^{ \textrm {vis}}} $ for events selected in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel, before imposing the condition $ {P_{\zeta}^{ \textrm {miss}}} - 0.85 {P_{\zeta}^{ \textrm {vis}}} > -20 GeV $. Also indicated is the separation of the background into its main components. The symbols $ {{\vec p}_{\mathrm {T}}} ^{\ {{\nu}}({\mathrm {e}})}$ and $ {{\vec p}_{\mathrm {T}}} ^{\ {{\nu}}({{\mu}})}$ refer to the vectorial sum of transverse momenta of the two neutrinos produced in each of the decays $ {\tau}\to {\mathrm {e}} {{\nu}} {{\nu}}$ and $ {\tau}\to {{\mu}} {{\nu}} {{\nu}}$, respectively. |
png pdf |
Figure 1-a:
Construction of the projections $ {P_{\zeta}^{ \textrm {miss}}} $ and $ {P_{\zeta}^{ \textrm {vis}}} $. The symbols $ {{\vec p}_{\mathrm {T}}} ^{\ {{\nu}}({\mathrm {e}})}$ and $ {{\vec p}_{\mathrm {T}}} ^{\ {{\nu}}({{\mu}})}$ refer to the vectorial sum of transverse momenta of the two neutrinos produced in each of the decays $ {\tau}\to {\mathrm {e}} {{\nu}} {{\nu}}$ and $ {\tau}\to {{\mu}} {{\nu}} {{\nu}}$, respectively. |
png pdf |
Figure 1-b:
Distribution in the observable $ {P_{\zeta}^{ \textrm {miss}}} - 0.85 {P_{\zeta}^{ \textrm {vis}}} $ for events selected in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel, before imposing the condition $ {P_{\zeta}^{ \textrm {miss}}} - 0.85 {P_{\zeta}^{ \textrm {vis}}} > -20 GeV $. Also indicated is the separation of the background into its main components. |
png pdf |
Figure 2:
Probabilities for gluon and quark jets of different flavour in simulated multijet events to be misidentified as $ {{\tau} _\mathrm {h}} $, as a function of jet $ {p_{\mathrm {T}}} $, for (left) jets passing $ {p_{\mathrm {T}}} > $ 20 GeV and $ | \eta | < $ 2.3, and (right) for jets passing in addition the minimal $ {{\tau} _\mathrm {h}} $ candidate selection criteria discussed in the text. |
png pdf |
Figure 2-a:
Probabilities for gluon and quark jets of different flavour in simulated multijet events to be misidentified as $ {{\tau} _\mathrm {h}} $, as a function of jet $ {p_{\mathrm {T}}} $, for jets passing $ {p_{\mathrm {T}}} > $ 20 GeV and $ | \eta | < $ 2.3. |
png pdf |
Figure 2-b:
Probabilities for gluon and quark jets of different flavour in simulated multijet events to be misidentified as $ {{\tau} _\mathrm {h}} $, as a function of jet $ {p_{\mathrm {T}}} $, for jets passing in addition the minimal $ {{\tau} _\mathrm {h}} $ candidate selection criteria discussed in the text. |
png pdf |
Figure 3:
The $ {F_\textrm {F}}$ values measured in multijet events in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ (upper), $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ (center), and $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ (lower) channels, presented in bins of jet multiplicity and $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ $ {p_{\mathrm {T}}} $. The abscissae of the points are offset to distinguish the points with different jet multiplicities. |
png pdf |
Figure 3-a:
The $ {F_\textrm {F}}$ values measured in multijet events in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel, presented in bins of jet multiplicity for 1-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ $ {p_{\mathrm {T}}} $. The abscissae of the points are offset to distinguish the points with different jet multiplicities. |
png pdf |
Figure 3-b:
The $ {F_\textrm {F}}$ values measured in multijet events in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel, presented in bins of jet multiplicity for 3-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ $ {p_{\mathrm {T}}} $. The abscissae of the points are offset to distinguish the points with different jet multiplicities. |
png pdf |
Figure 3-c:
The $ {F_\textrm {F}}$ values measured in multijet events in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, presented in bins of jet multiplicity for 1-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ $ {p_{\mathrm {T}}} $. The abscissae of the points are offset to distinguish the points with different jet multiplicities. |
png pdf |
Figure 3-d:
The $ {F_\textrm {F}}$ values measured in multijet events in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, presented in bins of jet multiplicity for 3-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ $ {p_{\mathrm {T}}} $. The abscissae of the points are offset to distinguish the points with different jet multiplicities. |
png pdf |
Figure 3-e:
The $ {F_\textrm {F}}$ values measured in multijet events in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel, presented in bins of jet multiplicity for 1-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ $ {p_{\mathrm {T}}} $. The abscissae of the points are offset to distinguish the points with different jet multiplicities. |
png pdf |
Figure 3-f:
The $ {F_\textrm {F}}$ values measured in multijet events in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel, presented in bins of jet multiplicity for 3-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ $ {p_{\mathrm {T}}} $. The abscissae of the points are offset to distinguish the points with different jet multiplicities. |
png pdf |
Figure 4:
The $ {F_\textrm {F}}$ values measured in W+jets events in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ (upper) and $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ (center) channels and in $ {\mathrm {t}} {\overline {\mathrm {t}}}$ events (lower), presented in bins of jet multiplicity and $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ ${p_{\mathrm {T}}} $. A common $ {\mathrm {t}} {\overline {\mathrm {t}}}$ MR is used for the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ and $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channels. The abscissae of the points are offset to distinguish the points with different jet multiplicities. |
png pdf |
Figure 4-a:
The $ {F_\textrm {F}}$ values measured in W+jets events in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel ,presented in bins of jet multiplicity for the 1-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ ${p_{\mathrm {T}}} $. A common $ {\mathrm {t}} {\overline {\mathrm {t}}}$ MR is used. The abscissae of the points are offset to distinguish the points with different jet multiplicities. |
png pdf |
Figure 4-b:
The $ {F_\textrm {F}}$ values measured in W+jets events in |
png pdf |
Figure 4-c:
The $ {F_\textrm {F}}$ values measured in W+jets events in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, presented in bins of jet multiplicity for the 1-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ ${p_{\mathrm {T}}} $. A common $ {\mathrm {t}} {\overline {\mathrm {t}}}$ MR is used. The abscissae of the points are offset to distinguish the points with different jet multiplicities. |
png pdf |
Figure 4-d:
The $ {F_\textrm {F}}$ values measured in W+jets events in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, presented in bins of jet multiplicity for the 3-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ ${p_{\mathrm {T}}} $. A common $ {\mathrm {t}} {\overline {\mathrm {t}}}$ MR is used. The abscissae of the points are offset to distinguish the points with different jet multiplicities. |
png pdf |
Figure 4-e:
The $ {F_\textrm {F}}$ values measured in W+jets events in $ {\mathrm {t}} {\overline {\mathrm {t}}}$ events, presented in bins of jet multiplicity for the 1 3-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ ${p_{\mathrm {T}}} $. The abscissae of the points are offset to distinguish the points with different jet multiplicities. |
png pdf |
Figure 4-f:
The $ {F_\textrm {F}}$ values measured in W+jets events in $ {\mathrm {t}} {\overline {\mathrm {t}}}$ events, presented in bins of jet multiplicity for the 1 3-prong $ {{\tau} _\mathrm {h}} $ decay mode, as a function of $ {{\tau} _\mathrm {h}} $ ${p_{\mathrm {T}}} $. The abscissae of the points are offset to distinguish the points with different jet multiplicities. |
png pdf |
Figure 5:
Distributions in $m_{{\tau} {\tau}}$ for SS events containing (upper left) $ {\mathrm {e}} {{\tau} _\mathrm {h}} $, (upper right) $ {{\mu}} {{\tau} _\mathrm {h}} $, and (lower) $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ pairs, compared to expected background contributions. |
png pdf |
Figure 5-a:
Distributions in $m_{{\tau} {\tau}}$ for SS events containing $ {\mathrm {e}} {{\tau} _\mathrm {h}} $, pairs, compared to expected background contributions. |
png pdf |
Figure 5-b:
Distributions in $m_{{\tau} {\tau}}$ for SS events containing $ {{\mu}} {{\tau} _\mathrm {h}} $, pairs, compared to expected background contributions. |
png pdf |
Figure 5-c:
Distributions in $m_{{\tau} {\tau}}$ for SS events containing $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ pairs, compared to expected background contributions. |
png pdf |
Figure 6:
Distributions expected in $m_{{\tau} {\tau}}$ for $ {\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau}$ signal events in the (left) $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $, (center) $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $, and (right) $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channels for the nominal value of the $ {{\tau} _\mathrm {h}} $ ES, and after implementing 3% systematic shift. |
png pdf |
Figure 6-a:
Distributions expected in $m_{{\tau} {\tau}}$ for $ {\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau}$ signal events in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel for the nominal value of the $ {{\tau} _\mathrm {h}} $ ES, and after implementing 3% systematic shift. |
png pdf |
Figure 6-b:
Distributions expected in $m_{{\tau} {\tau}}$ for $ {\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau}$ signal events in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel for the nominal value of the $ {{\tau} _\mathrm {h}} $ ES, and after implementing 3% systematic shift. |
png pdf |
Figure 6-c:
Distributions expected in $m_{{\tau} {\tau}}$ for $ {\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau}$ signal events in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel for the nominal value of the $ {{\tau} _\mathrm {h}} $ ES, and after implementing 3% systematic shift. |
png pdf |
Figure 7:
Distributions in $m_{{\tau} {\tau}}$ expected for the background arising from quark or gluon jets misidentified as $ {{\tau} _\mathrm {h}} $ in the (left) $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $, (center) $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $, and (right) $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channels, and the systematic uncertainty in the false-$ {{\tau} _\mathrm {h}} $ background estimate. The grey shaded band represents the quadratic sum of all systematic uncertainties related to the $ {F_\textrm {F}}$ method: uncertainties in the $ {F_\textrm {F}}$ measured in the multijet, W+jets, and $ {\mathrm {t}} {\overline {\mathrm {t}}}$ MR; uncertainties in the relative fractions of multijet, W+jets, and $ {\mathrm {t}} {\overline {\mathrm {t}}}$ backgrounds in the AR; and uncertainties in the non-closure corrections (described in Section 6.1. |
png pdf |
Figure 7-a:
Distributions in $m_{{\tau} {\tau}}$ expected for the background arising from quark or gluon jets misidentified as $ {{\tau} _\mathrm {h}} $ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel, and the systematic uncertainty in the false-$ {{\tau} _\mathrm {h}} $ background estimate. The grey shaded band represents the quadratic sum of all systematic uncertainties related to the $ {F_\textrm {F}}$ method: uncertainties in the $ {F_\textrm {F}}$ measured in the multijet, W+jets, and $ {\mathrm {t}} {\overline {\mathrm {t}}}$ MR; uncertainties in the relative fractions of multijet, W+jets, and $ {\mathrm {t}} {\overline {\mathrm {t}}}$ backgrounds in the AR; and uncertainties in the non-closure corrections (described in Section 6.1. |
png pdf |
Figure 7-b:
Distributions in $m_{{\tau} {\tau}}$ expected for the background arising from quark or gluon jets misidentified as $ {{\tau} _\mathrm {h}} $ in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, and the systematic uncertainty in the false-$ {{\tau} _\mathrm {h}} $ background estimate. The grey shaded band represents the quadratic sum of all systematic uncertainties related to the $ {F_\textrm {F}}$ method: uncertainties in the $ {F_\textrm {F}}$ measured in the multijet, W+jets, and $ {\mathrm {t}} {\overline {\mathrm {t}}}$ MR; uncertainties in the relative fractions of multijet, W+jets, and $ {\mathrm {t}} {\overline {\mathrm {t}}}$ backgrounds in the AR; and uncertainties in the non-closure corrections (described in Section 6.1. |
png pdf |
Figure 7-c:
Distributions in $m_{{\tau} {\tau}}$ expected for the background arising from quark or gluon jets misidentified as $ {{\tau} _\mathrm {h}} $ in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel, and the systematic uncertainty in the false-$ {{\tau} _\mathrm {h}} $ background estimate. The grey shaded band represents the quadratic sum of all systematic uncertainties related to the $ {F_\textrm {F}}$ method: uncertainties in the $ {F_\textrm {F}}$ measured in the multijet, W+jets, and $ {\mathrm {t}} {\overline {\mathrm {t}}}$ MR; uncertainties in the relative fractions of multijet, W+jets, and $ {\mathrm {t}} {\overline {\mathrm {t}}}$ backgrounds in the AR; and uncertainties in the non-closure corrections (described in Section 6.1. |
png pdf |
Figure 8:
Dependence of $-2 \ln\lambda \left (\xi \right)$ on the cross section $\xi $ for DY production of $ {\tau}$ pairs. The PLR is computed for the simultaneous ML fit to the observed $m_{{\tau} {\tau}}$ distributions in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $, $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $, $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $, $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $, and $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channels. The dashed, dash-dotted, and solid curves correspond to situations when just the statistical uncertainties are used in the fit, when the uncertainty in integrated luminosity is also included, and when all uncertainties are included in the fit. The values of nuisance parameters, corresponding to uncertainties that are ignored, are fixed at the values that yield the best fit to the data. The horizontal line represents the value of $-2 \ln\lambda \left (\xi \right)$ that is used to determine the 68% CI on $\xi $. |
png pdf |
Figure 9:
Distributions in $m_{{\tau} {\tau}}$ for events selected in the (upper left) $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $, (upper right) $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $, and (lower) $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channels. Signal and background contributions are shown for values of nuisance parameters obtained in the ML fit to the data. |
png pdf |
Figure 9-a:
Distributions in $m_{{\tau} {\tau}}$ for events selected in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel. Signal and background contributions are shown for values of nuisance parameters obtained in the ML fit to the data. |
png pdf |
Figure 9-b:
Distributions in $m_{{\tau} {\tau}}$ for events selected in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel. Signal and background contributions are shown for values of nuisance parameters obtained in the ML fit to the data. |
png pdf |
Figure 9-c:
Distributions in $m_{{\tau} {\tau}}$ for events selected in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel. Signal and background contributions are shown for values of nuisance parameters obtained in the ML fit to the data. |
png pdf |
Figure 10:
Distributions in $m_{{\tau} {\tau}}$ for events selected in the (left) $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ and (right) $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channels. Signal and background contributions are shown for the values of nuisance parameters obtained in the ML fit to the data. |
png pdf |
Figure 10-a:
Distributions in $m_{{\tau} {\tau}}$ for events selected in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel. Signal and background contributions are shown for the values of nuisance parameters obtained in the ML fit to the data. |
png pdf |
Figure 10-b:
Distributions in $m_{{\tau} {\tau}}$ for events selected in the $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channel. Signal and background contributions are shown for the values of nuisance parameters obtained in the ML fit to the data. |
png pdf |
Figure 11:
The inclusive cross section $\sigma ({\mathrm {p}} {\mathrm {p}}\to {\mathrm {Z}}/ {{{\gamma}} ^{*}} \text {+X}) \mathcal {B}({\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau})$ measured in individual channels, and in the combination of all final states, compared to the theoretical prediction [60]. |
png pdf |
Figure 12:
Likelihood contours for the joint parameter estimation of (upper left) $\sigma ({\mathrm {p}} {\mathrm {p}}\to {\mathrm {Z}}/ {{{\gamma}} ^{*}} \text {+X}) \mathcal {B}({\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau})$ and the $ {{\tau} _\mathrm {h}} $ ID efficiency, (upper right) $\sigma ({\mathrm {p}} {\mathrm {p}}\to {\mathrm {Z}}/ {{{\gamma}} ^{*}} \text {+X}) \mathcal {B}({\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau})$ and $ {{\tau} _\mathrm {h}} $ ES, and (lower) the $ {{\tau} _\mathrm {h}} $ ES and the $ {{\tau} _\mathrm {h}} $ ID efficiency, at $68$ and $95%$ confidence level (CL). The values of the $ {{\tau} _\mathrm {h}} $ ID efficiency and of $ {{\tau} _\mathrm {h}} $ ES are quoted in terms of scale factors (SF) relative to their standard model, MC expectation. |
png pdf |
Figure 12-a:
Likelihood contours for the joint parameter estimation of $\sigma ({\mathrm {p}} {\mathrm {p}}\to {\mathrm {Z}}/ {{{\gamma}} ^{*}} \text {+X}) \mathcal {B}({\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau})$ and the $ {{\tau} _\mathrm {h}} $ ID efficiency. The values of the $ {{\tau} _\mathrm {h}} $ ID efficiency are quoted in terms of a scale factor (SF) relative to the standard model, MC expectation. |
png pdf |
Figure 12-b:
Likelihood contours for the joint parameter estimation of $\sigma ({\mathrm {p}} {\mathrm {p}}\to {\mathrm {Z}}/ {{{\gamma}} ^{*}} \text {+X}) \mathcal {B}({\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau})$ and $ {{\tau} _\mathrm {h}} $ ES. The values of $ {{\tau} _\mathrm {h}} $ ES are quoted in terms of a scale factor (SF) relative to the standard model, MC expectation. |
png pdf |
Figure 12-c:
Likelihood contours for the joint parameter estimation of the $ {{\tau} _\mathrm {h}} $ ES and the $ {{\tau} _\mathrm {h}} $ ID efficiency, at 68 and 95% confidence level (CL). The values of the $ {{\tau} _\mathrm {h}} $ ID efficiency and of $ {{\tau} _\mathrm {h}} $ ES are quoted in terms of scale factors (SF) relative to their standard model, MC expectation. |
png pdf |
Figure 13:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel: (upper left) 0-jet, (upper right) 1-jet low, (lower left) medium, and (lower right) high Z boson $ {p_{\mathrm {T}}} $. |
png pdf |
Figure 13-a:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, 0-jet category. |
png pdf |
Figure 13-b:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, 1-jet low Z boson $ {p_{\mathrm {T}}} $ category. |
png pdf |
Figure 13-c:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, 1-jet medium Z boson $ {p_{\mathrm {T}}} $ category. |
png pdf |
Figure 13-d:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, 1-jet high Z boson $ {p_{\mathrm {T}}} $ category. |
png pdf |
Figure 14:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel: (upper) 2-jet VBF, (lower left) 1 b jet, and (lower right) 2 b jet. |
png pdf |
Figure 14-a:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, 2-jet VBF category. |
png pdf |
Figure 14-b:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, 1 b jet category. |
png pdf |
Figure 14-c:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $ channel, 2 b jet category. |
png pdf |
Figure 15:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel: (upper left) 0-jet, (upper right) 1-jet low, (lower left) medium, and (lower right) high Z boson $ {p_{\mathrm {T}}} $. |
png pdf |
Figure 15-a:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel, 0-jet category. |
png pdf |
Figure 15-b:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel, 1-jet low Z boson $ {p_{\mathrm {T}}} $ category. |
png pdf |
Figure 15-c:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel, 1-jet medium Z boson $ {p_{\mathrm {T}}} $ category. |
png pdf |
Figure 15-d:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel, 1-jet high Z boson $ {p_{\mathrm {T}}} $ category. |
png pdf |
Figure 16:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel: (upper) 2-jet VBF, (lower left) 1 b jet, and (lower right) 2 b jet. |
png pdf |
Figure 16-a:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel, 2-jet VBF jet category. |
png pdf |
Figure 16-b:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel, 1 b jet category. |
png pdf |
Figure 16-c:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $ channel, 2 b jet category. |
png pdf |
Figure 17:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel: (upper left) 0-jet, (upper right) 1-jet low, (lower left) medium, and (lower right) high Z boson $ {p_{\mathrm {T}}} $. |
png pdf |
Figure 17-a:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel, 0-jet Z boson $ {p_{\mathrm {T}}} $ category. |
png pdf |
Figure 17-b:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel, 1-jet low Z boson $ {p_{\mathrm {T}}} $ category. |
png pdf |
Figure 17-c:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel, 1-jet medium Z boson $ {p_{\mathrm {T}}} $ category. |
png pdf |
Figure 17-d:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel, 1-jet high Z boson $ {p_{\mathrm {T}}} $ category. |
png pdf |
Figure 18:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel: (upper) 2-jet VBF, (lower left) 1 b jet, and (lower right) 2 b jet. |
png pdf |
Figure 18-a:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel, 2-jet VBF category. |
png pdf |
Figure 18-b:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel, 1 b jet category. |
png pdf |
Figure 18-c:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $ channel, 2 b jet category. |
png pdf |
Figure 19:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel: (upper left) 0-jet, (upper right) 1-jet low, (lower left) medium, and (lower right) high Z boson $ {p_{\mathrm {T}}} $. |
png pdf |
Figure 19-a:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel, 0-jet category. |
png pdf |
Figure 19-b:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel, 1-jet low Z boson $ {p_{\mathrm {T}}} $ category. |
png pdf |
Figure 19-c:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel, 1-jet medium Z boson $ {p_{\mathrm {T}}} $ category. |
png pdf |
Figure 19-d:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel, 1-jet high Z boson $ {p_{\mathrm {T}}} $ category. |
png pdf |
Figure 20:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel: (upper) 2-jet VBF, (lower left) 1 b jet, and (lower right) 2 b jet. |
png pdf |
Figure 20-a:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel, 2-jet VBF category. |
png pdf |
Figure 20-b:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel, 1 b jet category. |
png pdf |
Figure 20-c:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $ channel, 2 b jet category. |
png pdf |
Figure 21:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channel: (upper left) 0-jet, (upper right) 1-jet low, (lower left) medium, and (lower right) high Z boson $ {p_{\mathrm {T}}} $. |
png pdf |
Figure 21-a:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channel, 0-jet category. |
png pdf |
Figure 21-b:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channel, 1-jet low Z boson $ {p_{\mathrm {T}}} $ category. |
png pdf |
Figure 21-c:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channel, 1-jet high Z boson $ {p_{\mathrm {T}}} $ category. |
png pdf |
Figure 21-d:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channel: (upper left) 0-jet, (upper right) 1-jet low, (lower left) medium, and (lower right) high Z boson $ {p_{\mathrm {T}}} $. |
png pdf |
Figure 22:
Distributions in $m_{{\tau} {\tau}}$ for different categories in the $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channel: (upper) 2-jet VBF, (lower left) 1 b jet, and (lower right) 2 b jet. |
png pdf |
Figure 22-a:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channel: 2-jet VBF category. |
png pdf |
Figure 22-b:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channel: 1 b jet category. |
png pdf |
Figure 22-c:
Distribution in $m_{{\tau} {\tau}}$ in the $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channel: 2 b jet category. |
Tables | |
png pdf |
Table 1:
Expected number of background events in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $, $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $, $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $, $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $, and $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channels in data, corresponding to an integrated luminosity of 2.3 fb$^{-1}$. Event yields and uncertainties are rounded to a precision of two significant digits in the uncertainty. |
png pdf |
Table 2:
Effect of experimental and theoretical uncertainties in the measurement of the $ {\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau}$ cross section. The sources of systematic uncertainty are specified in the leftmost column, and apply to the processes given in the second column. The relative changes in the acceptance $\mathcal {A}$ for the $ {\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau}$ signal, and in the yield from background processes that correspond to a one standard deviation change in a given source of uncertainty is given in the third column. The range in this column represents the range in signal acceptance or background yield across all decay channels and background processes. The impact that each change produces is quantified by its effect on the measured $ {\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau}$ cross section, given in the rightmost column. |
png pdf |
Table 3:
Yields expected in $ {\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau}$ signal events and backgrounds in the $ {{\tau}_{{\mathrm {e}}}} {{\tau} _\mathrm {h}} $, $ {{\tau}_{{{\mu}}}} {{\tau} _\mathrm {h}} $, $ {{\tau} _\mathrm {h}} {{\tau} _\mathrm {h}} $, $ {{\tau}_{{\mathrm {e}}}} {{\tau}_{{{\mu}}}} $, and $ {{\tau}_{{{\mu}}}} {{\tau}_{{{\mu}}}} $ channels, obtained from the ML fit described in Section yyyyy. The yields and uncertainties are rounded to a precision of two significant digits in the uncertainty. The analysed data corresponds to an integrated luminosity of 2.3 fb$^{-1}$. |
png pdf |
Table 4:
Cross section $\sigma ({\mathrm {p}} {\mathrm {p}}\to {\mathrm {Z}}/ {{{\gamma}} ^{*}} \text {+X}) \mathcal {B}({\mathrm {Z}}/ {{{\gamma}} ^{*}} \to {\tau} {\tau})$ measured in individual final states. |
png pdf |
Table 5:
Event categories used to study the modelling of backgrounds. Similar categories have been used in previous $ {\textrm {H}} \to {\tau} {\tau}$ analyses at the LHC. |
Summary |
The cross section for inclusive Drell-Yan production of $\tau$ pairs has been measured using pp collisions recorded by the CMS experiment at $\sqrt{s} = $ 13 TeV at the LHC. The analysed data correspond to an integrated luminosity of 2.3 fb$^{-1}$. The signal yield was determined in a global fit to the mass distributions in five $\tau\tau$ decay channels: ${\tau_{\mathrm{e}}} {\tau_\mathrm{h}}$, ${\tau_{\mu}} {\tau_\mathrm{h}}$, ${\tau_\mathrm{h}}{\tau_\mathrm{h}}$, ${\tau_{\mathrm{e}}} {\tau_{\mu}} $, and ${\tau_{\mu}} {\tau_{\mu}} $. The measured cross section times branching fraction $\sigma({\mathrm{p}}{\mathrm{p}} \to \mathrm{Z}/\gamma^{*} \text{+X}) \, \mathcal{B}(\mathrm{Z}/\gamma^{*} \to \tau\tau) = $ 1848 $\pm$ 12 (stat) $\pm$ 57 (syst) $\pm$ 35 (lumi) pb is in agreement with the standard model expectation, computed at next-to-next-to-leading order accuracy in perturbation theory. As a byproduct of the global fit, the efficiency for reconstructing and identifying the decays of $\tau$ leptons to hadrons ($\tau \to \mbox{hadrons} + \nu_{\tau}$), as well as the ${\tau_\mathrm{h}}$ energy scale, have been determined. The results from data agree with Monte Carlo simulation within the uncertainties of the measurement, amounting to 2.2% relative uncertainty in the ${\tau_\mathrm{h}}$ identification efficiency, and 0.9% in the energy scale. |
References | ||||
1 | ATLAS Collaboration | Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC | PLB 716 (2012) 1 | 1207.7214 |
2 | CMS Collaboration | Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC | PLB 716 (2012) 30 | CMS-HIG-12-028 1207.7235 |
3 | CMS Collaboration | Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV | JHEP 06 (2013) 081 | CMS-HIG-12-036 1303.4571 |
4 | ATLAS and CMS Collaborations | Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $ \sqrt{s} = $ 7 and 8 TeV | JHEP 08 (2016) 045 | 1606.02266 |
5 | CMS Collaboration | Search for a light charged Higgs boson in top quark decays in pp collisions at $ \sqrt{s} = $ 7 TeV | JHEP 07 (2012) 143 | CMS-HIG-11-019 1205.5736 |
6 | ATLAS Collaboration | Search for charged Higgs bosons decaying via $ \mathrm{H}^{\pm} \to \tau^{\pm}\nu $ in fully hadronic final states using pp collision data at $ \sqrt{s} = $ 8 TeV with the ATLAS detector | JHEP 03 (2015) 088 | 1412.6663 |
7 | CMS Collaboration | Search for a charged Higgs boson in pp collisions at $ \sqrt{s} = $ 8 TeV | JHEP 11 (2015) 018 | CMS-HIG-14-023 1508.07774 |
8 | CMS Collaboration | A search for a doubly-charged Higgs boson in pp collisions at $ \sqrt{s} = $ 7 TeV | EPJC 72 (2012) 2189 | CMS-HIG-12-005 1207.2666 |
9 | CMS Collaboration | Search for neutral MSSM Higgs bosons decaying to $ \tau $ pairs in pp collisions at $ \sqrt{s} = $ 7 TeV | PRL 106 (2011) 231801 | CMS-HIG-10-002 1104.1619 |
10 | ATLAS Collaboration | Search for neutral MSSM Higgs bosons decaying to $ \tau^{+}\tau^{-} $ pairs in pp collisions at $ \sqrt{s} = $ 7 TeV with the ATLAS detector | PLB 705 (2011) 174 | 1107.5003 |
11 | CMS Collaboration | Search for neutral Higgs bosons decaying to $ \tau $ pairs in pp collisions at $ \sqrt{s} = $ 7 TeV | PLB 713 (2012) 68 | CMS-HIG-11-029 1202.4083 |
12 | CMS Collaboration | Search for neutral MSSM Higgs bosons decaying to a pair of $ \tau $ leptons in pp collisions | JHEP 10 (2014) 160 | CMS-HIG-13-021 1408.3316 |
13 | ATLAS Collaboration | Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS detector | JHEP 11 (2014) 056 | 1409.6064 |
14 | CMS Collaboration | Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into $ \tau $ leptons in pp collisions at $ \sqrt{s} = $ 8 TeV | JHEP 01 (2016) 079 | CMS-HIG-14-019 1510.06534 |
15 | CMS Collaboration | Search for a low-mass pseudoscalar Higgs boson produced in association with a $ \mathrm{ b \bar{b} } $ pair in pp collisions at $ \sqrt{s} = $ 8 TeV | PLB 758 (2016) 296 | CMS-HIG-14-033 1511.03610 |
16 | ATLAS Collaboration | Search for Higgs bosons decaying to $ \textrm{a}\textrm{a} $ in the $ \mu\mu\tau\tau $ final state in pp collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS experiment | PRD 92 (2015) 052002 | 1505.01609 |
17 | CMS Collaboration | Observation of the Higgs boson decay to a pair of $ \tau $ leptons | Submitted to PLB | CMS-HIG-16-043 1708.00373 |
18 | CMS Collaboration | Search for lepton-flavour-violating decays of the Higgs boson | PLB 749 (2015) 337 | CMS-HIG-14-005 1502.07400 |
19 | ATLAS Collaboration | Search for lepton-flavour-violating $ \mathrm{H}iggs \to \mu\tau $ decays of the Higgs boson with the ATLAS detector | JHEP 11 (2015) 211 | 1508.03372 |
20 | ATLAS Collaboration | Search for a heavy neutral particle decaying to $ \mathrm{e}\mu $, $ \mathrm{e}\tau $, or $ \mu\tau $ in pp collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS Detector | PRL 115 (2015) 031801 | 1503.04430 |
21 | CMS Collaboration | Search for physics beyond the standard model in events with $ \tau $ leptons, jets, and large transverse momentum imbalance in pp collisions at $ \sqrt{s} = $ 7 TeV | EPJC 73 (2013) 2493 | CMS-SUS-12-004 1301.3792 |
22 | CMS Collaboration | Search for anomalous production of events with three or more leptons in pp collisions at $ \sqrt{s} = $ 8 TeV | PRD 90 (2014) 032006 | CMS-SUS-13-002 1404.5801 |
23 | CMS Collaboration | Search for top squarks in $ R $-parity-violating supersymmetry using three or more leptons and b-tagged jets | PRL 111 (2013) 221801 | CMS-SUS-13-003 1306.6643 |
24 | ATLAS Collaboration | Search for a heavy narrow resonance decaying to $ \mathrm{e}\mu $, $ \mathrm{e}\tau $, or $ \mu\tau $ with the ATLAS detector in $ \sqrt{s} = $ 7 TeV pp collisions at the LHC | PLB 723 (2013) 15 | 1212.1272 |
25 | ATLAS Collaboration | Search for supersymmetry in events with large missing transverse momentum, jets, and at least one $ \tau $ lepton in 20 fb$^{-1} $ of $ \sqrt{s} = $ 8 TeV pp collision data with the ATLAS detector | JHEP 09 (2014) 103 | 1407.0603 |
26 | ATLAS Collaboration | Search for the direct production of charginos, neutralinos and staus in final states with at least two hadronically decaying taus and missing transverse momentum in pp collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS detector | JHEP 10 (2014) 96 | 1407.0350 |
27 | ATLAS Collaboration | Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in $ \sqrt{s} = $ 8 TeV pp collisions with the ATLAS detector | JHEP 04 (2014) 169 | 1402.7029 |
28 | ATLAS Collaboration | Search for direct scalar top pair production in final states with two $ \tau $ leptons in pp collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS detector | EPJC 76 (2016) 81 | 1509.04976 |
29 | CMS Collaboration | Search for pair production of third-generation leptoquarks and top squarks in pp collisions at $ \sqrt{s} = $ 7 TeV | PRL 110 (2013) 081801 | CMS-EXO-12-002 1210.5629 |
30 | CMS Collaboration | Search for third-generation scalar leptoquarks in the $ \mathrm{t}\tau $ channel in pp collisions at $ \sqrt{s} = $ 8 TeV | JHEP 07 (2015) 042 | CMS-EXO-14-008 1503.09049 |
31 | CMS Collaboration | A search for Higgs boson pair production in the $ \mathrm{b}\mathrm{b}\tau\tau $ final state in pp collisions at $ \sqrt{s} = $ 8 TeV | PRD 96 (2017), no. 7, 072004 | CMS-HIG-15-013 1707.00350 |
32 | ATLAS Collaboration | Searches for Higgs boson pair production in the $ \mathrm{h}\mathrm{h} \to \mathrm{b}\mathrm{b}\tau\tau $, $ \gamma\gamma \mathrm{W}\mathrm{W}^{*} $, $ \gamma\gamma\mathrm{b}\mathrm{b} $, $ \mathrm{b}\mathrm{b}\mathrm{b}\mathrm{b} $ channels with the ATLAS detector | PRD 92 (2015) 092004 | 1509.04670 |
33 | CMS Collaboration | Search for high mass resonances decaying into $ \tau $ lepton pairs in pp collisions at $ \sqrt{s} = $ 7 TeV | PLB 716 (2012) 82 | CMS-EXO-11-031 1206.1725 |
34 | CMS Collaboration | Search for $ \mathrm{W} $' decaying to $ \tau $ lepton and neutrino in pp collisions at $ \sqrt{s} = $ 8 TeV | PLB 755 (2016) 196 | CMS-EXO-12-011 1508.04308 |
35 | ATLAS Collaboration | A search for high-mass resonances decaying to $ \tau^{+}\tau^{-} $ in pp collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS detector | JHEP 07 (2015) 157 | 1502.07177 |
36 | S. D. Drell and T. M. Yan | Massive lepton pair production in hadron-hadron collisions at high energies | PRL 25 (1970) 316 | |
37 | CMS Collaboration | Reconstruction and identification of $ \tau $ lepton decays to hadrons and $ {\mathrm{n}}ut $ at CMS | JINST 11 (2016) P01019 | CMS-TAU-14-001 1510.07488 |
38 | CMS Collaboration | Measurement of the inclusive $ \mathrm{Z} $ cross section via decays to $ \tau $ pairs in pp collisions at $ \sqrt{s} = $ 7 TeV | JHEP 08 (2011) 117 | CMS-EWK-10-013 1104.1617 |
39 | ATLAS Collaboration | Measurement of the $ \mathrm{Z} \to \tau\tau $ cross section with the ATLAS Detector | PRD 84 (2011) 112006 | 1108.2016 |
40 | CDF Collaboration | Measurement of $ \sigma({\mathrm{p}}\mathrm{\bar{p}} \to \mathrm{Z}) \times {\cal B}(\mathrm{Z} \to \tau\tau) $ in $ {\mathrm{p}}\mathrm{\bar{p}} $ collisions at $ \sqrt{s} = $ 1.96 TeV | PRD 75 (2007) 092004 | |
41 | D0 Collaboration | First measurement of $ \sigma({\mathrm{p}}\mathrm{\bar{p}} \to \mathrm{Z}) \times {\cal B}(\mathrm{Z} \to \tau\tau) $ at $ \sqrt{s} = $ 1.96 TeV | PRD 71 (2005) 072004 | hep-ex/0412020 |
42 | D0 Collaboration | Measurement of $ \sigma({\mathrm{p}}\mathrm{\bar{p}} \to \mathrm{Z} + X) \times {\cal B}(\mathrm{Z} \to \tau^{+}\tau^{-}) $ at $ \sqrt{s} = $ 1.96 TeV | PLB 670 (2009) 292 | 0808.1306 |
43 | CMS Collaboration | Evidence for the 125 GeV Higgs boson decaying to a pair of $ \tau $ leptons | JHEP 05 (2014) 104 | CMS-HIG-13-004 1401.5041 |
44 | CMS Collaboration | Description and performance of track and primary-vertex reconstruction with the CMS tracker | JINST 9 (2014) P10009 | CMS-TRK-11-001 1405.6569 |
45 | CMS Collaboration | The CMS experiment at the CERN LHC | JINST 3 (2008) S08004 | CMS-00-001 |
46 | J. Alwall et al. | The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations | JHEP 07 (2014) 079 | 1405.0301 |
47 | P. Nason | A new method for combining NLO QCD with shower Monte Carlo algorithms | JHEP 11 (2004) 040 | hep-ph/0409146 |
48 | S. Frixione, P. Nason, and C. Oleari | Matching NLO QCD computations with parton shower simulations: the POWHEG method | JHEP 11 (2007) 070 | 0709.2092 |
49 | S. Alioli, P. Nason, C. Oleari, and E. Re | A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX | JHEP 06 (2010) 043 | 1002.2581 |
50 | S. Frixione, P. Nason, and G. Ridolfi | A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction | JHEP 09 (2007) 126 | 0707.3088 |
51 | S. Alioli, P. Nason, C. Oleari, and E. Re | NLO single-top production matched with shower in POWHEG: $ s $- and $ t $-channel contributions | JHEP 09 (2009) 111 | 0907.4076 |
52 | S. Alioli, P. Nason, C. Oleari, and E. Re | NLO Higgs boson production via gluon fusion matched with shower in POWHEG | JHEP 04 (2009) 002 | 0812.0578 |
53 | P. Nason and C. Oleari | NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG | JHEP 02 (2010) 037 | 0911.5299 |
54 | NNPDF Collaboration | Parton distributions with QED corrections | NPB 877 (2013) 290 | 1308.0598 |
55 | NNPDF Collaboration | Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO | NPB 855 (2012) 153 | 1107.2652 |
56 | NNPDF Collaboration | Parton distributions for the LHC Run II | JHEP 04 (2015) 040 | 1410.8849 |
57 | T. Sjostrand, S. Mrenna, and P. Z. Skands | A brief introduction to PYTHIA 8.1 | CPC 178 (2008) 852 | 0710.3820 |
58 | CMS Collaboration | Event generator tunes obtained from underlying event and multiparton scattering measurements | EPJC 76 (2016) 155 | CMS-GEN-14-001 1512.00815 |
59 | P. Skands, S. Carrazza, and J. Rojo | Tuning PYTHIA 8.1: the Monash 2013 tune | EPJC 74 (2014) 3024 | 1404.5630 |
60 | Y. Li and F. Petriello | Combining QCD and electroweak corrections to dilepton production in FEWZ | PRD 86 (2012) 094034 | 1208.5967 |
61 | M. Czakon and A. Mitov | Top++: A program for the calculation of the top-pair cross section at hadron colliders | CPC 185 (2014) 2930 | 1112.5675 |
62 | CMS Collaboration | Measurement of differential top-quark pair production cross sections in pp colisions at $ \sqrt{s} = $ 7 TeV | EPJC 73 (2013) 2339 | CMS-TOP-11-013 1211.2220 |
63 | CMS Collaboration | Measurement of the differential cross section for top quark pair production in pp collisions at $ \sqrt{s} = $ 8 TeV | EPJC 75 (2015) 542 | CMS-TOP-12-028 1505.04480 |
64 | P. Kant et al. | HATHOR for single top-quark production: updated predictions and uncertainty estimates for single top-quark production in hadronic collisions | CPC 191 (2015) 74 | 1406.4403 |
65 | M. Aliev et al. | HATHOR: HAdronic Top and Heavy quarks crOss section calculatoR | CPC 182 (2011) 1034 | 1007.1327 |
66 | N. Kidonakis | Two-loop soft anomalous dimensions for single top quark associated production with a $ \mathrm{W}^{-} $ or $ \mathrm{H}iggs^{-} $ | PRD 82 (2010) 054018 | 1005.4451 |
67 | J. M. Campbell, R. K. Ellis, and C. Williams | Vector boson pair production at the LHC | JHEP 07 (2011) 018 | 1105.0020 |
68 | GEANT4 Collaboration | GEANT4---a simulation toolkit | NIMA 506 (2003) 250 | |
69 | CMS Collaboration | Particle-flow reconstruction and global event description with the CMS detector | JINST 12 (2017) P10003 | CMS-PRF-14-001 1706.04965 |
70 | CMS Collaboration | Performance of electron reconstruction and selection with the CMS detector in pp collisions at $ \sqrt{s} = $ 8 TeV | JINST 10 (2015) P06005 | CMS-EGM-13-001 1502.02701 |
71 | H. Voss, A. Hocker, J. Stelzer, and F. Tegenfeldt | TMVA, the toolkit for multivariate data analysis with ROOT | in XIth International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT), p. 40 2007 | physics/0703039 |
72 | CMS Collaboration | Performance of CMS muon reconstruction in pp collision events at $ \sqrt{s} = $ 7 TeV | JINST 7 (2012) P10002 | CMS-MUO-10-004 1206.4071 |
73 | E. Chabanat and N. Estre | Deterministic annealing for vertex finding at CMS | in Computing in high energy physics and nuclear physics. Proceedings, Conference, CHEP'04, Interlaken, Switzerland, September 27-October 1, 2004, p. 2872005 | |
74 | W. Waltenberger, R. Fruhwirth, and P. Vanlaer | Adaptive vertex fitting | JPG 34 (2007) N343 | |
75 | M. Cacciari, G. P. Salam, and G. Soyez | The anti-$ k_t $ jet clustering algorithm | JHEP 04 (2008) 063 | 0802.1189 |
76 | M. Cacciari, G. P. Salam, and G. Soyez | FastJet user manual | EPJC 72 (2012) 1896 | 1111.6097 |
77 | CMS Collaboration | Performance of reconstruction and identification of $ \tau $ leptons in their decays to hadrons and $ {\mathrm{n}}ut $ in LHC Run 2 | CMS-PAS-TAU-16-002 | CMS-PAS-TAU-16-002 |
78 | CMS Collaboration | Jet performance in pp collisions at $ \sqrt{s} = $ 7 TeV | CDS | |
79 | CMS Collaboration | Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV | JINST 12 (2017) P02014 | CMS-JME-13-004 1607.03663 |
80 | M. Cacciari, G. P. Salam, and G. Soyez | The catchment area of jets | JHEP 04 (2008) 005 | 0802.1188 |
81 | M. Cacciari and G. P. Salam | Pileup subtraction using jet areas | PLB 659 (2008) 119 | 0707.1378 |
82 | CMS Collaboration | Identification of $ \mathrm{b} $ quark jets with the CMS experiment | JINST 8 (2013) P04013 | CMS-BTV-12-001 1211.4462 |
83 | CMS Collaboration | Performance of the CMS missing transverse momentum reconstruction in pp data at $ \sqrt{s} = $ 8 TeV | JINST 10 (2015) P02006 | CMS-JME-13-003 1411.0511 |
84 | L. Bianchini, J. Conway, E. K. Friis, and C. Veelken | Reconstruction of the Higgs mass in $ \mathrm{H}iggs \to \tau\tau $ events by dynamical likelihood techniques | J. Phys. Conf. Ser. 513 (2014) 022035 | |
85 | CMS Collaboration | Missing transverse energy performance of the CMS detector | JINST 6 (2011) P09001 | CMS-JME-10-009 1106.5048 |
86 | CDF Collaboration | Search for neutral MSSM Higgs bosons decaying to $ \tau $ pairs in $ {\mathrm{p}}\mathrm{\bar{p}} $ collisions at $ \sqrt{s} = $ 1.96 TeV | PRL 96 (2006) 011802 | hep-ex/0508051 |
87 | CMS Collaboration | Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A decaying to $ \mathrm{Z}\mathrm{h} $, in the final states with $ \mathrm{h} \to \tau\tau $ | PLB 755 (2016) 217 | CMS-HIG-14-034 1510.01181 |
88 | CMS Collaboration | The CMS trigger system | JINST 12 (2017) P01020 | CMS-TRG-12-001 1609.02366 |
89 | CMS Collaboration | Measurements of inclusive $ \mathrm{W} $ and $ \mathrm{Z} $ cross sections in pp collisions at $ \sqrt{s} = $ 7 TeV | JHEP 01 (2011) 080 | CMS-EWK-10-002 1012.2466 |
90 | CMS Collaboration | Performance of missing energy reconstruction in 13 $ TeV {\mathrm{p}}{\mathrm{p}} $ collision data using the CMS detector | CMS-PAS-JME-16-004 | CMS-PAS-JME-16-004 |
91 | CMS Collaboration | CMS luminosity measurement for the 2015 data-taking period | CMS-PAS-LUM-15-001 | CMS-PAS-LUM-15-001 |
92 | M. Cacciari et al. | The $\mathrm{ t \bar{t} } $ cross-section at 1.8 TeV and 1.96$ TeV: $ a study of the systematics due to parton densities and scale dependence | JHEP 04 (2004) 068 | hep-ph/0303085 |
93 | S. Catani, D. de Florian, M. Grazzini, and P. Nason | Soft gluon resummation for Higgs boson production at hadron colliders | JHEP 07 (2003) 028 | hep-ph/0306211 |
94 | J. Butterworth et al. | PDF4LHC recommendations for LHC Run II | JPG 43 (2016) 023001 | 1510.03865 |
95 | ATLAS and CMS Collaborations and LHC Higgs Combination Group | Procedure for the LHC Higgs boson search combination in Summer 2011 | CMS-NOTE-2011-005 | |
96 | CMS Collaboration | Combined results of searches for the standard model Higgs boson in pp collisions at $ \sqrt{s} = $ 7 TeV | PLB 710 (2012) 26 | CMS-HIG-11-032 1202.1488 |
97 | J. S. Conway | Incorporating nuisance parameters in likelihoods for multisource spectra | 1103.0354 | |
98 | CMS Collaboration | Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV | EPJC 75 (2015) 212 | CMS-HIG-14-009 1412.8662 |
99 | S. Jadach, Z. W\cas, R. Decker, and J. H. Kuhn | The $ \tau $ decay library TAUOLA, version 2.4 | CPC 76 (1993) 361 | |
100 | N. Davidson et al. | Universal interface of TAUOLA technical and physics documentation | CPC 183 (2012) 821 | 1002.0543 |
101 | Z. Czyczula, T. Przedzinski, and Z. W\cas | TauSpinner program for studies on spin effect in $ \tau $ production at the LHC | EPJC 72 (2012) 1988 | 1201.0117 |
102 | ATLAS Collaboration | Modelling $ \mathrm{Z} \to \tau\tau $ processes in ATLAS with $ \tau $-embedded $ \mathrm{Z} \to \mu\mu $ data | JINST 10 (2015) P09018 | 1506.05623 |
Compact Muon Solenoid LHC, CERN |